/* * Emulation of Linux signals * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include #include #include #include #include #include "qemu.h" #include "qemu-common.h" #include "target_signal.h" //#define DEBUG_SIGNAL static struct target_sigaltstack target_sigaltstack_used = { .ss_sp = 0, .ss_size = 0, .ss_flags = TARGET_SS_DISABLE, }; static struct target_sigaction sigact_table[TARGET_NSIG]; static void host_signal_handler(int host_signum, siginfo_t *info, void *puc); static uint8_t host_to_target_signal_table[_NSIG] = { [SIGHUP] = TARGET_SIGHUP, [SIGINT] = TARGET_SIGINT, [SIGQUIT] = TARGET_SIGQUIT, [SIGILL] = TARGET_SIGILL, [SIGTRAP] = TARGET_SIGTRAP, [SIGABRT] = TARGET_SIGABRT, /* [SIGIOT] = TARGET_SIGIOT,*/ [SIGBUS] = TARGET_SIGBUS, [SIGFPE] = TARGET_SIGFPE, [SIGKILL] = TARGET_SIGKILL, [SIGUSR1] = TARGET_SIGUSR1, [SIGSEGV] = TARGET_SIGSEGV, [SIGUSR2] = TARGET_SIGUSR2, [SIGPIPE] = TARGET_SIGPIPE, [SIGALRM] = TARGET_SIGALRM, [SIGTERM] = TARGET_SIGTERM, #ifdef SIGSTKFLT [SIGSTKFLT] = TARGET_SIGSTKFLT, #endif [SIGCHLD] = TARGET_SIGCHLD, [SIGCONT] = TARGET_SIGCONT, [SIGSTOP] = TARGET_SIGSTOP, [SIGTSTP] = TARGET_SIGTSTP, [SIGTTIN] = TARGET_SIGTTIN, [SIGTTOU] = TARGET_SIGTTOU, [SIGURG] = TARGET_SIGURG, [SIGXCPU] = TARGET_SIGXCPU, [SIGXFSZ] = TARGET_SIGXFSZ, [SIGVTALRM] = TARGET_SIGVTALRM, [SIGPROF] = TARGET_SIGPROF, [SIGWINCH] = TARGET_SIGWINCH, [SIGIO] = TARGET_SIGIO, [SIGPWR] = TARGET_SIGPWR, [SIGSYS] = TARGET_SIGSYS, /* next signals stay the same */ /* Nasty hack: Reverse SIGRTMIN and SIGRTMAX to avoid overlap with host libpthread signals. This assumes noone actually uses SIGRTMAX :-/ To fix this properly we need to do manual signal delivery multiplexed over a single host signal. */ [__SIGRTMIN] = __SIGRTMAX, [__SIGRTMAX] = __SIGRTMIN, }; static uint8_t target_to_host_signal_table[_NSIG]; static inline int on_sig_stack(unsigned long sp) { return (sp - target_sigaltstack_used.ss_sp < target_sigaltstack_used.ss_size); } static inline int sas_ss_flags(unsigned long sp) { return (target_sigaltstack_used.ss_size == 0 ? SS_DISABLE : on_sig_stack(sp) ? SS_ONSTACK : 0); } int host_to_target_signal(int sig) { if (sig >= _NSIG) return sig; return host_to_target_signal_table[sig]; } int target_to_host_signal(int sig) { if (sig >= _NSIG) return sig; return target_to_host_signal_table[sig]; } static inline void target_sigemptyset(target_sigset_t *set) { memset(set, 0, sizeof(*set)); } static inline void target_sigaddset(target_sigset_t *set, int signum) { signum--; abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); set->sig[signum / TARGET_NSIG_BPW] |= mask; } static inline int target_sigismember(const target_sigset_t *set, int signum) { signum--; abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); } static void host_to_target_sigset_internal(target_sigset_t *d, const sigset_t *s) { int i; target_sigemptyset(d); for (i = 1; i <= TARGET_NSIG; i++) { if (sigismember(s, i)) { target_sigaddset(d, host_to_target_signal(i)); } } } void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) { target_sigset_t d1; int i; host_to_target_sigset_internal(&d1, s); for(i = 0;i < TARGET_NSIG_WORDS; i++) d->sig[i] = tswapl(d1.sig[i]); } static void target_to_host_sigset_internal(sigset_t *d, const target_sigset_t *s) { int i; sigemptyset(d); for (i = 1; i <= TARGET_NSIG; i++) { if (target_sigismember(s, i)) { sigaddset(d, target_to_host_signal(i)); } } } void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) { target_sigset_t s1; int i; for(i = 0;i < TARGET_NSIG_WORDS; i++) s1.sig[i] = tswapl(s->sig[i]); target_to_host_sigset_internal(d, &s1); } void host_to_target_old_sigset(abi_ulong *old_sigset, const sigset_t *sigset) { target_sigset_t d; host_to_target_sigset(&d, sigset); *old_sigset = d.sig[0]; } void target_to_host_old_sigset(sigset_t *sigset, const abi_ulong *old_sigset) { target_sigset_t d; int i; d.sig[0] = *old_sigset; for(i = 1;i < TARGET_NSIG_WORDS; i++) d.sig[i] = 0; target_to_host_sigset(sigset, &d); } /* siginfo conversion */ static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, const siginfo_t *info) { int sig; sig = host_to_target_signal(info->si_signo); tinfo->si_signo = sig; tinfo->si_errno = 0; tinfo->si_code = info->si_code; if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV || sig == SIGBUS || sig == SIGTRAP) { /* should never come here, but who knows. The information for the target is irrelevant */ tinfo->_sifields._sigfault._addr = 0; } else if (sig == SIGIO) { tinfo->_sifields._sigpoll._fd = info->si_fd; } else if (sig >= TARGET_SIGRTMIN) { tinfo->_sifields._rt._pid = info->si_pid; tinfo->_sifields._rt._uid = info->si_uid; /* XXX: potential problem if 64 bit */ tinfo->_sifields._rt._sigval.sival_ptr = (abi_ulong)(unsigned long)info->si_value.sival_ptr; } } static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info) { int sig; sig = info->si_signo; tinfo->si_signo = tswap32(sig); tinfo->si_errno = tswap32(info->si_errno); tinfo->si_code = tswap32(info->si_code); if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV || sig == SIGBUS || sig == SIGTRAP) { tinfo->_sifields._sigfault._addr = tswapl(info->_sifields._sigfault._addr); } else if (sig == SIGIO) { tinfo->_sifields._sigpoll._fd = tswap32(info->_sifields._sigpoll._fd); } else if (sig >= TARGET_SIGRTMIN) { tinfo->_sifields._rt._pid = tswap32(info->_sifields._rt._pid); tinfo->_sifields._rt._uid = tswap32(info->_sifields._rt._uid); tinfo->_sifields._rt._sigval.sival_ptr = tswapl(info->_sifields._rt._sigval.sival_ptr); } } void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) { host_to_target_siginfo_noswap(tinfo, info); tswap_siginfo(tinfo, tinfo); } /* XXX: we support only POSIX RT signals are used. */ /* XXX: find a solution for 64 bit (additional malloced data is needed) */ void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) { info->si_signo = tswap32(tinfo->si_signo); info->si_errno = tswap32(tinfo->si_errno); info->si_code = tswap32(tinfo->si_code); info->si_pid = tswap32(tinfo->_sifields._rt._pid); info->si_uid = tswap32(tinfo->_sifields._rt._uid); info->si_value.sival_ptr = (void *)(long)tswapl(tinfo->_sifields._rt._sigval.sival_ptr); } static int fatal_signal (int sig) { switch (sig) { case TARGET_SIGCHLD: case TARGET_SIGURG: case TARGET_SIGWINCH: /* Ignored by default. */ return 0; case TARGET_SIGCONT: case TARGET_SIGSTOP: case TARGET_SIGTSTP: case TARGET_SIGTTIN: case TARGET_SIGTTOU: /* Job control signals. */ return 0; default: return 1; } } /* returns 1 if given signal should dump core if not handled */ static int core_dump_signal(int sig) { switch (sig) { case TARGET_SIGABRT: case TARGET_SIGFPE: case TARGET_SIGILL: case TARGET_SIGQUIT: case TARGET_SIGSEGV: case TARGET_SIGTRAP: case TARGET_SIGBUS: return (1); default: return (0); } } void signal_init(void) { struct sigaction act; struct sigaction oact; int i, j; int host_sig; /* generate signal conversion tables */ for(i = 1; i < _NSIG; i++) { if (host_to_target_signal_table[i] == 0) host_to_target_signal_table[i] = i; } for(i = 1; i < _NSIG; i++) { j = host_to_target_signal_table[i]; target_to_host_signal_table[j] = i; } /* set all host signal handlers. ALL signals are blocked during the handlers to serialize them. */ memset(sigact_table, 0, sizeof(sigact_table)); sigfillset(&act.sa_mask); act.sa_flags = SA_SIGINFO; act.sa_sigaction = host_signal_handler; for(i = 1; i <= TARGET_NSIG; i++) { host_sig = target_to_host_signal(i); sigaction(host_sig, NULL, &oact); if (oact.sa_sigaction == (void *)SIG_IGN) { sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; } else if (oact.sa_sigaction == (void *)SIG_DFL) { sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; } /* If there's already a handler installed then something has gone horribly wrong, so don't even try to handle that case. */ /* Install some handlers for our own use. We need at least SIGSEGV and SIGBUS, to detect exceptions. We can not just trap all signals because it affects syscall interrupt behavior. But do trap all default-fatal signals. */ if (fatal_signal (i)) sigaction(host_sig, &act, NULL); } } /* signal queue handling */ static inline struct sigqueue *alloc_sigqueue(CPUState *env) { TaskState *ts = env->opaque; struct sigqueue *q = ts->first_free; if (!q) return NULL; ts->first_free = q->next; return q; } static inline void free_sigqueue(CPUState *env, struct sigqueue *q) { TaskState *ts = env->opaque; q->next = ts->first_free; ts->first_free = q; } /* abort execution with signal */ static void QEMU_NORETURN force_sig(int target_sig) { TaskState *ts = (TaskState *)thread_env->opaque; int host_sig, core_dumped = 0; struct sigaction act; host_sig = target_to_host_signal(target_sig); gdb_signalled(thread_env, target_sig); /* dump core if supported by target binary format */ if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { stop_all_tasks(); core_dumped = ((*ts->bprm->core_dump)(target_sig, thread_env) == 0); } if (core_dumped) { /* we already dumped the core of target process, we don't want * a coredump of qemu itself */ struct rlimit nodump; getrlimit(RLIMIT_CORE, &nodump); nodump.rlim_cur=0; setrlimit(RLIMIT_CORE, &nodump); (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", target_sig, strsignal(host_sig), "core dumped" ); } /* The proper exit code for dieing from an uncaught signal is * -. The kernel doesn't allow exit() or _exit() to pass * a negative value. To get the proper exit code we need to * actually die from an uncaught signal. Here the default signal * handler is installed, we send ourself a signal and we wait for * it to arrive. */ sigfillset(&act.sa_mask); act.sa_handler = SIG_DFL; sigaction(host_sig, &act, NULL); /* For some reason raise(host_sig) doesn't send the signal when * statically linked on x86-64. */ kill(getpid(), host_sig); /* Make sure the signal isn't masked (just reuse the mask inside of act) */ sigdelset(&act.sa_mask, host_sig); sigsuspend(&act.sa_mask); /* unreachable */ abort(); } /* queue a signal so that it will be send to the virtual CPU as soon as possible */ int queue_signal(CPUState *env, int sig, target_siginfo_t *info) { TaskState *ts = env->opaque; struct emulated_sigtable *k; struct sigqueue *q, **pq; abi_ulong handler; int queue; #if defined(DEBUG_SIGNAL) fprintf(stderr, "queue_signal: sig=%d\n", sig); #endif k = &ts->sigtab[sig - 1]; queue = gdb_queuesig (); handler = sigact_table[sig - 1]._sa_handler; if (!queue && handler == TARGET_SIG_DFL) { if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { kill(getpid(),SIGSTOP); return 0; } else /* default handler : ignore some signal. The other are fatal */ if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && sig != TARGET_SIGWINCH && sig != TARGET_SIGCONT) { force_sig(sig); } else { return 0; /* indicate ignored */ } } else if (!queue && handler == TARGET_SIG_IGN) { /* ignore signal */ return 0; } else if (!queue && handler == TARGET_SIG_ERR) { force_sig(sig); } else { pq = &k->first; if (sig < TARGET_SIGRTMIN) { /* if non real time signal, we queue exactly one signal */ if (!k->pending) q = &k->info; else return 0; } else { if (!k->pending) { /* first signal */ q = &k->info; } else { q = alloc_sigqueue(env); if (!q) return -EAGAIN; while (*pq != NULL) pq = &(*pq)->next; } } *pq = q; q->info = *info; q->next = NULL; k->pending = 1; /* signal that a new signal is pending */ ts->signal_pending = 1; return 1; /* indicates that the signal was queued */ } } static void host_signal_handler(int host_signum, siginfo_t *info, void *puc) { int sig; target_siginfo_t tinfo; /* the CPU emulator uses some host signals to detect exceptions, we forward to it some signals */ if ((host_signum == SIGSEGV || host_signum == SIGBUS) && info->si_code > 0) { if (cpu_signal_handler(host_signum, info, puc)) return; } /* get target signal number */ sig = host_to_target_signal(host_signum); if (sig < 1 || sig > TARGET_NSIG) return; #if defined(DEBUG_SIGNAL) fprintf(stderr, "qemu: got signal %d\n", sig); #endif host_to_target_siginfo_noswap(&tinfo, info); if (queue_signal(thread_env, sig, &tinfo) == 1) { /* interrupt the virtual CPU as soon as possible */ cpu_exit(thread_env); } } /* do_sigaltstack() returns target values and errnos. */ /* compare linux/kernel/signal.c:do_sigaltstack() */ abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp) { int ret; struct target_sigaltstack oss; /* XXX: test errors */ if(uoss_addr) { __put_user(target_sigaltstack_used.ss_sp, &oss.ss_sp); __put_user(target_sigaltstack_used.ss_size, &oss.ss_size); __put_user(sas_ss_flags(sp), &oss.ss_flags); } if(uss_addr) { struct target_sigaltstack *uss; struct target_sigaltstack ss; ret = -TARGET_EFAULT; if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1) || __get_user(ss.ss_sp, &uss->ss_sp) || __get_user(ss.ss_size, &uss->ss_size) || __get_user(ss.ss_flags, &uss->ss_flags)) goto out; unlock_user_struct(uss, uss_addr, 0); ret = -TARGET_EPERM; if (on_sig_stack(sp)) goto out; ret = -TARGET_EINVAL; if (ss.ss_flags != TARGET_SS_DISABLE && ss.ss_flags != TARGET_SS_ONSTACK && ss.ss_flags != 0) goto out; if (ss.ss_flags == TARGET_SS_DISABLE) { ss.ss_size = 0; ss.ss_sp = 0; } else { ret = -TARGET_ENOMEM; if (ss.ss_size < MINSIGSTKSZ) goto out; } target_sigaltstack_used.ss_sp = ss.ss_sp; target_sigaltstack_used.ss_size = ss.ss_size; } if (uoss_addr) { ret = -TARGET_EFAULT; if (copy_to_user(uoss_addr, &oss, sizeof(oss))) goto out; } ret = 0; out: return ret; } /* do_sigaction() return host values and errnos */ int do_sigaction(int sig, const struct target_sigaction *act, struct target_sigaction *oact) { struct target_sigaction *k; struct sigaction act1; int host_sig; int ret = 0; if (sig < 1 || sig > TARGET_NSIG || sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) return -EINVAL; k = &sigact_table[sig - 1]; #if defined(DEBUG_SIGNAL) fprintf(stderr, "sigaction sig=%d act=0x%p, oact=0x%p\n", sig, act, oact); #endif if (oact) { oact->_sa_handler = tswapl(k->_sa_handler); oact->sa_flags = tswapl(k->sa_flags); #if !defined(TARGET_MIPS) oact->sa_restorer = tswapl(k->sa_restorer); #endif oact->sa_mask = k->sa_mask; } if (act) { /* FIXME: This is not threadsafe. */ k->_sa_handler = tswapl(act->_sa_handler); k->sa_flags = tswapl(act->sa_flags); #if !defined(TARGET_MIPS) k->sa_restorer = tswapl(act->sa_restorer); #endif k->sa_mask = act->sa_mask; /* we update the host linux signal state */ host_sig = target_to_host_signal(sig); if (host_sig != SIGSEGV && host_sig != SIGBUS) { sigfillset(&act1.sa_mask); act1.sa_flags = SA_SIGINFO; if (k->sa_flags & TARGET_SA_RESTART) act1.sa_flags |= SA_RESTART; /* NOTE: it is important to update the host kernel signal ignore state to avoid getting unexpected interrupted syscalls */ if (k->_sa_handler == TARGET_SIG_IGN) { act1.sa_sigaction = (void *)SIG_IGN; } else if (k->_sa_handler == TARGET_SIG_DFL) { if (fatal_signal (sig)) act1.sa_sigaction = host_signal_handler; else act1.sa_sigaction = (void *)SIG_DFL; } else { act1.sa_sigaction = host_signal_handler; } ret = sigaction(host_sig, &act1, NULL); } } return ret; } static inline int copy_siginfo_to_user(target_siginfo_t *tinfo, const target_siginfo_t *info) { tswap_siginfo(tinfo, info); return 0; } static inline int current_exec_domain_sig(int sig) { return /* current->exec_domain && current->exec_domain->signal_invmap && sig < 32 ? current->exec_domain->signal_invmap[sig] : */ sig; } #if defined(TARGET_I386) && TARGET_ABI_BITS == 32 /* from the Linux kernel */ struct target_fpreg { uint16_t significand[4]; uint16_t exponent; }; struct target_fpxreg { uint16_t significand[4]; uint16_t exponent; uint16_t padding[3]; }; struct target_xmmreg { abi_ulong element[4]; }; struct target_fpstate { /* Regular FPU environment */ abi_ulong cw; abi_ulong sw; abi_ulong tag; abi_ulong ipoff; abi_ulong cssel; abi_ulong dataoff; abi_ulong datasel; struct target_fpreg _st[8]; uint16_t status; uint16_t magic; /* 0xffff = regular FPU data only */ /* FXSR FPU environment */ abi_ulong _fxsr_env[6]; /* FXSR FPU env is ignored */ abi_ulong mxcsr; abi_ulong reserved; struct target_fpxreg _fxsr_st[8]; /* FXSR FPU reg data is ignored */ struct target_xmmreg _xmm[8]; abi_ulong padding[56]; }; #define X86_FXSR_MAGIC 0x0000 struct target_sigcontext { uint16_t gs, __gsh; uint16_t fs, __fsh; uint16_t es, __esh; uint16_t ds, __dsh; abi_ulong edi; abi_ulong esi; abi_ulong ebp; abi_ulong esp; abi_ulong ebx; abi_ulong edx; abi_ulong ecx; abi_ulong eax; abi_ulong trapno; abi_ulong err; abi_ulong eip; uint16_t cs, __csh; abi_ulong eflags; abi_ulong esp_at_signal; uint16_t ss, __ssh; abi_ulong fpstate; /* pointer */ abi_ulong oldmask; abi_ulong cr2; }; struct target_ucontext { abi_ulong tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; /* mask last for extensibility */ }; struct sigframe { abi_ulong pretcode; int sig; struct target_sigcontext sc; struct target_fpstate fpstate; abi_ulong extramask[TARGET_NSIG_WORDS-1]; char retcode[8]; }; struct rt_sigframe { abi_ulong pretcode; int sig; abi_ulong pinfo; abi_ulong puc; struct target_siginfo info; struct target_ucontext uc; struct target_fpstate fpstate; char retcode[8]; }; /* * Set up a signal frame. */ /* XXX: save x87 state */ static int setup_sigcontext(struct target_sigcontext *sc, struct target_fpstate *fpstate, CPUX86State *env, abi_ulong mask, abi_ulong fpstate_addr) { int err = 0; uint16_t magic; /* already locked in setup_frame() */ err |= __put_user(env->segs[R_GS].selector, (unsigned int *)&sc->gs); err |= __put_user(env->segs[R_FS].selector, (unsigned int *)&sc->fs); err |= __put_user(env->segs[R_ES].selector, (unsigned int *)&sc->es); err |= __put_user(env->segs[R_DS].selector, (unsigned int *)&sc->ds); err |= __put_user(env->regs[R_EDI], &sc->edi); err |= __put_user(env->regs[R_ESI], &sc->esi); err |= __put_user(env->regs[R_EBP], &sc->ebp); err |= __put_user(env->regs[R_ESP], &sc->esp); err |= __put_user(env->regs[R_EBX], &sc->ebx); err |= __put_user(env->regs[R_EDX], &sc->edx); err |= __put_user(env->regs[R_ECX], &sc->ecx); err |= __put_user(env->regs[R_EAX], &sc->eax); err |= __put_user(env->exception_index, &sc->trapno); err |= __put_user(env->error_code, &sc->err); err |= __put_user(env->eip, &sc->eip); err |= __put_user(env->segs[R_CS].selector, (unsigned int *)&sc->cs); err |= __put_user(env->eflags, &sc->eflags); err |= __put_user(env->regs[R_ESP], &sc->esp_at_signal); err |= __put_user(env->segs[R_SS].selector, (unsigned int *)&sc->ss); cpu_x86_fsave(env, fpstate_addr, 1); fpstate->status = fpstate->sw; magic = 0xffff; err |= __put_user(magic, &fpstate->magic); err |= __put_user(fpstate_addr, &sc->fpstate); /* non-iBCS2 extensions.. */ err |= __put_user(mask, &sc->oldmask); err |= __put_user(env->cr[2], &sc->cr2); return err; } /* * Determine which stack to use.. */ static inline abi_ulong get_sigframe(struct target_sigaction *ka, CPUX86State *env, size_t frame_size) { unsigned long esp; /* Default to using normal stack */ esp = env->regs[R_ESP]; /* This is the X/Open sanctioned signal stack switching. */ if (ka->sa_flags & TARGET_SA_ONSTACK) { if (sas_ss_flags(esp) == 0) esp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } /* This is the legacy signal stack switching. */ else if ((env->segs[R_SS].selector & 0xffff) != __USER_DS && !(ka->sa_flags & TARGET_SA_RESTORER) && ka->sa_restorer) { esp = (unsigned long) ka->sa_restorer; } return (esp - frame_size) & -8ul; } /* compare linux/arch/i386/kernel/signal.c:setup_frame() */ static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUX86State *env) { abi_ulong frame_addr; struct sigframe *frame; int i, err = 0; frame_addr = get_sigframe(ka, env, sizeof(*frame)); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; err |= __put_user(current_exec_domain_sig(sig), &frame->sig); if (err) goto give_sigsegv; setup_sigcontext(&frame->sc, &frame->fpstate, env, set->sig[0], frame_addr + offsetof(struct sigframe, fpstate)); if (err) goto give_sigsegv; for(i = 1; i < TARGET_NSIG_WORDS; i++) { if (__put_user(set->sig[i], &frame->extramask[i - 1])) goto give_sigsegv; } /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa_flags & TARGET_SA_RESTORER) { err |= __put_user(ka->sa_restorer, &frame->pretcode); } else { uint16_t val16; abi_ulong retcode_addr; retcode_addr = frame_addr + offsetof(struct sigframe, retcode); err |= __put_user(retcode_addr, &frame->pretcode); /* This is popl %eax ; movl $,%eax ; int $0x80 */ val16 = 0xb858; err |= __put_user(val16, (uint16_t *)(frame->retcode+0)); err |= __put_user(TARGET_NR_sigreturn, (int *)(frame->retcode+2)); val16 = 0x80cd; err |= __put_user(val16, (uint16_t *)(frame->retcode+6)); } if (err) goto give_sigsegv; /* Set up registers for signal handler */ env->regs[R_ESP] = frame_addr; env->eip = ka->_sa_handler; cpu_x86_load_seg(env, R_DS, __USER_DS); cpu_x86_load_seg(env, R_ES, __USER_DS); cpu_x86_load_seg(env, R_SS, __USER_DS); cpu_x86_load_seg(env, R_CS, __USER_CS); env->eflags &= ~TF_MASK; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); if (sig == TARGET_SIGSEGV) ka->_sa_handler = TARGET_SIG_DFL; force_sig(TARGET_SIGSEGV /* , current */); } /* compare linux/arch/i386/kernel/signal.c:setup_rt_frame() */ static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUX86State *env) { abi_ulong frame_addr, addr; struct rt_sigframe *frame; int i, err = 0; frame_addr = get_sigframe(ka, env, sizeof(*frame)); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; err |= __put_user(current_exec_domain_sig(sig), &frame->sig); addr = frame_addr + offsetof(struct rt_sigframe, info); err |= __put_user(addr, &frame->pinfo); addr = frame_addr + offsetof(struct rt_sigframe, uc); err |= __put_user(addr, &frame->puc); err |= copy_siginfo_to_user(&frame->info, info); if (err) goto give_sigsegv; /* Create the ucontext. */ err |= __put_user(0, &frame->uc.tuc_flags); err |= __put_user(0, &frame->uc.tuc_link); err |= __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); err |= __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &frame->uc.tuc_stack.ss_flags); err |= __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); err |= setup_sigcontext(&frame->uc.tuc_mcontext, &frame->fpstate, env, set->sig[0], frame_addr + offsetof(struct rt_sigframe, fpstate)); for(i = 0; i < TARGET_NSIG_WORDS; i++) { if (__put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i])) goto give_sigsegv; } /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa_flags & TARGET_SA_RESTORER) { err |= __put_user(ka->sa_restorer, &frame->pretcode); } else { uint16_t val16; addr = frame_addr + offsetof(struct rt_sigframe, retcode); err |= __put_user(addr, &frame->pretcode); /* This is movl $,%eax ; int $0x80 */ err |= __put_user(0xb8, (char *)(frame->retcode+0)); err |= __put_user(TARGET_NR_rt_sigreturn, (int *)(frame->retcode+1)); val16 = 0x80cd; err |= __put_user(val16, (uint16_t *)(frame->retcode+5)); } if (err) goto give_sigsegv; /* Set up registers for signal handler */ env->regs[R_ESP] = frame_addr; env->eip = ka->_sa_handler; cpu_x86_load_seg(env, R_DS, __USER_DS); cpu_x86_load_seg(env, R_ES, __USER_DS); cpu_x86_load_seg(env, R_SS, __USER_DS); cpu_x86_load_seg(env, R_CS, __USER_CS); env->eflags &= ~TF_MASK; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); if (sig == TARGET_SIGSEGV) ka->_sa_handler = TARGET_SIG_DFL; force_sig(TARGET_SIGSEGV /* , current */); } static int restore_sigcontext(CPUX86State *env, struct target_sigcontext *sc, int *peax) { unsigned int err = 0; abi_ulong fpstate_addr; unsigned int tmpflags; cpu_x86_load_seg(env, R_GS, tswap16(sc->gs)); cpu_x86_load_seg(env, R_FS, tswap16(sc->fs)); cpu_x86_load_seg(env, R_ES, tswap16(sc->es)); cpu_x86_load_seg(env, R_DS, tswap16(sc->ds)); env->regs[R_EDI] = tswapl(sc->edi); env->regs[R_ESI] = tswapl(sc->esi); env->regs[R_EBP] = tswapl(sc->ebp); env->regs[R_ESP] = tswapl(sc->esp); env->regs[R_EBX] = tswapl(sc->ebx); env->regs[R_EDX] = tswapl(sc->edx); env->regs[R_ECX] = tswapl(sc->ecx); env->eip = tswapl(sc->eip); cpu_x86_load_seg(env, R_CS, lduw(&sc->cs) | 3); cpu_x86_load_seg(env, R_SS, lduw(&sc->ss) | 3); tmpflags = tswapl(sc->eflags); env->eflags = (env->eflags & ~0x40DD5) | (tmpflags & 0x40DD5); // regs->orig_eax = -1; /* disable syscall checks */ fpstate_addr = tswapl(sc->fpstate); if (fpstate_addr != 0) { if (!access_ok(VERIFY_READ, fpstate_addr, sizeof(struct target_fpstate))) goto badframe; cpu_x86_frstor(env, fpstate_addr, 1); } *peax = tswapl(sc->eax); return err; badframe: return 1; } long do_sigreturn(CPUX86State *env) { struct sigframe *frame; abi_ulong frame_addr = env->regs[R_ESP] - 8; target_sigset_t target_set; sigset_t set; int eax, i; #if defined(DEBUG_SIGNAL) fprintf(stderr, "do_sigreturn\n"); #endif if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; /* set blocked signals */ if (__get_user(target_set.sig[0], &frame->sc.oldmask)) goto badframe; for(i = 1; i < TARGET_NSIG_WORDS; i++) { if (__get_user(target_set.sig[i], &frame->extramask[i - 1])) goto badframe; } target_to_host_sigset_internal(&set, &target_set); sigprocmask(SIG_SETMASK, &set, NULL); /* restore registers */ if (restore_sigcontext(env, &frame->sc, &eax)) goto badframe; unlock_user_struct(frame, frame_addr, 0); return eax; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return 0; } long do_rt_sigreturn(CPUX86State *env) { abi_ulong frame_addr; struct rt_sigframe *frame; sigset_t set; int eax; frame_addr = env->regs[R_ESP] - 4; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; target_to_host_sigset(&set, &frame->uc.tuc_sigmask); sigprocmask(SIG_SETMASK, &set, NULL); if (restore_sigcontext(env, &frame->uc.tuc_mcontext, &eax)) goto badframe; if (do_sigaltstack(frame_addr + offsetof(struct rt_sigframe, uc.tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) goto badframe; unlock_user_struct(frame, frame_addr, 0); return eax; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return 0; } #elif defined(TARGET_ARM) struct target_sigcontext { abi_ulong trap_no; abi_ulong error_code; abi_ulong oldmask; abi_ulong arm_r0; abi_ulong arm_r1; abi_ulong arm_r2; abi_ulong arm_r3; abi_ulong arm_r4; abi_ulong arm_r5; abi_ulong arm_r6; abi_ulong arm_r7; abi_ulong arm_r8; abi_ulong arm_r9; abi_ulong arm_r10; abi_ulong arm_fp; abi_ulong arm_ip; abi_ulong arm_sp; abi_ulong arm_lr; abi_ulong arm_pc; abi_ulong arm_cpsr; abi_ulong fault_address; }; struct target_ucontext_v1 { abi_ulong tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; /* mask last for extensibility */ }; struct target_ucontext_v2 { abi_ulong tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; /* mask last for extensibility */ char __unused[128 - sizeof(target_sigset_t)]; abi_ulong tuc_regspace[128] __attribute__((__aligned__(8))); }; struct sigframe_v1 { struct target_sigcontext sc; abi_ulong extramask[TARGET_NSIG_WORDS-1]; abi_ulong retcode; }; struct sigframe_v2 { struct target_ucontext_v2 uc; abi_ulong retcode; }; struct rt_sigframe_v1 { abi_ulong pinfo; abi_ulong puc; struct target_siginfo info; struct target_ucontext_v1 uc; abi_ulong retcode; }; struct rt_sigframe_v2 { struct target_siginfo info; struct target_ucontext_v2 uc; abi_ulong retcode; }; #define TARGET_CONFIG_CPU_32 1 /* * For ARM syscalls, we encode the syscall number into the instruction. */ #define SWI_SYS_SIGRETURN (0xef000000|(TARGET_NR_sigreturn + ARM_SYSCALL_BASE)) #define SWI_SYS_RT_SIGRETURN (0xef000000|(TARGET_NR_rt_sigreturn + ARM_SYSCALL_BASE)) /* * For Thumb syscalls, we pass the syscall number via r7. We therefore * need two 16-bit instructions. */ #define SWI_THUMB_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_sigreturn)) #define SWI_THUMB_RT_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_rt_sigreturn)) static const abi_ulong retcodes[4] = { SWI_SYS_SIGRETURN, SWI_THUMB_SIGRETURN, SWI_SYS_RT_SIGRETURN, SWI_THUMB_RT_SIGRETURN }; #define __get_user_error(x,p,e) __get_user(x, p) static inline int valid_user_regs(CPUState *regs) { return 1; } static void setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ CPUState *env, abi_ulong mask) { __put_user(env->regs[0], &sc->arm_r0); __put_user(env->regs[1], &sc->arm_r1); __put_user(env->regs[2], &sc->arm_r2); __put_user(env->regs[3], &sc->arm_r3); __put_user(env->regs[4], &sc->arm_r4); __put_user(env->regs[5], &sc->arm_r5); __put_user(env->regs[6], &sc->arm_r6); __put_user(env->regs[7], &sc->arm_r7); __put_user(env->regs[8], &sc->arm_r8); __put_user(env->regs[9], &sc->arm_r9); __put_user(env->regs[10], &sc->arm_r10); __put_user(env->regs[11], &sc->arm_fp); __put_user(env->regs[12], &sc->arm_ip); __put_user(env->regs[13], &sc->arm_sp); __put_user(env->regs[14], &sc->arm_lr); __put_user(env->regs[15], &sc->arm_pc); #ifdef TARGET_CONFIG_CPU_32 __put_user(cpsr_read(env), &sc->arm_cpsr); #endif __put_user(/* current->thread.trap_no */ 0, &sc->trap_no); __put_user(/* current->thread.error_code */ 0, &sc->error_code); __put_user(/* current->thread.address */ 0, &sc->fault_address); __put_user(mask, &sc->oldmask); } static inline abi_ulong get_sigframe(struct target_sigaction *ka, CPUState *regs, int framesize) { unsigned long sp = regs->regs[13]; /* * This is the X/Open sanctioned signal stack switching. */ if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; /* * ATPCS B01 mandates 8-byte alignment */ return (sp - framesize) & ~7; } static int setup_return(CPUState *env, struct target_sigaction *ka, abi_ulong *rc, abi_ulong frame_addr, int usig, abi_ulong rc_addr) { abi_ulong handler = ka->_sa_handler; abi_ulong retcode; int thumb = handler & 1; if (ka->sa_flags & TARGET_SA_RESTORER) { retcode = ka->sa_restorer; } else { unsigned int idx = thumb; if (ka->sa_flags & TARGET_SA_SIGINFO) idx += 2; if (__put_user(retcodes[idx], rc)) return 1; #if 0 flush_icache_range((abi_ulong)rc, (abi_ulong)(rc + 1)); #endif retcode = rc_addr + thumb; } env->regs[0] = usig; env->regs[13] = frame_addr; env->regs[14] = retcode; env->regs[15] = handler & (thumb ? ~1 : ~3); env->thumb = thumb; #if 0 #ifdef TARGET_CONFIG_CPU_32 env->cpsr = cpsr; #endif #endif return 0; } static void setup_sigframe_v2(struct target_ucontext_v2 *uc, target_sigset_t *set, CPUState *env) { struct target_sigaltstack stack; int i; /* Clear all the bits of the ucontext we don't use. */ memset(uc, 0, offsetof(struct target_ucontext_v2, tuc_mcontext)); memset(&stack, 0, sizeof(stack)); __put_user(target_sigaltstack_used.ss_sp, &stack.ss_sp); __put_user(target_sigaltstack_used.ss_size, &stack.ss_size); __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &stack.ss_flags); memcpy(&uc->tuc_stack, &stack, sizeof(stack)); setup_sigcontext(&uc->tuc_mcontext, env, set->sig[0]); /* FIXME: Save coprocessor signal frame. */ for(i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &uc->tuc_sigmask.sig[i]); } } /* compare linux/arch/arm/kernel/signal.c:setup_frame() */ static void setup_frame_v1(int usig, struct target_sigaction *ka, target_sigset_t *set, CPUState *regs) { struct sigframe_v1 *frame; abi_ulong frame_addr = get_sigframe(ka, regs, sizeof(*frame)); int i; if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) return; setup_sigcontext(&frame->sc, regs, set->sig[0]); for(i = 1; i < TARGET_NSIG_WORDS; i++) { if (__put_user(set->sig[i], &frame->extramask[i - 1])) goto end; } setup_return(regs, ka, &frame->retcode, frame_addr, usig, frame_addr + offsetof(struct sigframe_v1, retcode)); end: unlock_user_struct(frame, frame_addr, 1); } static void setup_frame_v2(int usig, struct target_sigaction *ka, target_sigset_t *set, CPUState *regs) { struct sigframe_v2 *frame; abi_ulong frame_addr = get_sigframe(ka, regs, sizeof(*frame)); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) return; setup_sigframe_v2(&frame->uc, set, regs); setup_return(regs, ka, &frame->retcode, frame_addr, usig, frame_addr + offsetof(struct sigframe_v2, retcode)); unlock_user_struct(frame, frame_addr, 1); } static void setup_frame(int usig, struct target_sigaction *ka, target_sigset_t *set, CPUState *regs) { if (get_osversion() >= 0x020612) { setup_frame_v2(usig, ka, set, regs); } else { setup_frame_v1(usig, ka, set, regs); } } /* compare linux/arch/arm/kernel/signal.c:setup_rt_frame() */ static void setup_rt_frame_v1(int usig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { struct rt_sigframe_v1 *frame; abi_ulong frame_addr = get_sigframe(ka, env, sizeof(*frame)); struct target_sigaltstack stack; int i; abi_ulong info_addr, uc_addr; if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) return /* 1 */; info_addr = frame_addr + offsetof(struct rt_sigframe_v1, info); __put_user(info_addr, &frame->pinfo); uc_addr = frame_addr + offsetof(struct rt_sigframe_v1, uc); __put_user(uc_addr, &frame->puc); copy_siginfo_to_user(&frame->info, info); /* Clear all the bits of the ucontext we don't use. */ memset(&frame->uc, 0, offsetof(struct target_ucontext_v1, tuc_mcontext)); memset(&stack, 0, sizeof(stack)); __put_user(target_sigaltstack_used.ss_sp, &stack.ss_sp); __put_user(target_sigaltstack_used.ss_size, &stack.ss_size); __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &stack.ss_flags); memcpy(&frame->uc.tuc_stack, &stack, sizeof(stack)); setup_sigcontext(&frame->uc.tuc_mcontext, env, set->sig[0]); for(i = 0; i < TARGET_NSIG_WORDS; i++) { if (__put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i])) goto end; } setup_return(env, ka, &frame->retcode, frame_addr, usig, frame_addr + offsetof(struct rt_sigframe_v1, retcode)); env->regs[1] = info_addr; env->regs[2] = uc_addr; end: unlock_user_struct(frame, frame_addr, 1); } static void setup_rt_frame_v2(int usig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { struct rt_sigframe_v2 *frame; abi_ulong frame_addr = get_sigframe(ka, env, sizeof(*frame)); abi_ulong info_addr, uc_addr; if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) return /* 1 */; info_addr = frame_addr + offsetof(struct rt_sigframe_v2, info); uc_addr = frame_addr + offsetof(struct rt_sigframe_v2, uc); copy_siginfo_to_user(&frame->info, info); setup_sigframe_v2(&frame->uc, set, env); setup_return(env, ka, &frame->retcode, frame_addr, usig, frame_addr + offsetof(struct rt_sigframe_v2, retcode)); env->regs[1] = info_addr; env->regs[2] = uc_addr; unlock_user_struct(frame, frame_addr, 1); } static void setup_rt_frame(int usig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { if (get_osversion() >= 0x020612) { setup_rt_frame_v2(usig, ka, info, set, env); } else { setup_rt_frame_v1(usig, ka, info, set, env); } } static int restore_sigcontext(CPUState *env, struct target_sigcontext *sc) { int err = 0; uint32_t cpsr; __get_user_error(env->regs[0], &sc->arm_r0, err); __get_user_error(env->regs[1], &sc->arm_r1, err); __get_user_error(env->regs[2], &sc->arm_r2, err); __get_user_error(env->regs[3], &sc->arm_r3, err); __get_user_error(env->regs[4], &sc->arm_r4, err); __get_user_error(env->regs[5], &sc->arm_r5, err); __get_user_error(env->regs[6], &sc->arm_r6, err); __get_user_error(env->regs[7], &sc->arm_r7, err); __get_user_error(env->regs[8], &sc->arm_r8, err); __get_user_error(env->regs[9], &sc->arm_r9, err); __get_user_error(env->regs[10], &sc->arm_r10, err); __get_user_error(env->regs[11], &sc->arm_fp, err); __get_user_error(env->regs[12], &sc->arm_ip, err); __get_user_error(env->regs[13], &sc->arm_sp, err); __get_user_error(env->regs[14], &sc->arm_lr, err); __get_user_error(env->regs[15], &sc->arm_pc, err); #ifdef TARGET_CONFIG_CPU_32 __get_user_error(cpsr, &sc->arm_cpsr, err); cpsr_write(env, cpsr, CPSR_USER | CPSR_EXEC); #endif err |= !valid_user_regs(env); return err; } static long do_sigreturn_v1(CPUState *env) { abi_ulong frame_addr; struct sigframe_v1 *frame; target_sigset_t set; sigset_t host_set; int i; /* * Since we stacked the signal on a 64-bit boundary, * then 'sp' should be word aligned here. If it's * not, then the user is trying to mess with us. */ if (env->regs[13] & 7) goto badframe; frame_addr = env->regs[13]; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; if (__get_user(set.sig[0], &frame->sc.oldmask)) goto badframe; for(i = 1; i < TARGET_NSIG_WORDS; i++) { if (__get_user(set.sig[i], &frame->extramask[i - 1])) goto badframe; } target_to_host_sigset_internal(&host_set, &set); sigprocmask(SIG_SETMASK, &host_set, NULL); if (restore_sigcontext(env, &frame->sc)) goto badframe; #if 0 /* Send SIGTRAP if we're single-stepping */ if (ptrace_cancel_bpt(current)) send_sig(SIGTRAP, current, 1); #endif unlock_user_struct(frame, frame_addr, 0); return env->regs[0]; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV /* , current */); return 0; } static int do_sigframe_return_v2(CPUState *env, target_ulong frame_addr, struct target_ucontext_v2 *uc) { sigset_t host_set; target_to_host_sigset(&host_set, &uc->tuc_sigmask); sigprocmask(SIG_SETMASK, &host_set, NULL); if (restore_sigcontext(env, &uc->tuc_mcontext)) return 1; if (do_sigaltstack(frame_addr + offsetof(struct target_ucontext_v2, tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) return 1; #if 0 /* Send SIGTRAP if we're single-stepping */ if (ptrace_cancel_bpt(current)) send_sig(SIGTRAP, current, 1); #endif return 0; } static long do_sigreturn_v2(CPUState *env) { abi_ulong frame_addr; struct sigframe_v2 *frame; /* * Since we stacked the signal on a 64-bit boundary, * then 'sp' should be word aligned here. If it's * not, then the user is trying to mess with us. */ if (env->regs[13] & 7) goto badframe; frame_addr = env->regs[13]; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; if (do_sigframe_return_v2(env, frame_addr, &frame->uc)) goto badframe; unlock_user_struct(frame, frame_addr, 0); return env->regs[0]; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV /* , current */); return 0; } long do_sigreturn(CPUState *env) { if (get_osversion() >= 0x020612) { return do_sigreturn_v2(env); } else { return do_sigreturn_v1(env); } } static long do_rt_sigreturn_v1(CPUState *env) { abi_ulong frame_addr; struct rt_sigframe_v1 *frame; sigset_t host_set; /* * Since we stacked the signal on a 64-bit boundary, * then 'sp' should be word aligned here. If it's * not, then the user is trying to mess with us. */ if (env->regs[13] & 7) goto badframe; frame_addr = env->regs[13]; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; target_to_host_sigset(&host_set, &frame->uc.tuc_sigmask); sigprocmask(SIG_SETMASK, &host_set, NULL); if (restore_sigcontext(env, &frame->uc.tuc_mcontext)) goto badframe; if (do_sigaltstack(frame_addr + offsetof(struct rt_sigframe_v1, uc.tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) goto badframe; #if 0 /* Send SIGTRAP if we're single-stepping */ if (ptrace_cancel_bpt(current)) send_sig(SIGTRAP, current, 1); #endif unlock_user_struct(frame, frame_addr, 0); return env->regs[0]; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV /* , current */); return 0; } static long do_rt_sigreturn_v2(CPUState *env) { abi_ulong frame_addr; struct rt_sigframe_v2 *frame; /* * Since we stacked the signal on a 64-bit boundary, * then 'sp' should be word aligned here. If it's * not, then the user is trying to mess with us. */ if (env->regs[13] & 7) goto badframe; frame_addr = env->regs[13]; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; if (do_sigframe_return_v2(env, frame_addr, &frame->uc)) goto badframe; unlock_user_struct(frame, frame_addr, 0); return env->regs[0]; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV /* , current */); return 0; } long do_rt_sigreturn(CPUState *env) { if (get_osversion() >= 0x020612) { return do_rt_sigreturn_v2(env); } else { return do_rt_sigreturn_v1(env); } } #elif defined(TARGET_SPARC) #define __SUNOS_MAXWIN 31 /* This is what SunOS does, so shall I. */ struct target_sigcontext { abi_ulong sigc_onstack; /* state to restore */ abi_ulong sigc_mask; /* sigmask to restore */ abi_ulong sigc_sp; /* stack pointer */ abi_ulong sigc_pc; /* program counter */ abi_ulong sigc_npc; /* next program counter */ abi_ulong sigc_psr; /* for condition codes etc */ abi_ulong sigc_g1; /* User uses these two registers */ abi_ulong sigc_o0; /* within the trampoline code. */ /* Now comes information regarding the users window set * at the time of the signal. */ abi_ulong sigc_oswins; /* outstanding windows */ /* stack ptrs for each regwin buf */ char *sigc_spbuf[__SUNOS_MAXWIN]; /* Windows to restore after signal */ struct { abi_ulong locals[8]; abi_ulong ins[8]; } sigc_wbuf[__SUNOS_MAXWIN]; }; /* A Sparc stack frame */ struct sparc_stackf { abi_ulong locals[8]; abi_ulong ins[6]; struct sparc_stackf *fp; abi_ulong callers_pc; char *structptr; abi_ulong xargs[6]; abi_ulong xxargs[1]; }; typedef struct { struct { abi_ulong psr; abi_ulong pc; abi_ulong npc; abi_ulong y; abi_ulong u_regs[16]; /* globals and ins */ } si_regs; int si_mask; } __siginfo_t; typedef struct { unsigned long si_float_regs [32]; unsigned long si_fsr; unsigned long si_fpqdepth; struct { unsigned long *insn_addr; unsigned long insn; } si_fpqueue [16]; } qemu_siginfo_fpu_t; struct target_signal_frame { struct sparc_stackf ss; __siginfo_t info; abi_ulong fpu_save; abi_ulong insns[2] __attribute__ ((aligned (8))); abi_ulong extramask[TARGET_NSIG_WORDS - 1]; abi_ulong extra_size; /* Should be 0 */ qemu_siginfo_fpu_t fpu_state; }; struct target_rt_signal_frame { struct sparc_stackf ss; siginfo_t info; abi_ulong regs[20]; sigset_t mask; abi_ulong fpu_save; unsigned int insns[2]; stack_t stack; unsigned int extra_size; /* Should be 0 */ qemu_siginfo_fpu_t fpu_state; }; #define UREG_O0 16 #define UREG_O6 22 #define UREG_I0 0 #define UREG_I1 1 #define UREG_I2 2 #define UREG_I3 3 #define UREG_I4 4 #define UREG_I5 5 #define UREG_I6 6 #define UREG_I7 7 #define UREG_L0 8 #define UREG_FP UREG_I6 #define UREG_SP UREG_O6 static inline abi_ulong get_sigframe(struct target_sigaction *sa, CPUState *env, unsigned long framesize) { abi_ulong sp; sp = env->regwptr[UREG_FP]; /* This is the X/Open sanctioned signal stack switching. */ if (sa->sa_flags & TARGET_SA_ONSTACK) { if (!on_sig_stack(sp) && !((target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size) & 7)) sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } return sp - framesize; } static int setup___siginfo(__siginfo_t *si, CPUState *env, abi_ulong mask) { int err = 0, i; err |= __put_user(env->psr, &si->si_regs.psr); err |= __put_user(env->pc, &si->si_regs.pc); err |= __put_user(env->npc, &si->si_regs.npc); err |= __put_user(env->y, &si->si_regs.y); for (i=0; i < 8; i++) { err |= __put_user(env->gregs[i], &si->si_regs.u_regs[i]); } for (i=0; i < 8; i++) { err |= __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]); } err |= __put_user(mask, &si->si_mask); return err; } #if 0 static int setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ CPUState *env, unsigned long mask) { int err = 0; err |= __put_user(mask, &sc->sigc_mask); err |= __put_user(env->regwptr[UREG_SP], &sc->sigc_sp); err |= __put_user(env->pc, &sc->sigc_pc); err |= __put_user(env->npc, &sc->sigc_npc); err |= __put_user(env->psr, &sc->sigc_psr); err |= __put_user(env->gregs[1], &sc->sigc_g1); err |= __put_user(env->regwptr[UREG_O0], &sc->sigc_o0); return err; } #endif #define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7))) static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUState *env) { abi_ulong sf_addr; struct target_signal_frame *sf; int sigframe_size, err, i; /* 1. Make sure everything is clean */ //synchronize_user_stack(); sigframe_size = NF_ALIGNEDSZ; sf_addr = get_sigframe(ka, env, sigframe_size); sf = lock_user(VERIFY_WRITE, sf_addr, sizeof(struct target_signal_frame), 0); if (!sf) goto sigsegv; //fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]); #if 0 if (invalid_frame_pointer(sf, sigframe_size)) goto sigill_and_return; #endif /* 2. Save the current process state */ err = setup___siginfo(&sf->info, env, set->sig[0]); err |= __put_user(0, &sf->extra_size); //err |= save_fpu_state(regs, &sf->fpu_state); //err |= __put_user(&sf->fpu_state, &sf->fpu_save); err |= __put_user(set->sig[0], &sf->info.si_mask); for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { err |= __put_user(set->sig[i + 1], &sf->extramask[i]); } for (i = 0; i < 8; i++) { err |= __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]); } for (i = 0; i < 8; i++) { err |= __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]); } if (err) goto sigsegv; /* 3. signal handler back-trampoline and parameters */ env->regwptr[UREG_FP] = sf_addr; env->regwptr[UREG_I0] = sig; env->regwptr[UREG_I1] = sf_addr + offsetof(struct target_signal_frame, info); env->regwptr[UREG_I2] = sf_addr + offsetof(struct target_signal_frame, info); /* 4. signal handler */ env->pc = ka->_sa_handler; env->npc = (env->pc + 4); /* 5. return to kernel instructions */ if (ka->sa_restorer) env->regwptr[UREG_I7] = ka->sa_restorer; else { uint32_t val32; env->regwptr[UREG_I7] = sf_addr + offsetof(struct target_signal_frame, insns) - 2 * 4; /* mov __NR_sigreturn, %g1 */ val32 = 0x821020d8; err |= __put_user(val32, &sf->insns[0]); /* t 0x10 */ val32 = 0x91d02010; err |= __put_user(val32, &sf->insns[1]); if (err) goto sigsegv; /* Flush instruction space. */ //flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0])); // tb_flush(env); } unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); return; #if 0 sigill_and_return: force_sig(TARGET_SIGILL); #endif sigsegv: //fprintf(stderr, "force_sig\n"); unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); force_sig(TARGET_SIGSEGV); } static inline int restore_fpu_state(CPUState *env, qemu_siginfo_fpu_t *fpu) { int err; #if 0 #ifdef CONFIG_SMP if (current->flags & PF_USEDFPU) regs->psr &= ~PSR_EF; #else if (current == last_task_used_math) { last_task_used_math = 0; regs->psr &= ~PSR_EF; } #endif current->used_math = 1; current->flags &= ~PF_USEDFPU; #endif #if 0 if (verify_area (VERIFY_READ, fpu, sizeof(*fpu))) return -EFAULT; #endif #if 0 /* XXX: incorrect */ err = __copy_from_user(&env->fpr[0], &fpu->si_float_regs[0], (sizeof(unsigned long) * 32)); #endif err |= __get_user(env->fsr, &fpu->si_fsr); #if 0 err |= __get_user(current->thread.fpqdepth, &fpu->si_fpqdepth); if (current->thread.fpqdepth != 0) err |= __copy_from_user(¤t->thread.fpqueue[0], &fpu->si_fpqueue[0], ((sizeof(unsigned long) + (sizeof(unsigned long *)))*16)); #endif return err; } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { fprintf(stderr, "setup_rt_frame: not implemented\n"); } long do_sigreturn(CPUState *env) { abi_ulong sf_addr; struct target_signal_frame *sf; uint32_t up_psr, pc, npc; target_sigset_t set; sigset_t host_set; abi_ulong fpu_save_addr; int err, i; sf_addr = env->regwptr[UREG_FP]; if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) goto segv_and_exit; #if 0 fprintf(stderr, "sigreturn\n"); fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]); #endif //cpu_dump_state(env, stderr, fprintf, 0); /* 1. Make sure we are not getting garbage from the user */ if (sf_addr & 3) goto segv_and_exit; err = __get_user(pc, &sf->info.si_regs.pc); err |= __get_user(npc, &sf->info.si_regs.npc); if ((pc | npc) & 3) goto segv_and_exit; /* 2. Restore the state */ err |= __get_user(up_psr, &sf->info.si_regs.psr); /* User can only change condition codes and FPU enabling in %psr. */ env->psr = (up_psr & (PSR_ICC /* | PSR_EF */)) | (env->psr & ~(PSR_ICC /* | PSR_EF */)); env->pc = pc; env->npc = npc; err |= __get_user(env->y, &sf->info.si_regs.y); for (i=0; i < 8; i++) { err |= __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]); } for (i=0; i < 8; i++) { err |= __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]); } err |= __get_user(fpu_save_addr, &sf->fpu_save); //if (fpu_save) // err |= restore_fpu_state(env, fpu_save); /* This is pretty much atomic, no amount locking would prevent * the races which exist anyways. */ err |= __get_user(set.sig[0], &sf->info.si_mask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { err |= (__get_user(set.sig[i], &sf->extramask[i - 1])); } target_to_host_sigset_internal(&host_set, &set); sigprocmask(SIG_SETMASK, &host_set, NULL); if (err) goto segv_and_exit; unlock_user_struct(sf, sf_addr, 0); return env->regwptr[0]; segv_and_exit: unlock_user_struct(sf, sf_addr, 0); force_sig(TARGET_SIGSEGV); } long do_rt_sigreturn(CPUState *env) { fprintf(stderr, "do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) #define MC_TSTATE 0 #define MC_PC 1 #define MC_NPC 2 #define MC_Y 3 #define MC_G1 4 #define MC_G2 5 #define MC_G3 6 #define MC_G4 7 #define MC_G5 8 #define MC_G6 9 #define MC_G7 10 #define MC_O0 11 #define MC_O1 12 #define MC_O2 13 #define MC_O3 14 #define MC_O4 15 #define MC_O5 16 #define MC_O6 17 #define MC_O7 18 #define MC_NGREG 19 typedef abi_ulong target_mc_greg_t; typedef target_mc_greg_t target_mc_gregset_t[MC_NGREG]; struct target_mc_fq { abi_ulong *mcfq_addr; uint32_t mcfq_insn; }; struct target_mc_fpu { union { uint32_t sregs[32]; uint64_t dregs[32]; //uint128_t qregs[16]; } mcfpu_fregs; abi_ulong mcfpu_fsr; abi_ulong mcfpu_fprs; abi_ulong mcfpu_gsr; struct target_mc_fq *mcfpu_fq; unsigned char mcfpu_qcnt; unsigned char mcfpu_qentsz; unsigned char mcfpu_enab; }; typedef struct target_mc_fpu target_mc_fpu_t; typedef struct { target_mc_gregset_t mc_gregs; target_mc_greg_t mc_fp; target_mc_greg_t mc_i7; target_mc_fpu_t mc_fpregs; } target_mcontext_t; struct target_ucontext { struct target_ucontext *tuc_link; abi_ulong tuc_flags; target_sigset_t tuc_sigmask; target_mcontext_t tuc_mcontext; }; /* A V9 register window */ struct target_reg_window { abi_ulong locals[8]; abi_ulong ins[8]; }; #define TARGET_STACK_BIAS 2047 /* {set, get}context() needed for 64-bit SparcLinux userland. */ void sparc64_set_context(CPUSPARCState *env) { abi_ulong ucp_addr; struct target_ucontext *ucp; target_mc_gregset_t *grp; abi_ulong pc, npc, tstate; abi_ulong fp, i7, w_addr; unsigned char fenab; int err; unsigned int i; ucp_addr = env->regwptr[UREG_I0]; if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) goto do_sigsegv; grp = &ucp->tuc_mcontext.mc_gregs; err = __get_user(pc, &((*grp)[MC_PC])); err |= __get_user(npc, &((*grp)[MC_NPC])); if (err || ((pc | npc) & 3)) goto do_sigsegv; if (env->regwptr[UREG_I1]) { target_sigset_t target_set; sigset_t set; if (TARGET_NSIG_WORDS == 1) { if (__get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0])) goto do_sigsegv; } else { abi_ulong *src, *dst; src = ucp->tuc_sigmask.sig; dst = target_set.sig; for (i = 0; i < sizeof(target_sigset_t) / sizeof(abi_ulong); i++, dst++, src++) err |= __get_user(*dst, src); if (err) goto do_sigsegv; } target_to_host_sigset_internal(&set, &target_set); sigprocmask(SIG_SETMASK, &set, NULL); } env->pc = pc; env->npc = npc; err |= __get_user(env->y, &((*grp)[MC_Y])); err |= __get_user(tstate, &((*grp)[MC_TSTATE])); env->asi = (tstate >> 24) & 0xff; cpu_put_ccr(env, tstate >> 32); cpu_put_cwp64(env, tstate & 0x1f); err |= __get_user(env->gregs[1], (&(*grp)[MC_G1])); err |= __get_user(env->gregs[2], (&(*grp)[MC_G2])); err |= __get_user(env->gregs[3], (&(*grp)[MC_G3])); err |= __get_user(env->gregs[4], (&(*grp)[MC_G4])); err |= __get_user(env->gregs[5], (&(*grp)[MC_G5])); err |= __get_user(env->gregs[6], (&(*grp)[MC_G6])); err |= __get_user(env->gregs[7], (&(*grp)[MC_G7])); err |= __get_user(env->regwptr[UREG_I0], (&(*grp)[MC_O0])); err |= __get_user(env->regwptr[UREG_I1], (&(*grp)[MC_O1])); err |= __get_user(env->regwptr[UREG_I2], (&(*grp)[MC_O2])); err |= __get_user(env->regwptr[UREG_I3], (&(*grp)[MC_O3])); err |= __get_user(env->regwptr[UREG_I4], (&(*grp)[MC_O4])); err |= __get_user(env->regwptr[UREG_I5], (&(*grp)[MC_O5])); err |= __get_user(env->regwptr[UREG_I6], (&(*grp)[MC_O6])); err |= __get_user(env->regwptr[UREG_I7], (&(*grp)[MC_O7])); err |= __get_user(fp, &(ucp->tuc_mcontext.mc_fp)); err |= __get_user(i7, &(ucp->tuc_mcontext.mc_i7)); w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6]; if (put_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]), abi_ulong) != 0) goto do_sigsegv; if (put_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]), abi_ulong) != 0) goto do_sigsegv; err |= __get_user(fenab, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_enab)); err |= __get_user(env->fprs, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fprs)); { uint32_t *src, *dst; src = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs; dst = env->fpr; /* XXX: check that the CPU storage is the same as user context */ for (i = 0; i < 64; i++, dst++, src++) err |= __get_user(*dst, src); } err |= __get_user(env->fsr, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fsr)); err |= __get_user(env->gsr, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_gsr)); if (err) goto do_sigsegv; unlock_user_struct(ucp, ucp_addr, 0); return; do_sigsegv: unlock_user_struct(ucp, ucp_addr, 0); force_sig(TARGET_SIGSEGV); } void sparc64_get_context(CPUSPARCState *env) { abi_ulong ucp_addr; struct target_ucontext *ucp; target_mc_gregset_t *grp; target_mcontext_t *mcp; abi_ulong fp, i7, w_addr; int err; unsigned int i; target_sigset_t target_set; sigset_t set; ucp_addr = env->regwptr[UREG_I0]; if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) goto do_sigsegv; mcp = &ucp->tuc_mcontext; grp = &mcp->mc_gregs; /* Skip over the trap instruction, first. */ env->pc = env->npc; env->npc += 4; err = 0; sigprocmask(0, NULL, &set); host_to_target_sigset_internal(&target_set, &set); if (TARGET_NSIG_WORDS == 1) { err |= __put_user(target_set.sig[0], (abi_ulong *)&ucp->tuc_sigmask); } else { abi_ulong *src, *dst; src = target_set.sig; dst = ucp->tuc_sigmask.sig; for (i = 0; i < sizeof(target_sigset_t) / sizeof(abi_ulong); i++, dst++, src++) err |= __put_user(*src, dst); if (err) goto do_sigsegv; } /* XXX: tstate must be saved properly */ // err |= __put_user(env->tstate, &((*grp)[MC_TSTATE])); err |= __put_user(env->pc, &((*grp)[MC_PC])); err |= __put_user(env->npc, &((*grp)[MC_NPC])); err |= __put_user(env->y, &((*grp)[MC_Y])); err |= __put_user(env->gregs[1], &((*grp)[MC_G1])); err |= __put_user(env->gregs[2], &((*grp)[MC_G2])); err |= __put_user(env->gregs[3], &((*grp)[MC_G3])); err |= __put_user(env->gregs[4], &((*grp)[MC_G4])); err |= __put_user(env->gregs[5], &((*grp)[MC_G5])); err |= __put_user(env->gregs[6], &((*grp)[MC_G6])); err |= __put_user(env->gregs[7], &((*grp)[MC_G7])); err |= __put_user(env->regwptr[UREG_I0], &((*grp)[MC_O0])); err |= __put_user(env->regwptr[UREG_I1], &((*grp)[MC_O1])); err |= __put_user(env->regwptr[UREG_I2], &((*grp)[MC_O2])); err |= __put_user(env->regwptr[UREG_I3], &((*grp)[MC_O3])); err |= __put_user(env->regwptr[UREG_I4], &((*grp)[MC_O4])); err |= __put_user(env->regwptr[UREG_I5], &((*grp)[MC_O5])); err |= __put_user(env->regwptr[UREG_I6], &((*grp)[MC_O6])); err |= __put_user(env->regwptr[UREG_I7], &((*grp)[MC_O7])); w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6]; fp = i7 = 0; if (get_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]), abi_ulong) != 0) goto do_sigsegv; if (get_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]), abi_ulong) != 0) goto do_sigsegv; err |= __put_user(fp, &(mcp->mc_fp)); err |= __put_user(i7, &(mcp->mc_i7)); { uint32_t *src, *dst; src = env->fpr; dst = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs; /* XXX: check that the CPU storage is the same as user context */ for (i = 0; i < 64; i++, dst++, src++) err |= __put_user(*src, dst); } err |= __put_user(env->fsr, &(mcp->mc_fpregs.mcfpu_fsr)); err |= __put_user(env->gsr, &(mcp->mc_fpregs.mcfpu_gsr)); err |= __put_user(env->fprs, &(mcp->mc_fpregs.mcfpu_fprs)); if (err) goto do_sigsegv; unlock_user_struct(ucp, ucp_addr, 1); return; do_sigsegv: unlock_user_struct(ucp, ucp_addr, 1); force_sig(TARGET_SIGSEGV); } #endif #elif defined(TARGET_ABI_MIPSN64) # warning signal handling not implemented static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUState *env) { fprintf(stderr, "setup_frame: not implemented\n"); } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { fprintf(stderr, "setup_rt_frame: not implemented\n"); } long do_sigreturn(CPUState *env) { fprintf(stderr, "do_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } long do_rt_sigreturn(CPUState *env) { fprintf(stderr, "do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } #elif defined(TARGET_ABI_MIPSN32) # warning signal handling not implemented static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUState *env) { fprintf(stderr, "setup_frame: not implemented\n"); } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { fprintf(stderr, "setup_rt_frame: not implemented\n"); } long do_sigreturn(CPUState *env) { fprintf(stderr, "do_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } long do_rt_sigreturn(CPUState *env) { fprintf(stderr, "do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } #elif defined(TARGET_ABI_MIPSO32) struct target_sigcontext { uint32_t sc_regmask; /* Unused */ uint32_t sc_status; uint64_t sc_pc; uint64_t sc_regs[32]; uint64_t sc_fpregs[32]; uint32_t sc_ownedfp; /* Unused */ uint32_t sc_fpc_csr; uint32_t sc_fpc_eir; /* Unused */ uint32_t sc_used_math; uint32_t sc_dsp; /* dsp status, was sc_ssflags */ uint32_t pad0; uint64_t sc_mdhi; uint64_t sc_mdlo; target_ulong sc_hi1; /* Was sc_cause */ target_ulong sc_lo1; /* Was sc_badvaddr */ target_ulong sc_hi2; /* Was sc_sigset[4] */ target_ulong sc_lo2; target_ulong sc_hi3; target_ulong sc_lo3; }; struct sigframe { uint32_t sf_ass[4]; /* argument save space for o32 */ uint32_t sf_code[2]; /* signal trampoline */ struct target_sigcontext sf_sc; target_sigset_t sf_mask; }; struct target_ucontext { target_ulong tuc_flags; target_ulong tuc_link; target_stack_t tuc_stack; target_ulong pad0; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; }; struct target_rt_sigframe { uint32_t rs_ass[4]; /* argument save space for o32 */ uint32_t rs_code[2]; /* signal trampoline */ struct target_siginfo rs_info; struct target_ucontext rs_uc; }; /* Install trampoline to jump back from signal handler */ static inline int install_sigtramp(unsigned int *tramp, unsigned int syscall) { int err; /* * Set up the return code ... * * li v0, __NR__foo_sigreturn * syscall */ err = __put_user(0x24020000 + syscall, tramp + 0); err |= __put_user(0x0000000c , tramp + 1); /* flush_cache_sigtramp((unsigned long) tramp); */ return err; } static inline int setup_sigcontext(CPUState *regs, struct target_sigcontext *sc) { int err = 0; err |= __put_user(regs->active_tc.PC, &sc->sc_pc); #define save_gp_reg(i) do { \ err |= __put_user(regs->active_tc.gpr[i], &sc->sc_regs[i]); \ } while(0) __put_user(0, &sc->sc_regs[0]); save_gp_reg(1); save_gp_reg(2); save_gp_reg(3); save_gp_reg(4); save_gp_reg(5); save_gp_reg(6); save_gp_reg(7); save_gp_reg(8); save_gp_reg(9); save_gp_reg(10); save_gp_reg(11); save_gp_reg(12); save_gp_reg(13); save_gp_reg(14); save_gp_reg(15); save_gp_reg(16); save_gp_reg(17); save_gp_reg(18); save_gp_reg(19); save_gp_reg(20); save_gp_reg(21); save_gp_reg(22); save_gp_reg(23); save_gp_reg(24); save_gp_reg(25); save_gp_reg(26); save_gp_reg(27); save_gp_reg(28); save_gp_reg(29); save_gp_reg(30); save_gp_reg(31); #undef save_gp_reg err |= __put_user(regs->active_tc.HI[0], &sc->sc_mdhi); err |= __put_user(regs->active_tc.LO[0], &sc->sc_mdlo); /* Not used yet, but might be useful if we ever have DSP suppport */ #if 0 if (cpu_has_dsp) { err |= __put_user(mfhi1(), &sc->sc_hi1); err |= __put_user(mflo1(), &sc->sc_lo1); err |= __put_user(mfhi2(), &sc->sc_hi2); err |= __put_user(mflo2(), &sc->sc_lo2); err |= __put_user(mfhi3(), &sc->sc_hi3); err |= __put_user(mflo3(), &sc->sc_lo3); err |= __put_user(rddsp(DSP_MASK), &sc->sc_dsp); } /* same with 64 bit */ #ifdef CONFIG_64BIT err |= __put_user(regs->hi, &sc->sc_hi[0]); err |= __put_user(regs->lo, &sc->sc_lo[0]); if (cpu_has_dsp) { err |= __put_user(mfhi1(), &sc->sc_hi[1]); err |= __put_user(mflo1(), &sc->sc_lo[1]); err |= __put_user(mfhi2(), &sc->sc_hi[2]); err |= __put_user(mflo2(), &sc->sc_lo[2]); err |= __put_user(mfhi3(), &sc->sc_hi[3]); err |= __put_user(mflo3(), &sc->sc_lo[3]); err |= __put_user(rddsp(DSP_MASK), &sc->sc_dsp); } #endif #endif #if 0 err |= __put_user(!!used_math(), &sc->sc_used_math); if (!used_math()) goto out; /* * Save FPU state to signal context. Signal handler will "inherit" * current FPU state. */ preempt_disable(); if (!is_fpu_owner()) { own_fpu(); restore_fp(current); } err |= save_fp_context(sc); preempt_enable(); out: #endif return err; } static inline int restore_sigcontext(CPUState *regs, struct target_sigcontext *sc) { int err = 0; err |= __get_user(regs->CP0_EPC, &sc->sc_pc); err |= __get_user(regs->active_tc.HI[0], &sc->sc_mdhi); err |= __get_user(regs->active_tc.LO[0], &sc->sc_mdlo); #define restore_gp_reg(i) do { \ err |= __get_user(regs->active_tc.gpr[i], &sc->sc_regs[i]); \ } while(0) restore_gp_reg( 1); restore_gp_reg( 2); restore_gp_reg( 3); restore_gp_reg( 4); restore_gp_reg( 5); restore_gp_reg( 6); restore_gp_reg( 7); restore_gp_reg( 8); restore_gp_reg( 9); restore_gp_reg(10); restore_gp_reg(11); restore_gp_reg(12); restore_gp_reg(13); restore_gp_reg(14); restore_gp_reg(15); restore_gp_reg(16); restore_gp_reg(17); restore_gp_reg(18); restore_gp_reg(19); restore_gp_reg(20); restore_gp_reg(21); restore_gp_reg(22); restore_gp_reg(23); restore_gp_reg(24); restore_gp_reg(25); restore_gp_reg(26); restore_gp_reg(27); restore_gp_reg(28); restore_gp_reg(29); restore_gp_reg(30); restore_gp_reg(31); #undef restore_gp_reg #if 0 if (cpu_has_dsp) { err |= __get_user(treg, &sc->sc_hi1); mthi1(treg); err |= __get_user(treg, &sc->sc_lo1); mtlo1(treg); err |= __get_user(treg, &sc->sc_hi2); mthi2(treg); err |= __get_user(treg, &sc->sc_lo2); mtlo2(treg); err |= __get_user(treg, &sc->sc_hi3); mthi3(treg); err |= __get_user(treg, &sc->sc_lo3); mtlo3(treg); err |= __get_user(treg, &sc->sc_dsp); wrdsp(treg, DSP_MASK); } #ifdef CONFIG_64BIT err |= __get_user(regs->hi, &sc->sc_hi[0]); err |= __get_user(regs->lo, &sc->sc_lo[0]); if (cpu_has_dsp) { err |= __get_user(treg, &sc->sc_hi[1]); mthi1(treg); err |= __get_user(treg, &sc->sc_lo[1]); mthi1(treg); err |= __get_user(treg, &sc->sc_hi[2]); mthi2(treg); err |= __get_user(treg, &sc->sc_lo[2]); mthi2(treg); err |= __get_user(treg, &sc->sc_hi[3]); mthi3(treg); err |= __get_user(treg, &sc->sc_lo[3]); mthi3(treg); err |= __get_user(treg, &sc->sc_dsp); wrdsp(treg, DSP_MASK); } #endif err |= __get_user(used_math, &sc->sc_used_math); conditional_used_math(used_math); preempt_disable(); if (used_math()) { /* restore fpu context if we have used it before */ own_fpu(); err |= restore_fp_context(sc); } else { /* signal handler may have used FPU. Give it up. */ lose_fpu(); } preempt_enable(); #endif return err; } /* * Determine which stack to use.. */ static inline abi_ulong get_sigframe(struct target_sigaction *ka, CPUState *regs, size_t frame_size) { unsigned long sp; /* Default to using normal stack */ sp = regs->active_tc.gpr[29]; /* * FPU emulator may have it's own trampoline active just * above the user stack, 16-bytes before the next lowest * 16 byte boundary. Try to avoid trashing it. */ sp -= 32; /* This is the X/Open sanctioned signal stack switching. */ if ((ka->sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags (sp) == 0)) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } return (sp - frame_size) & ~7; } /* compare linux/arch/mips/kernel/signal.c:setup_frame() */ static void setup_frame(int sig, struct target_sigaction * ka, target_sigset_t *set, CPUState *regs) { struct sigframe *frame; abi_ulong frame_addr; int i; frame_addr = get_sigframe(ka, regs, sizeof(*frame)); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; install_sigtramp(frame->sf_code, TARGET_NR_sigreturn); if(setup_sigcontext(regs, &frame->sf_sc)) goto give_sigsegv; for(i = 0; i < TARGET_NSIG_WORDS; i++) { if(__put_user(set->sig[i], &frame->sf_mask.sig[i])) goto give_sigsegv; } /* * Arguments to signal handler: * * a0 = signal number * a1 = 0 (should be cause) * a2 = pointer to struct sigcontext * * $25 and PC point to the signal handler, $29 points to the * struct sigframe. */ regs->active_tc.gpr[ 4] = sig; regs->active_tc.gpr[ 5] = 0; regs->active_tc.gpr[ 6] = frame_addr + offsetof(struct sigframe, sf_sc); regs->active_tc.gpr[29] = frame_addr; regs->active_tc.gpr[31] = frame_addr + offsetof(struct sigframe, sf_code); /* The original kernel code sets CP0_EPC to the handler * since it returns to userland using eret * we cannot do this here, and we must set PC directly */ regs->active_tc.PC = regs->active_tc.gpr[25] = ka->_sa_handler; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sig(TARGET_SIGSEGV/*, current*/); return; } long do_sigreturn(CPUState *regs) { struct sigframe *frame; abi_ulong frame_addr; sigset_t blocked; target_sigset_t target_set; int i; #if defined(DEBUG_SIGNAL) fprintf(stderr, "do_sigreturn\n"); #endif frame_addr = regs->active_tc.gpr[29]; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; for(i = 0; i < TARGET_NSIG_WORDS; i++) { if(__get_user(target_set.sig[i], &frame->sf_mask.sig[i])) goto badframe; } target_to_host_sigset_internal(&blocked, &target_set); sigprocmask(SIG_SETMASK, &blocked, NULL); if (restore_sigcontext(regs, &frame->sf_sc)) goto badframe; #if 0 /* * Don't let your children do this ... */ __asm__ __volatile__( "move\t$29, %0\n\t" "j\tsyscall_exit" :/* no outputs */ :"r" (®s)); /* Unreached */ #endif regs->active_tc.PC = regs->CP0_EPC; /* I am not sure this is right, but it seems to work * maybe a problem with nested signals ? */ regs->CP0_EPC = 0; return -TARGET_QEMU_ESIGRETURN; badframe: force_sig(TARGET_SIGSEGV/*, current*/); return 0; } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { struct target_rt_sigframe *frame; abi_ulong frame_addr; int i; frame_addr = get_sigframe(ka, env, sizeof(*frame)); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; install_sigtramp(frame->rs_code, TARGET_NR_rt_sigreturn); copy_siginfo_to_user(&frame->rs_info, info); __put_user(0, &frame->rs_uc.tuc_flags); __put_user(0, &frame->rs_uc.tuc_link); __put_user(target_sigaltstack_used.ss_sp, &frame->rs_uc.tuc_stack.ss_sp); __put_user(target_sigaltstack_used.ss_size, &frame->rs_uc.tuc_stack.ss_size); __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &frame->rs_uc.tuc_stack.ss_flags); setup_sigcontext(env, &frame->rs_uc.tuc_mcontext); for(i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->rs_uc.tuc_sigmask.sig[i]); } /* * Arguments to signal handler: * * a0 = signal number * a1 = pointer to struct siginfo * a2 = pointer to struct ucontext * * $25 and PC point to the signal handler, $29 points to the * struct sigframe. */ env->active_tc.gpr[ 4] = sig; env->active_tc.gpr[ 5] = frame_addr + offsetof(struct target_rt_sigframe, rs_info); env->active_tc.gpr[ 6] = frame_addr + offsetof(struct target_rt_sigframe, rs_uc); env->active_tc.gpr[29] = frame_addr; env->active_tc.gpr[31] = frame_addr + offsetof(struct target_rt_sigframe, rs_code); /* The original kernel code sets CP0_EPC to the handler * since it returns to userland using eret * we cannot do this here, and we must set PC directly */ env->active_tc.PC = env->active_tc.gpr[25] = ka->_sa_handler; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sig(TARGET_SIGSEGV/*, current*/); return; } long do_rt_sigreturn(CPUState *env) { struct target_rt_sigframe *frame; abi_ulong frame_addr; sigset_t blocked; #if defined(DEBUG_SIGNAL) fprintf(stderr, "do_rt_sigreturn\n"); #endif frame_addr = env->active_tc.gpr[29]; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; target_to_host_sigset(&blocked, &frame->rs_uc.tuc_sigmask); sigprocmask(SIG_SETMASK, &blocked, NULL); if (restore_sigcontext(env, &frame->rs_uc.tuc_mcontext)) goto badframe; if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, rs_uc.tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) goto badframe; env->active_tc.PC = env->CP0_EPC; /* I am not sure this is right, but it seems to work * maybe a problem with nested signals ? */ env->CP0_EPC = 0; return -TARGET_QEMU_ESIGRETURN; badframe: force_sig(TARGET_SIGSEGV/*, current*/); return 0; } #elif defined(TARGET_SH4) /* * code and data structures from linux kernel: * include/asm-sh/sigcontext.h * arch/sh/kernel/signal.c */ struct target_sigcontext { target_ulong oldmask; /* CPU registers */ target_ulong sc_gregs[16]; target_ulong sc_pc; target_ulong sc_pr; target_ulong sc_sr; target_ulong sc_gbr; target_ulong sc_mach; target_ulong sc_macl; /* FPU registers */ target_ulong sc_fpregs[16]; target_ulong sc_xfpregs[16]; unsigned int sc_fpscr; unsigned int sc_fpul; unsigned int sc_ownedfp; }; struct target_sigframe { struct target_sigcontext sc; target_ulong extramask[TARGET_NSIG_WORDS-1]; uint16_t retcode[3]; }; struct target_ucontext { target_ulong tuc_flags; struct target_ucontext *tuc_link; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; /* mask last for extensibility */ }; struct target_rt_sigframe { struct target_siginfo info; struct target_ucontext uc; uint16_t retcode[3]; }; #define MOVW(n) (0x9300|((n)-2)) /* Move mem word at PC+n to R3 */ #define TRAP_NOARG 0xc310 /* Syscall w/no args (NR in R3) SH3/4 */ static abi_ulong get_sigframe(struct target_sigaction *ka, unsigned long sp, size_t frame_size) { if ((ka->sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags(sp) == 0)) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } return (sp - frame_size) & -8ul; } static int setup_sigcontext(struct target_sigcontext *sc, CPUState *regs, unsigned long mask) { int err = 0; int i; #define COPY(x) err |= __put_user(regs->x, &sc->sc_##x) COPY(gregs[0]); COPY(gregs[1]); COPY(gregs[2]); COPY(gregs[3]); COPY(gregs[4]); COPY(gregs[5]); COPY(gregs[6]); COPY(gregs[7]); COPY(gregs[8]); COPY(gregs[9]); COPY(gregs[10]); COPY(gregs[11]); COPY(gregs[12]); COPY(gregs[13]); COPY(gregs[14]); COPY(gregs[15]); COPY(gbr); COPY(mach); COPY(macl); COPY(pr); COPY(sr); COPY(pc); #undef COPY for (i=0; i<16; i++) { err |= __put_user(regs->fregs[i], &sc->sc_fpregs[i]); } err |= __put_user(regs->fpscr, &sc->sc_fpscr); err |= __put_user(regs->fpul, &sc->sc_fpul); /* non-iBCS2 extensions.. */ err |= __put_user(mask, &sc->oldmask); return err; } static int restore_sigcontext(CPUState *regs, struct target_sigcontext *sc, target_ulong *r0_p) { unsigned int err = 0; int i; #define COPY(x) err |= __get_user(regs->x, &sc->sc_##x) COPY(gregs[1]); COPY(gregs[2]); COPY(gregs[3]); COPY(gregs[4]); COPY(gregs[5]); COPY(gregs[6]); COPY(gregs[7]); COPY(gregs[8]); COPY(gregs[9]); COPY(gregs[10]); COPY(gregs[11]); COPY(gregs[12]); COPY(gregs[13]); COPY(gregs[14]); COPY(gregs[15]); COPY(gbr); COPY(mach); COPY(macl); COPY(pr); COPY(sr); COPY(pc); #undef COPY for (i=0; i<16; i++) { err |= __get_user(regs->fregs[i], &sc->sc_fpregs[i]); } err |= __get_user(regs->fpscr, &sc->sc_fpscr); err |= __get_user(regs->fpul, &sc->sc_fpul); regs->tra = -1; /* disable syscall checks */ err |= __get_user(*r0_p, &sc->sc_gregs[0]); return err; } static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUState *regs) { struct target_sigframe *frame; abi_ulong frame_addr; int i; int err = 0; int signal; frame_addr = get_sigframe(ka, regs->gregs[15], sizeof(*frame)); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; signal = current_exec_domain_sig(sig); err |= setup_sigcontext(&frame->sc, regs, set->sig[0]); for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { err |= __put_user(set->sig[i + 1], &frame->extramask[i]); } /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa_flags & TARGET_SA_RESTORER) { regs->pr = (unsigned long) ka->sa_restorer; } else { /* Generate return code (system call to sigreturn) */ err |= __put_user(MOVW(2), &frame->retcode[0]); err |= __put_user(TRAP_NOARG, &frame->retcode[1]); err |= __put_user((TARGET_NR_sigreturn), &frame->retcode[2]); regs->pr = (unsigned long) frame->retcode; } if (err) goto give_sigsegv; /* Set up registers for signal handler */ regs->gregs[15] = (unsigned long) frame; regs->gregs[4] = signal; /* Arg for signal handler */ regs->gregs[5] = 0; regs->gregs[6] = (unsigned long) &frame->sc; regs->pc = (unsigned long) ka->_sa_handler; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sig(TARGET_SIGSEGV); } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *regs) { struct target_rt_sigframe *frame; abi_ulong frame_addr; int i; int err = 0; int signal; frame_addr = get_sigframe(ka, regs->gregs[15], sizeof(*frame)); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; signal = current_exec_domain_sig(sig); err |= copy_siginfo_to_user(&frame->info, info); /* Create the ucontext. */ err |= __put_user(0, &frame->uc.tuc_flags); err |= __put_user(0, (unsigned long *)&frame->uc.tuc_link); err |= __put_user((unsigned long)target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); err |= __put_user(sas_ss_flags(regs->gregs[15]), &frame->uc.tuc_stack.ss_flags); err |= __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); err |= setup_sigcontext(&frame->uc.tuc_mcontext, regs, set->sig[0]); for(i = 0; i < TARGET_NSIG_WORDS; i++) { err |= __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); } /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa_flags & TARGET_SA_RESTORER) { regs->pr = (unsigned long) ka->sa_restorer; } else { /* Generate return code (system call to sigreturn) */ err |= __put_user(MOVW(2), &frame->retcode[0]); err |= __put_user(TRAP_NOARG, &frame->retcode[1]); err |= __put_user((TARGET_NR_rt_sigreturn), &frame->retcode[2]); regs->pr = (unsigned long) frame->retcode; } if (err) goto give_sigsegv; /* Set up registers for signal handler */ regs->gregs[15] = (unsigned long) frame; regs->gregs[4] = signal; /* Arg for signal handler */ regs->gregs[5] = (unsigned long) &frame->info; regs->gregs[6] = (unsigned long) &frame->uc; regs->pc = (unsigned long) ka->_sa_handler; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sig(TARGET_SIGSEGV); } long do_sigreturn(CPUState *regs) { struct target_sigframe *frame; abi_ulong frame_addr; sigset_t blocked; target_sigset_t target_set; target_ulong r0; int i; int err = 0; #if defined(DEBUG_SIGNAL) fprintf(stderr, "do_sigreturn\n"); #endif frame_addr = regs->gregs[15]; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; err |= __get_user(target_set.sig[0], &frame->sc.oldmask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { err |= (__get_user(target_set.sig[i], &frame->extramask[i - 1])); } if (err) goto badframe; target_to_host_sigset_internal(&blocked, &target_set); sigprocmask(SIG_SETMASK, &blocked, NULL); if (restore_sigcontext(regs, &frame->sc, &r0)) goto badframe; unlock_user_struct(frame, frame_addr, 0); return r0; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return 0; } long do_rt_sigreturn(CPUState *regs) { struct target_rt_sigframe *frame; abi_ulong frame_addr; sigset_t blocked; target_ulong r0; #if defined(DEBUG_SIGNAL) fprintf(stderr, "do_rt_sigreturn\n"); #endif frame_addr = regs->gregs[15]; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; target_to_host_sigset(&blocked, &frame->uc.tuc_sigmask); sigprocmask(SIG_SETMASK, &blocked, NULL); if (restore_sigcontext(regs, &frame->uc.tuc_mcontext, &r0)) goto badframe; if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, uc.tuc_stack), 0, get_sp_from_cpustate(regs)) == -EFAULT) goto badframe; unlock_user_struct(frame, frame_addr, 0); return r0; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return 0; } #elif defined(TARGET_MICROBLAZE) struct target_sigcontext { struct target_pt_regs regs; /* needs to be first */ uint32_t oldmask; }; struct target_stack_t { abi_ulong ss_sp; int ss_flags; unsigned int ss_size; }; struct target_ucontext { abi_ulong tuc_flags; abi_ulong tuc_link; struct target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; uint32_t tuc_extramask[TARGET_NSIG_WORDS - 1]; }; /* Signal frames. */ struct target_signal_frame { struct target_ucontext uc; uint32_t extramask[TARGET_NSIG_WORDS - 1]; uint32_t tramp[2]; }; struct rt_signal_frame { struct siginfo info; struct ucontext uc; uint32_t tramp[2]; }; static void setup_sigcontext(struct target_sigcontext *sc, CPUState *env) { __put_user(env->regs[0], &sc->regs.r0); __put_user(env->regs[1], &sc->regs.r1); __put_user(env->regs[2], &sc->regs.r2); __put_user(env->regs[3], &sc->regs.r3); __put_user(env->regs[4], &sc->regs.r4); __put_user(env->regs[5], &sc->regs.r5); __put_user(env->regs[6], &sc->regs.r6); __put_user(env->regs[7], &sc->regs.r7); __put_user(env->regs[8], &sc->regs.r8); __put_user(env->regs[9], &sc->regs.r9); __put_user(env->regs[10], &sc->regs.r10); __put_user(env->regs[11], &sc->regs.r11); __put_user(env->regs[12], &sc->regs.r12); __put_user(env->regs[13], &sc->regs.r13); __put_user(env->regs[14], &sc->regs.r14); __put_user(env->regs[15], &sc->regs.r15); __put_user(env->regs[16], &sc->regs.r16); __put_user(env->regs[17], &sc->regs.r17); __put_user(env->regs[18], &sc->regs.r18); __put_user(env->regs[19], &sc->regs.r19); __put_user(env->regs[20], &sc->regs.r20); __put_user(env->regs[21], &sc->regs.r21); __put_user(env->regs[22], &sc->regs.r22); __put_user(env->regs[23], &sc->regs.r23); __put_user(env->regs[24], &sc->regs.r24); __put_user(env->regs[25], &sc->regs.r25); __put_user(env->regs[26], &sc->regs.r26); __put_user(env->regs[27], &sc->regs.r27); __put_user(env->regs[28], &sc->regs.r28); __put_user(env->regs[29], &sc->regs.r29); __put_user(env->regs[30], &sc->regs.r30); __put_user(env->regs[31], &sc->regs.r31); __put_user(env->sregs[SR_PC], &sc->regs.pc); } static void restore_sigcontext(struct target_sigcontext *sc, CPUState *env) { __get_user(env->regs[0], &sc->regs.r0); __get_user(env->regs[1], &sc->regs.r1); __get_user(env->regs[2], &sc->regs.r2); __get_user(env->regs[3], &sc->regs.r3); __get_user(env->regs[4], &sc->regs.r4); __get_user(env->regs[5], &sc->regs.r5); __get_user(env->regs[6], &sc->regs.r6); __get_user(env->regs[7], &sc->regs.r7); __get_user(env->regs[8], &sc->regs.r8); __get_user(env->regs[9], &sc->regs.r9); __get_user(env->regs[10], &sc->regs.r10); __get_user(env->regs[11], &sc->regs.r11); __get_user(env->regs[12], &sc->regs.r12); __get_user(env->regs[13], &sc->regs.r13); __get_user(env->regs[14], &sc->regs.r14); __get_user(env->regs[15], &sc->regs.r15); __get_user(env->regs[16], &sc->regs.r16); __get_user(env->regs[17], &sc->regs.r17); __get_user(env->regs[18], &sc->regs.r18); __get_user(env->regs[19], &sc->regs.r19); __get_user(env->regs[20], &sc->regs.r20); __get_user(env->regs[21], &sc->regs.r21); __get_user(env->regs[22], &sc->regs.r22); __get_user(env->regs[23], &sc->regs.r23); __get_user(env->regs[24], &sc->regs.r24); __get_user(env->regs[25], &sc->regs.r25); __get_user(env->regs[26], &sc->regs.r26); __get_user(env->regs[27], &sc->regs.r27); __get_user(env->regs[28], &sc->regs.r28); __get_user(env->regs[29], &sc->regs.r29); __get_user(env->regs[30], &sc->regs.r30); __get_user(env->regs[31], &sc->regs.r31); __get_user(env->sregs[SR_PC], &sc->regs.pc); } static abi_ulong get_sigframe(struct target_sigaction *ka, CPUState *env, int frame_size) { abi_ulong sp = env->regs[1]; if ((ka->sa_flags & SA_ONSTACK) != 0 && !on_sig_stack(sp)) sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; return ((sp - frame_size) & -8UL); } static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUState *env) { struct target_signal_frame *frame; abi_ulong frame_addr; int err = 0; int i; frame_addr = get_sigframe(ka, env, sizeof *frame); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto badframe; /* Save the mask. */ err |= __put_user(set->sig[0], &frame->uc.tuc_mcontext.oldmask); if (err) goto badframe; for(i = 1; i < TARGET_NSIG_WORDS; i++) { if (__put_user(set->sig[i], &frame->extramask[i - 1])) goto badframe; } setup_sigcontext(&frame->uc.tuc_mcontext, env); /* Set up to return from userspace. If provided, use a stub already in userspace. */ /* minus 8 is offset to cater for "rtsd r15,8" offset */ if (ka->sa_flags & TARGET_SA_RESTORER) { env->regs[15] = ((unsigned long)ka->sa_restorer)-8; } else { uint32_t t; /* Note, these encodings are _big endian_! */ /* addi r12, r0, __NR_sigreturn */ t = 0x31800000UL | TARGET_NR_sigreturn; err |= __put_user(t, frame->tramp + 0); /* brki r14, 0x8 */ t = 0xb9cc0008UL; err |= __put_user(t, frame->tramp + 1); /* Return from sighandler will jump to the tramp. Negative 8 offset because return is rtsd r15, 8 */ env->regs[15] = ((unsigned long)frame->tramp) - 8; } if (err) goto badframe; /* Set up registers for signal handler */ env->regs[1] = (unsigned long) frame; /* Signal handler args: */ env->regs[5] = sig; /* Arg 0: signum */ env->regs[6] = 0; env->regs[7] = (unsigned long) &frame->uc; /* arg 1: sigcontext */ /* Offset of 4 to handle microblaze rtid r14, 0 */ env->sregs[SR_PC] = (unsigned long)ka->_sa_handler; unlock_user_struct(frame, frame_addr, 1); return; badframe: unlock_user_struct(frame, frame_addr, 1); force_sig(TARGET_SIGSEGV); } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { fprintf(stderr, "Microblaze setup_rt_frame: not implemented\n"); } long do_sigreturn(CPUState *env) { struct target_signal_frame *frame; abi_ulong frame_addr; target_sigset_t target_set; sigset_t set; int i; frame_addr = env->regs[R_SP]; /* Make sure the guest isn't playing games. */ if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) goto badframe; /* Restore blocked signals */ if (__get_user(target_set.sig[0], &frame->uc.tuc_mcontext.oldmask)) goto badframe; for(i = 1; i < TARGET_NSIG_WORDS; i++) { if (__get_user(target_set.sig[i], &frame->extramask[i - 1])) goto badframe; } target_to_host_sigset_internal(&set, &target_set); sigprocmask(SIG_SETMASK, &set, NULL); restore_sigcontext(&frame->uc.tuc_mcontext, env); /* We got here through a sigreturn syscall, our path back is via an rtb insn so setup r14 for that. */ env->regs[14] = env->sregs[SR_PC]; unlock_user_struct(frame, frame_addr, 0); return env->regs[10]; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); } long do_rt_sigreturn(CPUState *env) { fprintf(stderr, "Microblaze do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } #elif defined(TARGET_CRIS) struct target_sigcontext { struct target_pt_regs regs; /* needs to be first */ uint32_t oldmask; uint32_t usp; /* usp before stacking this gunk on it */ }; /* Signal frames. */ struct target_signal_frame { struct target_sigcontext sc; uint32_t extramask[TARGET_NSIG_WORDS - 1]; uint8_t retcode[8]; /* Trampoline code. */ }; struct rt_signal_frame { struct siginfo *pinfo; void *puc; struct siginfo info; struct ucontext uc; uint8_t retcode[8]; /* Trampoline code. */ }; static void setup_sigcontext(struct target_sigcontext *sc, CPUState *env) { __put_user(env->regs[0], &sc->regs.r0); __put_user(env->regs[1], &sc->regs.r1); __put_user(env->regs[2], &sc->regs.r2); __put_user(env->regs[3], &sc->regs.r3); __put_user(env->regs[4], &sc->regs.r4); __put_user(env->regs[5], &sc->regs.r5); __put_user(env->regs[6], &sc->regs.r6); __put_user(env->regs[7], &sc->regs.r7); __put_user(env->regs[8], &sc->regs.r8); __put_user(env->regs[9], &sc->regs.r9); __put_user(env->regs[10], &sc->regs.r10); __put_user(env->regs[11], &sc->regs.r11); __put_user(env->regs[12], &sc->regs.r12); __put_user(env->regs[13], &sc->regs.r13); __put_user(env->regs[14], &sc->usp); __put_user(env->regs[15], &sc->regs.acr); __put_user(env->pregs[PR_MOF], &sc->regs.mof); __put_user(env->pregs[PR_SRP], &sc->regs.srp); __put_user(env->pc, &sc->regs.erp); } static void restore_sigcontext(struct target_sigcontext *sc, CPUState *env) { __get_user(env->regs[0], &sc->regs.r0); __get_user(env->regs[1], &sc->regs.r1); __get_user(env->regs[2], &sc->regs.r2); __get_user(env->regs[3], &sc->regs.r3); __get_user(env->regs[4], &sc->regs.r4); __get_user(env->regs[5], &sc->regs.r5); __get_user(env->regs[6], &sc->regs.r6); __get_user(env->regs[7], &sc->regs.r7); __get_user(env->regs[8], &sc->regs.r8); __get_user(env->regs[9], &sc->regs.r9); __get_user(env->regs[10], &sc->regs.r10); __get_user(env->regs[11], &sc->regs.r11); __get_user(env->regs[12], &sc->regs.r12); __get_user(env->regs[13], &sc->regs.r13); __get_user(env->regs[14], &sc->usp); __get_user(env->regs[15], &sc->regs.acr); __get_user(env->pregs[PR_MOF], &sc->regs.mof); __get_user(env->pregs[PR_SRP], &sc->regs.srp); __get_user(env->pc, &sc->regs.erp); } static abi_ulong get_sigframe(CPUState *env, int framesize) { abi_ulong sp; /* Align the stack downwards to 4. */ sp = (env->regs[R_SP] & ~3); return sp - framesize; } static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUState *env) { struct target_signal_frame *frame; abi_ulong frame_addr; int err = 0; int i; frame_addr = get_sigframe(env, sizeof *frame); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto badframe; /* * The CRIS signal return trampoline. A real linux/CRIS kernel doesn't * use this trampoline anymore but it sets it up for GDB. * In QEMU, using the trampoline simplifies things a bit so we use it. * * This is movu.w __NR_sigreturn, r9; break 13; */ err |= __put_user(0x9c5f, frame->retcode+0); err |= __put_user(TARGET_NR_sigreturn, frame->retcode+2); err |= __put_user(0xe93d, frame->retcode+4); /* Save the mask. */ err |= __put_user(set->sig[0], &frame->sc.oldmask); if (err) goto badframe; for(i = 1; i < TARGET_NSIG_WORDS; i++) { if (__put_user(set->sig[i], &frame->extramask[i - 1])) goto badframe; } setup_sigcontext(&frame->sc, env); /* Move the stack and setup the arguments for the handler. */ env->regs[R_SP] = (uint32_t) (unsigned long) frame; env->regs[10] = sig; env->pc = (unsigned long) ka->_sa_handler; /* Link SRP so the guest returns through the trampoline. */ env->pregs[PR_SRP] = (uint32_t) (unsigned long) &frame->retcode[0]; unlock_user_struct(frame, frame_addr, 1); return; badframe: unlock_user_struct(frame, frame_addr, 1); force_sig(TARGET_SIGSEGV); } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { fprintf(stderr, "CRIS setup_rt_frame: not implemented\n"); } long do_sigreturn(CPUState *env) { struct target_signal_frame *frame; abi_ulong frame_addr; target_sigset_t target_set; sigset_t set; int i; frame_addr = env->regs[R_SP]; /* Make sure the guest isn't playing games. */ if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) goto badframe; /* Restore blocked signals */ if (__get_user(target_set.sig[0], &frame->sc.oldmask)) goto badframe; for(i = 1; i < TARGET_NSIG_WORDS; i++) { if (__get_user(target_set.sig[i], &frame->extramask[i - 1])) goto badframe; } target_to_host_sigset_internal(&set, &target_set); sigprocmask(SIG_SETMASK, &set, NULL); restore_sigcontext(&frame->sc, env); unlock_user_struct(frame, frame_addr, 0); return env->regs[10]; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); } long do_rt_sigreturn(CPUState *env) { fprintf(stderr, "CRIS do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } #elif defined(TARGET_PPC) && !defined(TARGET_PPC64) /* FIXME: Many of the structures are defined for both PPC and PPC64, but the signal handling is different enough that we haven't implemented support for PPC64 yet. Hence the restriction above. There are various #if'd blocks for code for TARGET_PPC64. These blocks should go away so that we can successfully run 32-bit and 64-bit binaries on a QEMU configured for PPC64. */ /* Size of dummy stack frame allocated when calling signal handler. See arch/powerpc/include/asm/ptrace.h. */ #if defined(TARGET_PPC64) #define SIGNAL_FRAMESIZE 128 #else #define SIGNAL_FRAMESIZE 64 #endif /* See arch/powerpc/include/asm/sigcontext.h. */ struct target_sigcontext { target_ulong _unused[4]; int32_t signal; #if defined(TARGET_PPC64) int32_t pad0; #endif target_ulong handler; target_ulong oldmask; target_ulong regs; /* struct pt_regs __user * */ /* TODO: PPC64 includes extra bits here. */ }; /* Indices for target_mcontext.mc_gregs, below. See arch/powerpc/include/asm/ptrace.h for details. */ enum { TARGET_PT_R0 = 0, TARGET_PT_R1 = 1, TARGET_PT_R2 = 2, TARGET_PT_R3 = 3, TARGET_PT_R4 = 4, TARGET_PT_R5 = 5, TARGET_PT_R6 = 6, TARGET_PT_R7 = 7, TARGET_PT_R8 = 8, TARGET_PT_R9 = 9, TARGET_PT_R10 = 10, TARGET_PT_R11 = 11, TARGET_PT_R12 = 12, TARGET_PT_R13 = 13, TARGET_PT_R14 = 14, TARGET_PT_R15 = 15, TARGET_PT_R16 = 16, TARGET_PT_R17 = 17, TARGET_PT_R18 = 18, TARGET_PT_R19 = 19, TARGET_PT_R20 = 20, TARGET_PT_R21 = 21, TARGET_PT_R22 = 22, TARGET_PT_R23 = 23, TARGET_PT_R24 = 24, TARGET_PT_R25 = 25, TARGET_PT_R26 = 26, TARGET_PT_R27 = 27, TARGET_PT_R28 = 28, TARGET_PT_R29 = 29, TARGET_PT_R30 = 30, TARGET_PT_R31 = 31, TARGET_PT_NIP = 32, TARGET_PT_MSR = 33, TARGET_PT_ORIG_R3 = 34, TARGET_PT_CTR = 35, TARGET_PT_LNK = 36, TARGET_PT_XER = 37, TARGET_PT_CCR = 38, /* Yes, there are two registers with #39. One is 64-bit only. */ TARGET_PT_MQ = 39, TARGET_PT_SOFTE = 39, TARGET_PT_TRAP = 40, TARGET_PT_DAR = 41, TARGET_PT_DSISR = 42, TARGET_PT_RESULT = 43, TARGET_PT_REGS_COUNT = 44 }; /* See arch/powerpc/include/asm/ucontext.h. Only used for 32-bit PPC; on 64-bit PPC, sigcontext and mcontext are one and the same. */ struct target_mcontext { target_ulong mc_gregs[48]; /* Includes fpscr. */ uint64_t mc_fregs[33]; target_ulong mc_pad[2]; /* We need to handle Altivec and SPE at the same time, which no kernel needs to do. Fortunately, the kernel defines this bit to be Altivec-register-large all the time, rather than trying to twiddle it based on the specific platform. */ union { /* SPE vector registers. One extra for SPEFSCR. */ uint32_t spe[33]; /* Altivec vector registers. The packing of VSCR and VRSAVE varies depending on whether we're PPC64 or not: PPC64 splits them apart; PPC32 stuffs them together. */ #if defined(TARGET_PPC64) #define QEMU_NVRREG 34 #else #define QEMU_NVRREG 33 #endif ppc_avr_t altivec[QEMU_NVRREG]; #undef QEMU_NVRREG } mc_vregs __attribute__((__aligned__(16))); }; struct target_ucontext { target_ulong tuc_flags; target_ulong tuc_link; /* struct ucontext __user * */ struct target_sigaltstack tuc_stack; #if !defined(TARGET_PPC64) int32_t tuc_pad[7]; target_ulong tuc_regs; /* struct mcontext __user * points to uc_mcontext field */ #endif target_sigset_t tuc_sigmask; #if defined(TARGET_PPC64) target_sigset_t unused[15]; /* Allow for uc_sigmask growth */ struct target_sigcontext tuc_mcontext; #else int32_t tuc_maskext[30]; int32_t tuc_pad2[3]; struct target_mcontext tuc_mcontext; #endif }; /* See arch/powerpc/kernel/signal_32.c. */ struct target_sigframe { struct target_sigcontext sctx; struct target_mcontext mctx; int32_t abigap[56]; }; struct target_rt_sigframe { struct target_siginfo info; struct target_ucontext uc; int32_t abigap[56]; }; /* We use the mc_pad field for the signal return trampoline. */ #define tramp mc_pad /* See arch/powerpc/kernel/signal.c. */ static target_ulong get_sigframe(struct target_sigaction *ka, CPUState *env, int frame_size) { target_ulong oldsp, newsp; oldsp = env->gpr[1]; if ((ka->sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags(oldsp))) { oldsp = (target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size); } newsp = (oldsp - frame_size) & ~0xFUL; return newsp; } static int save_user_regs(CPUState *env, struct target_mcontext *frame, int sigret) { target_ulong msr = env->msr; int i; target_ulong ccr = 0; /* In general, the kernel attempts to be intelligent about what it needs to save for Altivec/FP/SPE registers. We don't care that much, so we just go ahead and save everything. */ /* Save general registers. */ for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { if (__put_user(env->gpr[i], &frame->mc_gregs[i])) { return 1; } } if (__put_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]) || __put_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]) || __put_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]) || __put_user(env->xer, &frame->mc_gregs[TARGET_PT_XER])) return 1; for (i = 0; i < ARRAY_SIZE(env->crf); i++) { ccr |= env->crf[i] << (32 - ((i + 1) * 4)); } if (__put_user(ccr, &frame->mc_gregs[TARGET_PT_CCR])) return 1; /* Save Altivec registers if necessary. */ if (env->insns_flags & PPC_ALTIVEC) { for (i = 0; i < ARRAY_SIZE(env->avr); i++) { ppc_avr_t *avr = &env->avr[i]; ppc_avr_t *vreg = &frame->mc_vregs.altivec[i]; if (__put_user(avr->u64[0], &vreg->u64[0]) || __put_user(avr->u64[1], &vreg->u64[1])) { return 1; } } /* Set MSR_VR in the saved MSR value to indicate that frame->mc_vregs contains valid data. */ msr |= MSR_VR; if (__put_user((uint32_t)env->spr[SPR_VRSAVE], &frame->mc_vregs.altivec[32].u32[3])) return 1; } /* Save floating point registers. */ if (env->insns_flags & PPC_FLOAT) { for (i = 0; i < ARRAY_SIZE(env->fpr); i++) { if (__put_user(env->fpr[i], &frame->mc_fregs[i])) { return 1; } } if (__put_user((uint64_t) env->fpscr, &frame->mc_fregs[32])) return 1; } /* Save SPE registers. The kernel only saves the high half. */ if (env->insns_flags & PPC_SPE) { #if defined(TARGET_PPC64) for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { if (__put_user(env->gpr[i] >> 32, &frame->mc_vregs.spe[i])) { return 1; } } #else for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { if (__put_user(env->gprh[i], &frame->mc_vregs.spe[i])) { return 1; } } #endif /* Set MSR_SPE in the saved MSR value to indicate that frame->mc_vregs contains valid data. */ msr |= MSR_SPE; if (__put_user(env->spe_fscr, &frame->mc_vregs.spe[32])) return 1; } /* Store MSR. */ if (__put_user(msr, &frame->mc_gregs[TARGET_PT_MSR])) return 1; /* Set up the sigreturn trampoline: li r0,sigret; sc. */ if (sigret) { if (__put_user(0x38000000UL | sigret, &frame->tramp[0]) || __put_user(0x44000002UL, &frame->tramp[1])) { return 1; } } return 0; } static int restore_user_regs(CPUState *env, struct target_mcontext *frame, int sig) { target_ulong save_r2 = 0; target_ulong msr; target_ulong ccr; int i; if (!sig) { save_r2 = env->gpr[2]; } /* Restore general registers. */ for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { if (__get_user(env->gpr[i], &frame->mc_gregs[i])) { return 1; } } if (__get_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]) || __get_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]) || __get_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]) || __get_user(env->xer, &frame->mc_gregs[TARGET_PT_XER])) return 1; if (__get_user(ccr, &frame->mc_gregs[TARGET_PT_CCR])) return 1; for (i = 0; i < ARRAY_SIZE(env->crf); i++) { env->crf[i] = (ccr >> (32 - ((i + 1) * 4))) & 0xf; } if (!sig) { env->gpr[2] = save_r2; } /* Restore MSR. */ if (__get_user(msr, &frame->mc_gregs[TARGET_PT_MSR])) return 1; /* If doing signal return, restore the previous little-endian mode. */ if (sig) env->msr = (env->msr & ~MSR_LE) | (msr & MSR_LE); /* Restore Altivec registers if necessary. */ if (env->insns_flags & PPC_ALTIVEC) { for (i = 0; i < ARRAY_SIZE(env->avr); i++) { ppc_avr_t *avr = &env->avr[i]; ppc_avr_t *vreg = &frame->mc_vregs.altivec[i]; if (__get_user(avr->u64[0], &vreg->u64[0]) || __get_user(avr->u64[1], &vreg->u64[1])) { return 1; } } /* Set MSR_VEC in the saved MSR value to indicate that frame->mc_vregs contains valid data. */ if (__get_user(env->spr[SPR_VRSAVE], (target_ulong *)(&frame->mc_vregs.altivec[32].u32[3]))) return 1; } /* Restore floating point registers. */ if (env->insns_flags & PPC_FLOAT) { uint64_t fpscr; for (i = 0; i < ARRAY_SIZE(env->fpr); i++) { if (__get_user(env->fpr[i], &frame->mc_fregs[i])) { return 1; } } if (__get_user(fpscr, &frame->mc_fregs[32])) return 1; env->fpscr = (uint32_t) fpscr; } /* Save SPE registers. The kernel only saves the high half. */ if (env->insns_flags & PPC_SPE) { #if defined(TARGET_PPC64) for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { uint32_t hi; if (__get_user(hi, &frame->mc_vregs.spe[i])) { return 1; } env->gpr[i] = ((uint64_t)hi << 32) | ((uint32_t) env->gpr[i]); } #else for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { if (__get_user(env->gprh[i], &frame->mc_vregs.spe[i])) { return 1; } } #endif if (__get_user(env->spe_fscr, &frame->mc_vregs.spe[32])) return 1; } return 0; } static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUState *env) { struct target_sigframe *frame; struct target_sigcontext *sc; target_ulong frame_addr, newsp; int err = 0; int signal; frame_addr = get_sigframe(ka, env, sizeof(*frame)); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) goto sigsegv; sc = &frame->sctx; signal = current_exec_domain_sig(sig); err |= __put_user(h2g(ka->_sa_handler), &sc->handler); err |= __put_user(set->sig[0], &sc->oldmask); #if defined(TARGET_PPC64) err |= __put_user(set->sig[0] >> 32, &sc->_unused[3]); #else err |= __put_user(set->sig[1], &sc->_unused[3]); #endif err |= __put_user(h2g(&frame->mctx), &sc->regs); err |= __put_user(sig, &sc->signal); /* Save user regs. */ err |= save_user_regs(env, &frame->mctx, TARGET_NR_sigreturn); /* The kernel checks for the presence of a VDSO here. We don't emulate a vdso, so use a sigreturn system call. */ env->lr = (target_ulong) h2g(frame->mctx.tramp); /* Turn off all fp exceptions. */ env->fpscr = 0; /* Create a stack frame for the caller of the handler. */ newsp = frame_addr - SIGNAL_FRAMESIZE; err |= __put_user(env->gpr[1], (target_ulong *)(uintptr_t) newsp); if (err) goto sigsegv; /* Set up registers for signal handler. */ env->gpr[1] = newsp; env->gpr[3] = signal; env->gpr[4] = (target_ulong) h2g(sc); env->nip = (target_ulong) ka->_sa_handler; /* Signal handlers are entered in big-endian mode. */ env->msr &= ~MSR_LE; unlock_user_struct(frame, frame_addr, 1); return; sigsegv: unlock_user_struct(frame, frame_addr, 1); if (logfile) fprintf (logfile, "segfaulting from setup_frame\n"); force_sig(TARGET_SIGSEGV); } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { struct target_rt_sigframe *rt_sf; struct target_mcontext *frame; target_ulong rt_sf_addr, newsp = 0; int i, err = 0; int signal; rt_sf_addr = get_sigframe(ka, env, sizeof(*rt_sf)); if (!lock_user_struct(VERIFY_WRITE, rt_sf, rt_sf_addr, 1)) goto sigsegv; signal = current_exec_domain_sig(sig); err |= copy_siginfo_to_user(&rt_sf->info, info); err |= __put_user(0, &rt_sf->uc.tuc_flags); err |= __put_user(0, &rt_sf->uc.tuc_link); err |= __put_user((target_ulong)target_sigaltstack_used.ss_sp, &rt_sf->uc.tuc_stack.ss_sp); err |= __put_user(sas_ss_flags(env->gpr[1]), &rt_sf->uc.tuc_stack.ss_flags); err |= __put_user(target_sigaltstack_used.ss_size, &rt_sf->uc.tuc_stack.ss_size); err |= __put_user(h2g (&rt_sf->uc.tuc_mcontext), &rt_sf->uc.tuc_regs); for(i = 0; i < TARGET_NSIG_WORDS; i++) { err |= __put_user(set->sig[i], &rt_sf->uc.tuc_sigmask.sig[i]); } frame = &rt_sf->uc.tuc_mcontext; err |= save_user_regs(env, frame, TARGET_NR_rt_sigreturn); /* The kernel checks for the presence of a VDSO here. We don't emulate a vdso, so use a sigreturn system call. */ env->lr = (target_ulong) h2g(frame->tramp); /* Turn off all fp exceptions. */ env->fpscr = 0; /* Create a stack frame for the caller of the handler. */ newsp = rt_sf_addr - (SIGNAL_FRAMESIZE + 16); err |= __put_user(env->gpr[1], (target_ulong *)(uintptr_t) newsp); if (err) goto sigsegv; /* Set up registers for signal handler. */ env->gpr[1] = newsp; env->gpr[3] = (target_ulong) signal; env->gpr[4] = (target_ulong) h2g(&rt_sf->info); env->gpr[5] = (target_ulong) h2g(&rt_sf->uc); env->gpr[6] = (target_ulong) h2g(rt_sf); env->nip = (target_ulong) ka->_sa_handler; /* Signal handlers are entered in big-endian mode. */ env->msr &= ~MSR_LE; unlock_user_struct(rt_sf, rt_sf_addr, 1); return; sigsegv: unlock_user_struct(rt_sf, rt_sf_addr, 1); if (logfile) fprintf (logfile, "segfaulting from setup_rt_frame\n"); force_sig(TARGET_SIGSEGV); } long do_sigreturn(CPUState *env) { struct target_sigcontext *sc = NULL; struct target_mcontext *sr = NULL; target_ulong sr_addr, sc_addr; sigset_t blocked; target_sigset_t set; sc_addr = env->gpr[1] + SIGNAL_FRAMESIZE; if (!lock_user_struct(VERIFY_READ, sc, sc_addr, 1)) goto sigsegv; #if defined(TARGET_PPC64) set.sig[0] = sc->oldmask + ((long)(sc->_unused[3]) << 32); #else if(__get_user(set.sig[0], &sc->oldmask) || __get_user(set.sig[1], &sc->_unused[3])) goto sigsegv; #endif target_to_host_sigset_internal(&blocked, &set); sigprocmask(SIG_SETMASK, &blocked, NULL); if (__get_user(sr_addr, &sc->regs)) goto sigsegv; if (!lock_user_struct(VERIFY_READ, sr, sr_addr, 1)) goto sigsegv; if (restore_user_regs(env, sr, 1)) goto sigsegv; unlock_user_struct(sr, sr_addr, 1); unlock_user_struct(sc, sc_addr, 1); return -TARGET_QEMU_ESIGRETURN; sigsegv: unlock_user_struct(sr, sr_addr, 1); unlock_user_struct(sc, sc_addr, 1); if (logfile) fprintf (logfile, "segfaulting from do_sigreturn\n"); force_sig(TARGET_SIGSEGV); return 0; } /* See arch/powerpc/kernel/signal_32.c. */ static int do_setcontext(struct target_ucontext *ucp, CPUState *env, int sig) { struct target_mcontext *mcp; target_ulong mcp_addr; sigset_t blocked; target_sigset_t set; if (copy_from_user(&set, h2g(ucp) + offsetof(struct target_ucontext, tuc_sigmask), sizeof (set))) return 1; #if defined(TARGET_PPC64) fprintf (stderr, "do_setcontext: not implemented\n"); return 0; #else if (__get_user(mcp_addr, &ucp->tuc_regs)) return 1; if (!lock_user_struct(VERIFY_READ, mcp, mcp_addr, 1)) return 1; target_to_host_sigset_internal(&blocked, &set); sigprocmask(SIG_SETMASK, &blocked, NULL); if (restore_user_regs(env, mcp, sig)) goto sigsegv; unlock_user_struct(mcp, mcp_addr, 1); return 0; sigsegv: unlock_user_struct(mcp, mcp_addr, 1); return 1; #endif } long do_rt_sigreturn(CPUState *env) { struct target_rt_sigframe *rt_sf = NULL; target_ulong rt_sf_addr; rt_sf_addr = env->gpr[1] + SIGNAL_FRAMESIZE + 16; if (!lock_user_struct(VERIFY_READ, rt_sf, rt_sf_addr, 1)) goto sigsegv; if (do_setcontext(&rt_sf->uc, env, 1)) goto sigsegv; do_sigaltstack(rt_sf_addr + offsetof(struct target_rt_sigframe, uc.tuc_stack), 0, env->gpr[1]); unlock_user_struct(rt_sf, rt_sf_addr, 1); return -TARGET_QEMU_ESIGRETURN; sigsegv: unlock_user_struct(rt_sf, rt_sf_addr, 1); if (logfile) fprintf (logfile, "segfaulting from do_rt_sigreturn\n"); force_sig(TARGET_SIGSEGV); return 0; } #elif defined(TARGET_M68K) struct target_sigcontext { abi_ulong sc_mask; abi_ulong sc_usp; abi_ulong sc_d0; abi_ulong sc_d1; abi_ulong sc_a0; abi_ulong sc_a1; unsigned short sc_sr; abi_ulong sc_pc; }; struct target_sigframe { abi_ulong pretcode; int sig; int code; abi_ulong psc; char retcode[8]; abi_ulong extramask[TARGET_NSIG_WORDS-1]; struct target_sigcontext sc; }; typedef int target_greg_t; #define TARGET_NGREG 18 typedef target_greg_t target_gregset_t[TARGET_NGREG]; typedef struct target_fpregset { int f_fpcntl[3]; int f_fpregs[8*3]; } target_fpregset_t; struct target_mcontext { int version; target_gregset_t gregs; target_fpregset_t fpregs; }; #define TARGET_MCONTEXT_VERSION 2 struct target_ucontext { abi_ulong tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; struct target_mcontext tuc_mcontext; abi_long tuc_filler[80]; target_sigset_t tuc_sigmask; }; struct target_rt_sigframe { abi_ulong pretcode; int sig; abi_ulong pinfo; abi_ulong puc; char retcode[8]; struct target_siginfo info; struct target_ucontext uc; }; static int setup_sigcontext(struct target_sigcontext *sc, CPUState *env, abi_ulong mask) { int err = 0; err |= __put_user(mask, &sc->sc_mask); err |= __put_user(env->aregs[7], &sc->sc_usp); err |= __put_user(env->dregs[0], &sc->sc_d0); err |= __put_user(env->dregs[1], &sc->sc_d1); err |= __put_user(env->aregs[0], &sc->sc_a0); err |= __put_user(env->aregs[1], &sc->sc_a1); err |= __put_user(env->sr, &sc->sc_sr); err |= __put_user(env->pc, &sc->sc_pc); return err; } static int restore_sigcontext(CPUState *env, struct target_sigcontext *sc, int *pd0) { int err = 0; int temp; err |= __get_user(env->aregs[7], &sc->sc_usp); err |= __get_user(env->dregs[1], &sc->sc_d1); err |= __get_user(env->aregs[0], &sc->sc_a0); err |= __get_user(env->aregs[1], &sc->sc_a1); err |= __get_user(env->pc, &sc->sc_pc); err |= __get_user(temp, &sc->sc_sr); env->sr = (env->sr & 0xff00) | (temp & 0xff); *pd0 = tswapl(sc->sc_d0); return err; } /* * Determine which stack to use.. */ static inline abi_ulong get_sigframe(struct target_sigaction *ka, CPUState *regs, size_t frame_size) { unsigned long sp; sp = regs->aregs[7]; /* This is the X/Open sanctioned signal stack switching. */ if ((ka->sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags (sp) == 0)) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } return ((sp - frame_size) & -8UL); } static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUState *env) { struct target_sigframe *frame; abi_ulong frame_addr; abi_ulong retcode_addr; abi_ulong sc_addr; int err = 0; int i; frame_addr = get_sigframe(ka, env, sizeof *frame); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; err |= __put_user(sig, &frame->sig); sc_addr = frame_addr + offsetof(struct target_sigframe, sc); err |= __put_user(sc_addr, &frame->psc); err |= setup_sigcontext(&frame->sc, env, set->sig[0]); if (err) goto give_sigsegv; for(i = 1; i < TARGET_NSIG_WORDS; i++) { if (__put_user(set->sig[i], &frame->extramask[i - 1])) goto give_sigsegv; } /* Set up to return from userspace. */ retcode_addr = frame_addr + offsetof(struct target_sigframe, retcode); err |= __put_user(retcode_addr, &frame->pretcode); /* moveq #,d0; trap #0 */ err |= __put_user(0x70004e40 + (TARGET_NR_sigreturn << 16), (long *)(frame->retcode)); if (err) goto give_sigsegv; /* Set up to return from userspace */ env->aregs[7] = frame_addr; env->pc = ka->_sa_handler; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sig(TARGET_SIGSEGV); } static inline int target_rt_setup_ucontext(struct target_ucontext *uc, CPUState *env) { target_greg_t *gregs = uc->tuc_mcontext.gregs; int err; err = __put_user(TARGET_MCONTEXT_VERSION, &uc->tuc_mcontext.version); err |= __put_user(env->dregs[0], &gregs[0]); err |= __put_user(env->dregs[1], &gregs[1]); err |= __put_user(env->dregs[2], &gregs[2]); err |= __put_user(env->dregs[3], &gregs[3]); err |= __put_user(env->dregs[4], &gregs[4]); err |= __put_user(env->dregs[5], &gregs[5]); err |= __put_user(env->dregs[6], &gregs[6]); err |= __put_user(env->dregs[7], &gregs[7]); err |= __put_user(env->aregs[0], &gregs[8]); err |= __put_user(env->aregs[1], &gregs[9]); err |= __put_user(env->aregs[2], &gregs[10]); err |= __put_user(env->aregs[3], &gregs[11]); err |= __put_user(env->aregs[4], &gregs[12]); err |= __put_user(env->aregs[5], &gregs[13]); err |= __put_user(env->aregs[6], &gregs[14]); err |= __put_user(env->aregs[7], &gregs[15]); err |= __put_user(env->pc, &gregs[16]); err |= __put_user(env->sr, &gregs[17]); return err; } static inline int target_rt_restore_ucontext(CPUState *env, struct target_ucontext *uc, int *pd0) { int temp; int err; target_greg_t *gregs = uc->tuc_mcontext.gregs; err = __get_user(temp, &uc->tuc_mcontext.version); if (temp != TARGET_MCONTEXT_VERSION) goto badframe; /* restore passed registers */ err |= __get_user(env->dregs[0], &gregs[0]); err |= __get_user(env->dregs[1], &gregs[1]); err |= __get_user(env->dregs[2], &gregs[2]); err |= __get_user(env->dregs[3], &gregs[3]); err |= __get_user(env->dregs[4], &gregs[4]); err |= __get_user(env->dregs[5], &gregs[5]); err |= __get_user(env->dregs[6], &gregs[6]); err |= __get_user(env->dregs[7], &gregs[7]); err |= __get_user(env->aregs[0], &gregs[8]); err |= __get_user(env->aregs[1], &gregs[9]); err |= __get_user(env->aregs[2], &gregs[10]); err |= __get_user(env->aregs[3], &gregs[11]); err |= __get_user(env->aregs[4], &gregs[12]); err |= __get_user(env->aregs[5], &gregs[13]); err |= __get_user(env->aregs[6], &gregs[14]); err |= __get_user(env->aregs[7], &gregs[15]); err |= __get_user(env->pc, &gregs[16]); err |= __get_user(temp, &gregs[17]); env->sr = (env->sr & 0xff00) | (temp & 0xff); *pd0 = env->dregs[0]; return err; badframe: return 1; } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { struct target_rt_sigframe *frame; abi_ulong frame_addr; abi_ulong retcode_addr; abi_ulong info_addr; abi_ulong uc_addr; int err = 0; int i; frame_addr = get_sigframe(ka, env, sizeof *frame); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; err |= __put_user(sig, &frame->sig); info_addr = frame_addr + offsetof(struct target_rt_sigframe, info); err |= __put_user(info_addr, &frame->pinfo); uc_addr = frame_addr + offsetof(struct target_rt_sigframe, uc); err |= __put_user(uc_addr, &frame->puc); err |= copy_siginfo_to_user(&frame->info, info); /* Create the ucontext */ err |= __put_user(0, &frame->uc.tuc_flags); err |= __put_user(0, &frame->uc.tuc_link); err |= __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); err |= __put_user(sas_ss_flags(env->aregs[7]), &frame->uc.tuc_stack.ss_flags); err |= __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); err |= target_rt_setup_ucontext(&frame->uc, env); if (err) goto give_sigsegv; for(i = 0; i < TARGET_NSIG_WORDS; i++) { if (__put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i])) goto give_sigsegv; } /* Set up to return from userspace. */ retcode_addr = frame_addr + offsetof(struct target_sigframe, retcode); err |= __put_user(retcode_addr, &frame->pretcode); /* moveq #,d0; notb d0; trap #0 */ err |= __put_user(0x70004600 + ((TARGET_NR_rt_sigreturn ^ 0xff) << 16), (long *)(frame->retcode + 0)); err |= __put_user(0x4e40, (short *)(frame->retcode + 4)); if (err) goto give_sigsegv; /* Set up to return from userspace */ env->aregs[7] = frame_addr; env->pc = ka->_sa_handler; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sig(TARGET_SIGSEGV); } long do_sigreturn(CPUState *env) { struct target_sigframe *frame; abi_ulong frame_addr = env->aregs[7] - 4; target_sigset_t target_set; sigset_t set; int d0, i; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; /* set blocked signals */ if (__get_user(target_set.sig[0], &frame->sc.sc_mask)) goto badframe; for(i = 1; i < TARGET_NSIG_WORDS; i++) { if (__get_user(target_set.sig[i], &frame->extramask[i - 1])) goto badframe; } target_to_host_sigset_internal(&set, &target_set); sigprocmask(SIG_SETMASK, &set, NULL); /* restore registers */ if (restore_sigcontext(env, &frame->sc, &d0)) goto badframe; unlock_user_struct(frame, frame_addr, 0); return d0; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return 0; } long do_rt_sigreturn(CPUState *env) { struct target_rt_sigframe *frame; abi_ulong frame_addr = env->aregs[7] - 4; target_sigset_t target_set; sigset_t set; int d0; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; target_to_host_sigset_internal(&set, &target_set); sigprocmask(SIG_SETMASK, &set, NULL); /* restore registers */ if (target_rt_restore_ucontext(env, &frame->uc, &d0)) goto badframe; if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, uc.tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) goto badframe; unlock_user_struct(frame, frame_addr, 0); return d0; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return 0; } #elif defined(TARGET_ALPHA) struct target_sigcontext { abi_long sc_onstack; abi_long sc_mask; abi_long sc_pc; abi_long sc_ps; abi_long sc_regs[32]; abi_long sc_ownedfp; abi_long sc_fpregs[32]; abi_ulong sc_fpcr; abi_ulong sc_fp_control; abi_ulong sc_reserved1; abi_ulong sc_reserved2; abi_ulong sc_ssize; abi_ulong sc_sbase; abi_ulong sc_traparg_a0; abi_ulong sc_traparg_a1; abi_ulong sc_traparg_a2; abi_ulong sc_fp_trap_pc; abi_ulong sc_fp_trigger_sum; abi_ulong sc_fp_trigger_inst; }; struct target_ucontext { abi_ulong tuc_flags; abi_ulong tuc_link; abi_ulong tuc_osf_sigmask; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; }; struct target_sigframe { struct target_sigcontext sc; unsigned int retcode[3]; }; struct target_rt_sigframe { target_siginfo_t info; struct target_ucontext uc; unsigned int retcode[3]; }; #define INSN_MOV_R30_R16 0x47fe0410 #define INSN_LDI_R0 0x201f0000 #define INSN_CALLSYS 0x00000083 static int setup_sigcontext(struct target_sigcontext *sc, CPUState *env, abi_ulong frame_addr, target_sigset_t *set) { int i, err = 0; err |= __put_user(on_sig_stack(frame_addr), &sc->sc_onstack); err |= __put_user(set->sig[0], &sc->sc_mask); err |= __put_user(env->pc, &sc->sc_pc); err |= __put_user(8, &sc->sc_ps); for (i = 0; i < 31; ++i) { err |= __put_user(env->ir[i], &sc->sc_regs[i]); } err |= __put_user(0, &sc->sc_regs[31]); for (i = 0; i < 31; ++i) { err |= __put_user(env->fir[i], &sc->sc_fpregs[i]); } err |= __put_user(0, &sc->sc_fpregs[31]); err |= __put_user(cpu_alpha_load_fpcr(env), &sc->sc_fpcr); err |= __put_user(0, &sc->sc_traparg_a0); /* FIXME */ err |= __put_user(0, &sc->sc_traparg_a1); /* FIXME */ err |= __put_user(0, &sc->sc_traparg_a2); /* FIXME */ return err; } static int restore_sigcontext(CPUState *env, struct target_sigcontext *sc) { uint64_t fpcr; int i, err = 0; err |= __get_user(env->pc, &sc->sc_pc); for (i = 0; i < 31; ++i) { err |= __get_user(env->ir[i], &sc->sc_regs[i]); } for (i = 0; i < 31; ++i) { err |= __get_user(env->fir[i], &sc->sc_fpregs[i]); } err |= __get_user(fpcr, &sc->sc_fpcr); cpu_alpha_store_fpcr(env, fpcr); return err; } static inline abi_ulong get_sigframe(struct target_sigaction *sa, CPUState *env, unsigned long framesize) { abi_ulong sp = env->ir[IR_SP]; /* This is the X/Open sanctioned signal stack switching. */ if ((sa->sa_flags & TARGET_SA_ONSTACK) != 0 && !sas_ss_flags(sp)) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } return (sp - framesize) & -32; } static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUState *env) { abi_ulong frame_addr, r26; struct target_sigframe *frame; int err = 0; frame_addr = get_sigframe(ka, env, sizeof(*frame)); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } err |= setup_sigcontext(&frame->sc, env, frame_addr, set); if (ka->sa_restorer) { r26 = ka->sa_restorer; } else { err |= __put_user(INSN_MOV_R30_R16, &frame->retcode[0]); err |= __put_user(INSN_LDI_R0 + TARGET_NR_sigreturn, &frame->retcode[1]); err |= __put_user(INSN_CALLSYS, &frame->retcode[2]); /* imb() */ r26 = frame_addr; } unlock_user_struct(frame, frame_addr, 1); if (err) { give_sigsegv: if (sig == TARGET_SIGSEGV) { ka->_sa_handler = TARGET_SIG_DFL; } force_sig(TARGET_SIGSEGV); } env->ir[IR_RA] = r26; env->ir[IR_PV] = env->pc = ka->_sa_handler; env->ir[IR_A0] = sig; env->ir[IR_A1] = 0; env->ir[IR_A2] = frame_addr + offsetof(struct target_sigframe, sc); env->ir[IR_SP] = frame_addr; } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { abi_ulong frame_addr, r26; struct target_rt_sigframe *frame; int i, err = 0; frame_addr = get_sigframe(ka, env, sizeof(*frame)); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } err |= copy_siginfo_to_user(&frame->info, info); err |= __put_user(0, &frame->uc.tuc_flags); err |= __put_user(0, &frame->uc.tuc_link); err |= __put_user(set->sig[0], &frame->uc.tuc_osf_sigmask); err |= __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); err |= __put_user(sas_ss_flags(env->ir[IR_SP]), &frame->uc.tuc_stack.ss_flags); err |= __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); err |= setup_sigcontext(&frame->uc.tuc_mcontext, env, frame_addr, set); for (i = 0; i < TARGET_NSIG_WORDS; ++i) { err |= __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); } if (ka->sa_restorer) { r26 = ka->sa_restorer; } else { err |= __put_user(INSN_MOV_R30_R16, &frame->retcode[0]); err |= __put_user(INSN_LDI_R0 + TARGET_NR_rt_sigreturn, &frame->retcode[1]); err |= __put_user(INSN_CALLSYS, &frame->retcode[2]); /* imb(); */ r26 = frame_addr; } if (err) { give_sigsegv: if (sig == TARGET_SIGSEGV) { ka->_sa_handler = TARGET_SIG_DFL; } force_sig(TARGET_SIGSEGV); } env->ir[IR_RA] = r26; env->ir[IR_PV] = env->pc = ka->_sa_handler; env->ir[IR_A0] = sig; env->ir[IR_A1] = frame_addr + offsetof(struct target_rt_sigframe, info); env->ir[IR_A2] = frame_addr + offsetof(struct target_rt_sigframe, uc); env->ir[IR_SP] = frame_addr; } long do_sigreturn(CPUState *env) { struct target_sigcontext *sc; abi_ulong sc_addr = env->ir[IR_A0]; target_sigset_t target_set; sigset_t set; if (!lock_user_struct(VERIFY_READ, sc, sc_addr, 1)) { goto badframe; } target_sigemptyset(&target_set); if (__get_user(target_set.sig[0], &sc->sc_mask)) { goto badframe; } target_to_host_sigset_internal(&set, &target_set); sigprocmask(SIG_SETMASK, &set, NULL); if (restore_sigcontext(env, sc)) { goto badframe; } unlock_user_struct(sc, sc_addr, 0); return env->ir[IR_V0]; badframe: unlock_user_struct(sc, sc_addr, 0); force_sig(TARGET_SIGSEGV); } long do_rt_sigreturn(CPUState *env) { abi_ulong frame_addr = env->ir[IR_A0]; struct target_rt_sigframe *frame; sigset_t set; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { goto badframe; } target_to_host_sigset(&set, &frame->uc.tuc_sigmask); sigprocmask(SIG_SETMASK, &set, NULL); if (restore_sigcontext(env, &frame->uc.tuc_mcontext)) { goto badframe; } if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, uc.tuc_stack), 0, env->ir[IR_SP]) == -EFAULT) { goto badframe; } unlock_user_struct(frame, frame_addr, 0); return env->ir[IR_V0]; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); } #else static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUState *env) { fprintf(stderr, "setup_frame: not implemented\n"); } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { fprintf(stderr, "setup_rt_frame: not implemented\n"); } long do_sigreturn(CPUState *env) { fprintf(stderr, "do_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } long do_rt_sigreturn(CPUState *env) { fprintf(stderr, "do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } #endif void process_pending_signals(CPUState *cpu_env) { int sig; abi_ulong handler; sigset_t set, old_set; target_sigset_t target_old_set; struct emulated_sigtable *k; struct target_sigaction *sa; struct sigqueue *q; TaskState *ts = cpu_env->opaque; if (!ts->signal_pending) return; /* FIXME: This is not threadsafe. */ k = ts->sigtab; for(sig = 1; sig <= TARGET_NSIG; sig++) { if (k->pending) goto handle_signal; k++; } /* if no signal is pending, just return */ ts->signal_pending = 0; return; handle_signal: #ifdef DEBUG_SIGNAL fprintf(stderr, "qemu: process signal %d\n", sig); #endif /* dequeue signal */ q = k->first; k->first = q->next; if (!k->first) k->pending = 0; sig = gdb_handlesig (cpu_env, sig); if (!sig) { sa = NULL; handler = TARGET_SIG_IGN; } else { sa = &sigact_table[sig - 1]; handler = sa->_sa_handler; } if (handler == TARGET_SIG_DFL) { /* default handler : ignore some signal. The other are job control or fatal */ if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { kill(getpid(),SIGSTOP); } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && sig != TARGET_SIGWINCH && sig != TARGET_SIGCONT) { force_sig(sig); } } else if (handler == TARGET_SIG_IGN) { /* ignore sig */ } else if (handler == TARGET_SIG_ERR) { force_sig(sig); } else { /* compute the blocked signals during the handler execution */ target_to_host_sigset(&set, &sa->sa_mask); /* SA_NODEFER indicates that the current signal should not be blocked during the handler */ if (!(sa->sa_flags & TARGET_SA_NODEFER)) sigaddset(&set, target_to_host_signal(sig)); /* block signals in the handler using Linux */ sigprocmask(SIG_BLOCK, &set, &old_set); /* save the previous blocked signal state to restore it at the end of the signal execution (see do_sigreturn) */ host_to_target_sigset_internal(&target_old_set, &old_set); /* if the CPU is in VM86 mode, we restore the 32 bit values */ #if defined(TARGET_I386) && !defined(TARGET_X86_64) { CPUX86State *env = cpu_env; if (env->eflags & VM_MASK) save_v86_state(env); } #endif /* prepare the stack frame of the virtual CPU */ if (sa->sa_flags & TARGET_SA_SIGINFO) setup_rt_frame(sig, sa, &q->info, &target_old_set, cpu_env); else setup_frame(sig, sa, &target_old_set, cpu_env); if (sa->sa_flags & TARGET_SA_RESETHAND) sa->_sa_handler = TARGET_SIG_DFL; } if (q != &k->info) free_sigqueue(cpu_env, q); }