/* * Copyright (c) 2007, Neocleus Corporation. * Copyright (c) 2007, Intel Corporation. * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Alex Novik * Allen Kay * Guy Zana * * This file implements direct PCI assignment to a HVM guest */ /* * Interrupt Disable policy: * * INTx interrupt: * Initialize(register_real_device) * Map INTx(xc_physdev_map_pirq): * * - Set real Interrupt Disable bit to '1'. * - Set machine_irq and assigned_device->machine_irq to '0'. * * Don't bind INTx. * * Bind INTx(xc_domain_bind_pt_pci_irq): * * - Set real Interrupt Disable bit to '1'. * - Unmap INTx. * - Decrement xen_pt_mapped_machine_irq[machine_irq] * - Set assigned_device->machine_irq to '0'. * * Write to Interrupt Disable bit by guest software(xen_pt_cmd_reg_write) * Write '0' * - Set real bit to '0' if assigned_device->machine_irq isn't '0'. * * Write '1' * - Set real bit to '1'. * * MSI interrupt: * Initialize MSI register(xen_pt_msi_setup, xen_pt_msi_update) * Bind MSI(xc_domain_update_msi_irq) * * - Unmap MSI. * - Set dev->msi->pirq to '-1'. * * MSI-X interrupt: * Initialize MSI-X register(xen_pt_msix_update_one) * Bind MSI-X(xc_domain_update_msi_irq) * * - Unmap MSI-X. * - Set entry->pirq to '-1'. */ #include #include "pci.h" #include "xen.h" #include "xen_backend.h" #include "xen_pt.h" #include "range.h" #define XEN_PT_NR_IRQS (256) static uint8_t xen_pt_mapped_machine_irq[XEN_PT_NR_IRQS] = {0}; void xen_pt_log(const PCIDevice *d, const char *f, ...) { va_list ap; va_start(ap, f); if (d) { fprintf(stderr, "[%02x:%02x.%d] ", pci_bus_num(d->bus), PCI_SLOT(d->devfn), PCI_FUNC(d->devfn)); } vfprintf(stderr, f, ap); va_end(ap); } /* Config Space */ static int xen_pt_pci_config_access_check(PCIDevice *d, uint32_t addr, int len) { /* check offset range */ if (addr >= 0xFF) { XEN_PT_ERR(d, "Failed to access register with offset exceeding 0xFF. " "(addr: 0x%02x, len: %d)\n", addr, len); return -1; } /* check read size */ if ((len != 1) && (len != 2) && (len != 4)) { XEN_PT_ERR(d, "Failed to access register with invalid access length. " "(addr: 0x%02x, len: %d)\n", addr, len); return -1; } /* check offset alignment */ if (addr & (len - 1)) { XEN_PT_ERR(d, "Failed to access register with invalid access size " "alignment. (addr: 0x%02x, len: %d)\n", addr, len); return -1; } return 0; } int xen_pt_bar_offset_to_index(uint32_t offset) { int index = 0; /* check Exp ROM BAR */ if (offset == PCI_ROM_ADDRESS) { return PCI_ROM_SLOT; } /* calculate BAR index */ index = (offset - PCI_BASE_ADDRESS_0) >> 2; if (index >= PCI_NUM_REGIONS) { return -1; } return index; } static uint32_t xen_pt_pci_read_config(PCIDevice *d, uint32_t addr, int len) { XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d); uint32_t val = 0; XenPTRegGroup *reg_grp_entry = NULL; XenPTReg *reg_entry = NULL; int rc = 0; int emul_len = 0; uint32_t find_addr = addr; if (xen_pt_pci_config_access_check(d, addr, len)) { goto exit; } /* find register group entry */ reg_grp_entry = xen_pt_find_reg_grp(s, addr); if (reg_grp_entry) { /* check 0-Hardwired register group */ if (reg_grp_entry->reg_grp->grp_type == XEN_PT_GRP_TYPE_HARDWIRED) { /* no need to emulate, just return 0 */ val = 0; goto exit; } } /* read I/O device register value */ rc = xen_host_pci_get_block(&s->real_device, addr, (uint8_t *)&val, len); if (rc < 0) { XEN_PT_ERR(d, "pci_read_block failed. return value: %d.\n", rc); memset(&val, 0xff, len); } /* just return the I/O device register value for * passthrough type register group */ if (reg_grp_entry == NULL) { goto exit; } /* adjust the read value to appropriate CFC-CFF window */ val <<= (addr & 3) << 3; emul_len = len; /* loop around the guest requested size */ while (emul_len > 0) { /* find register entry to be emulated */ reg_entry = xen_pt_find_reg(reg_grp_entry, find_addr); if (reg_entry) { XenPTRegInfo *reg = reg_entry->reg; uint32_t real_offset = reg_grp_entry->base_offset + reg->offset; uint32_t valid_mask = 0xFFFFFFFF >> ((4 - emul_len) << 3); uint8_t *ptr_val = NULL; valid_mask <<= (find_addr - real_offset) << 3; ptr_val = (uint8_t *)&val + (real_offset & 3); /* do emulation based on register size */ switch (reg->size) { case 1: if (reg->u.b.read) { rc = reg->u.b.read(s, reg_entry, ptr_val, valid_mask); } break; case 2: if (reg->u.w.read) { rc = reg->u.w.read(s, reg_entry, (uint16_t *)ptr_val, valid_mask); } break; case 4: if (reg->u.dw.read) { rc = reg->u.dw.read(s, reg_entry, (uint32_t *)ptr_val, valid_mask); } break; } if (rc < 0) { xen_shutdown_fatal_error("Internal error: Invalid read " "emulation. (%s, rc: %d)\n", __func__, rc); return 0; } /* calculate next address to find */ emul_len -= reg->size; if (emul_len > 0) { find_addr = real_offset + reg->size; } } else { /* nothing to do with passthrough type register, * continue to find next byte */ emul_len--; find_addr++; } } /* need to shift back before returning them to pci bus emulator */ val >>= ((addr & 3) << 3); exit: XEN_PT_LOG_CONFIG(d, addr, val, len); return val; } static void xen_pt_pci_write_config(PCIDevice *d, uint32_t addr, uint32_t val, int len) { XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d); int index = 0; XenPTRegGroup *reg_grp_entry = NULL; int rc = 0; uint32_t read_val = 0; int emul_len = 0; XenPTReg *reg_entry = NULL; uint32_t find_addr = addr; XenPTRegInfo *reg = NULL; if (xen_pt_pci_config_access_check(d, addr, len)) { return; } XEN_PT_LOG_CONFIG(d, addr, val, len); /* check unused BAR register */ index = xen_pt_bar_offset_to_index(addr); if ((index >= 0) && (val > 0 && val < XEN_PT_BAR_ALLF) && (s->bases[index].bar_flag == XEN_PT_BAR_FLAG_UNUSED)) { XEN_PT_WARN(d, "Guest attempt to set address to unused Base Address " "Register. (addr: 0x%02x, len: %d)\n", addr, len); } /* find register group entry */ reg_grp_entry = xen_pt_find_reg_grp(s, addr); if (reg_grp_entry) { /* check 0-Hardwired register group */ if (reg_grp_entry->reg_grp->grp_type == XEN_PT_GRP_TYPE_HARDWIRED) { /* ignore silently */ XEN_PT_WARN(d, "Access to 0-Hardwired register. " "(addr: 0x%02x, len: %d)\n", addr, len); return; } } rc = xen_host_pci_get_block(&s->real_device, addr, (uint8_t *)&read_val, len); if (rc < 0) { XEN_PT_ERR(d, "pci_read_block failed. return value: %d.\n", rc); memset(&read_val, 0xff, len); } /* pass directly to the real device for passthrough type register group */ if (reg_grp_entry == NULL) { goto out; } memory_region_transaction_begin(); pci_default_write_config(d, addr, val, len); /* adjust the read and write value to appropriate CFC-CFF window */ read_val <<= (addr & 3) << 3; val <<= (addr & 3) << 3; emul_len = len; /* loop around the guest requested size */ while (emul_len > 0) { /* find register entry to be emulated */ reg_entry = xen_pt_find_reg(reg_grp_entry, find_addr); if (reg_entry) { reg = reg_entry->reg; uint32_t real_offset = reg_grp_entry->base_offset + reg->offset; uint32_t valid_mask = 0xFFFFFFFF >> ((4 - emul_len) << 3); uint8_t *ptr_val = NULL; valid_mask <<= (find_addr - real_offset) << 3; ptr_val = (uint8_t *)&val + (real_offset & 3); /* do emulation based on register size */ switch (reg->size) { case 1: if (reg->u.b.write) { rc = reg->u.b.write(s, reg_entry, ptr_val, read_val >> ((real_offset & 3) << 3), valid_mask); } break; case 2: if (reg->u.w.write) { rc = reg->u.w.write(s, reg_entry, (uint16_t *)ptr_val, (read_val >> ((real_offset & 3) << 3)), valid_mask); } break; case 4: if (reg->u.dw.write) { rc = reg->u.dw.write(s, reg_entry, (uint32_t *)ptr_val, (read_val >> ((real_offset & 3) << 3)), valid_mask); } break; } if (rc < 0) { xen_shutdown_fatal_error("Internal error: Invalid write" " emulation. (%s, rc: %d)\n", __func__, rc); return; } /* calculate next address to find */ emul_len -= reg->size; if (emul_len > 0) { find_addr = real_offset + reg->size; } } else { /* nothing to do with passthrough type register, * continue to find next byte */ emul_len--; find_addr++; } } /* need to shift back before passing them to xen_host_pci_device */ val >>= (addr & 3) << 3; memory_region_transaction_commit(); out: if (!(reg && reg->no_wb)) { /* unknown regs are passed through */ rc = xen_host_pci_set_block(&s->real_device, addr, (uint8_t *)&val, len); if (rc < 0) { XEN_PT_ERR(d, "pci_write_block failed. return value: %d.\n", rc); } } } /* register regions */ static uint64_t xen_pt_bar_read(void *o, target_phys_addr_t addr, unsigned size) { PCIDevice *d = o; /* if this function is called, that probably means that there is a * misconfiguration of the IOMMU. */ XEN_PT_ERR(d, "Should not read BAR through QEMU. @0x"TARGET_FMT_plx"\n", addr); return 0; } static void xen_pt_bar_write(void *o, target_phys_addr_t addr, uint64_t val, unsigned size) { PCIDevice *d = o; /* Same comment as xen_pt_bar_read function */ XEN_PT_ERR(d, "Should not write BAR through QEMU. @0x"TARGET_FMT_plx"\n", addr); } static const MemoryRegionOps ops = { .endianness = DEVICE_NATIVE_ENDIAN, .read = xen_pt_bar_read, .write = xen_pt_bar_write, }; static int xen_pt_register_regions(XenPCIPassthroughState *s) { int i = 0; XenHostPCIDevice *d = &s->real_device; /* Register PIO/MMIO BARs */ for (i = 0; i < PCI_ROM_SLOT; i++) { XenHostPCIIORegion *r = &d->io_regions[i]; uint8_t type; if (r->base_addr == 0 || r->size == 0) { continue; } s->bases[i].access.u = r->base_addr; if (r->type & XEN_HOST_PCI_REGION_TYPE_IO) { type = PCI_BASE_ADDRESS_SPACE_IO; } else { type = PCI_BASE_ADDRESS_SPACE_MEMORY; if (r->type & XEN_HOST_PCI_REGION_TYPE_PREFETCH) { type |= PCI_BASE_ADDRESS_MEM_PREFETCH; } if (r->type & XEN_HOST_PCI_REGION_TYPE_MEM_64) { type |= PCI_BASE_ADDRESS_MEM_TYPE_64; } } memory_region_init_io(&s->bar[i], &ops, &s->dev, "xen-pci-pt-bar", r->size); pci_register_bar(&s->dev, i, type, &s->bar[i]); XEN_PT_LOG(&s->dev, "IO region %i registered (size=0x%lx"PRIx64 " base_addr=0x%lx"PRIx64" type: %#x)\n", i, r->size, r->base_addr, type); } /* Register expansion ROM address */ if (d->rom.base_addr && d->rom.size) { uint32_t bar_data = 0; /* Re-set BAR reported by OS, otherwise ROM can't be read. */ if (xen_host_pci_get_long(d, PCI_ROM_ADDRESS, &bar_data)) { return 0; } if ((bar_data & PCI_ROM_ADDRESS_MASK) == 0) { bar_data |= d->rom.base_addr & PCI_ROM_ADDRESS_MASK; xen_host_pci_set_long(d, PCI_ROM_ADDRESS, bar_data); } s->bases[PCI_ROM_SLOT].access.maddr = d->rom.base_addr; memory_region_init_rom_device(&s->rom, NULL, NULL, "xen-pci-pt-rom", d->rom.size); pci_register_bar(&s->dev, PCI_ROM_SLOT, PCI_BASE_ADDRESS_MEM_PREFETCH, &s->rom); XEN_PT_LOG(&s->dev, "Expansion ROM registered (size=0x%08"PRIx64 " base_addr=0x%08"PRIx64")\n", d->rom.size, d->rom.base_addr); } return 0; } static void xen_pt_unregister_regions(XenPCIPassthroughState *s) { XenHostPCIDevice *d = &s->real_device; int i; for (i = 0; i < PCI_NUM_REGIONS - 1; i++) { XenHostPCIIORegion *r = &d->io_regions[i]; if (r->base_addr == 0 || r->size == 0) { continue; } memory_region_destroy(&s->bar[i]); } if (d->rom.base_addr && d->rom.size) { memory_region_destroy(&s->rom); } } /* region mapping */ static int xen_pt_bar_from_region(XenPCIPassthroughState *s, MemoryRegion *mr) { int i = 0; for (i = 0; i < PCI_NUM_REGIONS - 1; i++) { if (mr == &s->bar[i]) { return i; } } if (mr == &s->rom) { return PCI_ROM_SLOT; } return -1; } /* * This function checks if an io_region overlaps an io_region from another * device. The io_region to check is provided with (addr, size and type) * A callback can be provided and will be called for every region that is * overlapped. * The return value indicates if the region is overlappsed */ struct CheckBarArgs { XenPCIPassthroughState *s; pcibus_t addr; pcibus_t size; uint8_t type; bool rc; }; static void xen_pt_check_bar_overlap(PCIBus *bus, PCIDevice *d, void *opaque) { struct CheckBarArgs *arg = opaque; XenPCIPassthroughState *s = arg->s; uint8_t type = arg->type; int i; if (d->devfn == s->dev.devfn) { return; } /* xxx: This ignores bridges. */ for (i = 0; i < PCI_NUM_REGIONS; i++) { const PCIIORegion *r = &d->io_regions[i]; if (!r->size) { continue; } if ((type & PCI_BASE_ADDRESS_SPACE_IO) != (r->type & PCI_BASE_ADDRESS_SPACE_IO)) { continue; } if (ranges_overlap(arg->addr, arg->size, r->addr, r->size)) { XEN_PT_WARN(&s->dev, "Overlapped to device [%02x:%02x.%d] Region: %i" " (addr: %#"FMT_PCIBUS", len: %#"FMT_PCIBUS")\n", pci_bus_num(bus), PCI_SLOT(d->devfn), PCI_FUNC(d->devfn), i, r->addr, r->size); arg->rc = true; } } } static void xen_pt_region_update(XenPCIPassthroughState *s, MemoryRegionSection *sec, bool adding) { PCIDevice *d = &s->dev; MemoryRegion *mr = sec->mr; int bar = -1; int rc; int op = adding ? DPCI_ADD_MAPPING : DPCI_REMOVE_MAPPING; struct CheckBarArgs args = { .s = s, .addr = sec->offset_within_address_space, .size = sec->size, .rc = false, }; bar = xen_pt_bar_from_region(s, mr); if (bar == -1 && (!s->msix || &s->msix->mmio != mr)) { return; } if (s->msix && &s->msix->mmio == mr) { if (adding) { s->msix->mmio_base_addr = sec->offset_within_address_space; rc = xen_pt_msix_update_remap(s, s->msix->bar_index); } return; } args.type = d->io_regions[bar].type; pci_for_each_device(d->bus, pci_bus_num(d->bus), xen_pt_check_bar_overlap, &args); if (args.rc) { XEN_PT_WARN(d, "Region: %d (addr: %#"FMT_PCIBUS ", len: %#"FMT_PCIBUS") is overlapped.\n", bar, sec->offset_within_address_space, sec->size); } if (d->io_regions[bar].type & PCI_BASE_ADDRESS_SPACE_IO) { uint32_t guest_port = sec->offset_within_address_space; uint32_t machine_port = s->bases[bar].access.pio_base; uint32_t size = sec->size; rc = xc_domain_ioport_mapping(xen_xc, xen_domid, guest_port, machine_port, size, op); if (rc) { XEN_PT_ERR(d, "%s ioport mapping failed! (rc: %i)\n", adding ? "create new" : "remove old", rc); } } else { pcibus_t guest_addr = sec->offset_within_address_space; pcibus_t machine_addr = s->bases[bar].access.maddr + sec->offset_within_region; pcibus_t size = sec->size; rc = xc_domain_memory_mapping(xen_xc, xen_domid, XEN_PFN(guest_addr + XC_PAGE_SIZE - 1), XEN_PFN(machine_addr + XC_PAGE_SIZE - 1), XEN_PFN(size + XC_PAGE_SIZE - 1), op); if (rc) { XEN_PT_ERR(d, "%s mem mapping failed! (rc: %i)\n", adding ? "create new" : "remove old", rc); } } } static void xen_pt_begin(MemoryListener *l) { } static void xen_pt_commit(MemoryListener *l) { } static void xen_pt_region_add(MemoryListener *l, MemoryRegionSection *sec) { XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState, memory_listener); xen_pt_region_update(s, sec, true); } static void xen_pt_region_del(MemoryListener *l, MemoryRegionSection *sec) { XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState, memory_listener); xen_pt_region_update(s, sec, false); } static void xen_pt_region_nop(MemoryListener *l, MemoryRegionSection *s) { } static void xen_pt_log_fns(MemoryListener *l, MemoryRegionSection *s) { } static void xen_pt_log_global_fns(MemoryListener *l) { } static void xen_pt_eventfd_fns(MemoryListener *l, MemoryRegionSection *s, bool match_data, uint64_t data, EventNotifier *n) { } static const MemoryListener xen_pt_memory_listener = { .begin = xen_pt_begin, .commit = xen_pt_commit, .region_add = xen_pt_region_add, .region_nop = xen_pt_region_nop, .region_del = xen_pt_region_del, .log_start = xen_pt_log_fns, .log_stop = xen_pt_log_fns, .log_sync = xen_pt_log_fns, .log_global_start = xen_pt_log_global_fns, .log_global_stop = xen_pt_log_global_fns, .eventfd_add = xen_pt_eventfd_fns, .eventfd_del = xen_pt_eventfd_fns, .priority = 10, }; /* init */ static int xen_pt_initfn(PCIDevice *d) { XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d); int rc = 0; uint8_t machine_irq = 0; int pirq = XEN_PT_UNASSIGNED_PIRQ; /* register real device */ XEN_PT_LOG(d, "Assigning real physical device %02x:%02x.%d" " to devfn %#x\n", s->hostaddr.bus, s->hostaddr.slot, s->hostaddr.function, s->dev.devfn); rc = xen_host_pci_device_get(&s->real_device, s->hostaddr.domain, s->hostaddr.bus, s->hostaddr.slot, s->hostaddr.function); if (rc) { XEN_PT_ERR(d, "Failed to \"open\" the real pci device. rc: %i\n", rc); return -1; } s->is_virtfn = s->real_device.is_virtfn; if (s->is_virtfn) { XEN_PT_LOG(d, "%04x:%02x:%02x.%d is a SR-IOV Virtual Function\n", s->real_device.domain, bus, slot, func); } /* Initialize virtualized PCI configuration (Extended 256 Bytes) */ if (xen_host_pci_get_block(&s->real_device, 0, d->config, PCI_CONFIG_SPACE_SIZE) == -1) { xen_host_pci_device_put(&s->real_device); return -1; } s->memory_listener = xen_pt_memory_listener; /* Handle real device's MMIO/PIO BARs */ xen_pt_register_regions(s); /* reinitialize each config register to be emulated */ if (xen_pt_config_init(s)) { XEN_PT_ERR(d, "PCI Config space initialisation failed.\n"); xen_host_pci_device_put(&s->real_device); return -1; } /* Bind interrupt */ if (!s->dev.config[PCI_INTERRUPT_PIN]) { XEN_PT_LOG(d, "no pin interrupt\n"); goto out; } machine_irq = s->real_device.irq; rc = xc_physdev_map_pirq(xen_xc, xen_domid, machine_irq, &pirq); if (rc < 0) { XEN_PT_ERR(d, "Mapping machine irq %u to pirq %i failed, (rc: %d)\n", machine_irq, pirq, rc); /* Disable PCI intx assertion (turn on bit10 of devctl) */ xen_host_pci_set_word(&s->real_device, PCI_COMMAND, pci_get_word(s->dev.config + PCI_COMMAND) | PCI_COMMAND_INTX_DISABLE); machine_irq = 0; s->machine_irq = 0; } else { machine_irq = pirq; s->machine_irq = pirq; xen_pt_mapped_machine_irq[machine_irq]++; } /* bind machine_irq to device */ if (machine_irq != 0) { uint8_t e_intx = xen_pt_pci_intx(s); rc = xc_domain_bind_pt_pci_irq(xen_xc, xen_domid, machine_irq, pci_bus_num(d->bus), PCI_SLOT(d->devfn), e_intx); if (rc < 0) { XEN_PT_ERR(d, "Binding of interrupt %i failed! (rc: %d)\n", e_intx, rc); /* Disable PCI intx assertion (turn on bit10 of devctl) */ xen_host_pci_set_word(&s->real_device, PCI_COMMAND, *(uint16_t *)(&s->dev.config[PCI_COMMAND]) | PCI_COMMAND_INTX_DISABLE); xen_pt_mapped_machine_irq[machine_irq]--; if (xen_pt_mapped_machine_irq[machine_irq] == 0) { if (xc_physdev_unmap_pirq(xen_xc, xen_domid, machine_irq)) { XEN_PT_ERR(d, "Unmapping of machine interrupt %i failed!" " (rc: %d)\n", machine_irq, rc); } } s->machine_irq = 0; } } out: memory_listener_register(&s->memory_listener, NULL); XEN_PT_LOG(d, "Real physical device %02x:%02x.%d registered successfuly!\n", bus, slot, func); return 0; } static void xen_pt_unregister_device(PCIDevice *d) { XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d); uint8_t machine_irq = s->machine_irq; uint8_t intx = xen_pt_pci_intx(s); int rc; if (machine_irq) { rc = xc_domain_unbind_pt_irq(xen_xc, xen_domid, machine_irq, PT_IRQ_TYPE_PCI, pci_bus_num(d->bus), PCI_SLOT(s->dev.devfn), intx, 0 /* isa_irq */); if (rc < 0) { XEN_PT_ERR(d, "unbinding of interrupt INT%c failed." " (machine irq: %i, rc: %d)" " But bravely continuing on..\n", 'a' + intx, machine_irq, rc); } } if (s->msi) { xen_pt_msi_disable(s); } if (s->msix) { xen_pt_msix_disable(s); } if (machine_irq) { xen_pt_mapped_machine_irq[machine_irq]--; if (xen_pt_mapped_machine_irq[machine_irq] == 0) { rc = xc_physdev_unmap_pirq(xen_xc, xen_domid, machine_irq); if (rc < 0) { XEN_PT_ERR(d, "unmapping of interrupt %i failed. (rc: %d)" " But bravely continuing on..\n", machine_irq, rc); } } } /* delete all emulated config registers */ xen_pt_config_delete(s); xen_pt_unregister_regions(s); memory_listener_unregister(&s->memory_listener); xen_host_pci_device_put(&s->real_device); } static Property xen_pci_passthrough_properties[] = { DEFINE_PROP_PCI_HOST_DEVADDR("hostaddr", XenPCIPassthroughState, hostaddr), DEFINE_PROP_END_OF_LIST(), }; static void xen_pci_passthrough_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); k->init = xen_pt_initfn; k->exit = xen_pt_unregister_device; k->config_read = xen_pt_pci_read_config; k->config_write = xen_pt_pci_write_config; dc->desc = "Assign an host PCI device with Xen"; dc->props = xen_pci_passthrough_properties; }; static TypeInfo xen_pci_passthrough_info = { .name = "xen-pci-passthrough", .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(XenPCIPassthroughState), .class_init = xen_pci_passthrough_class_init, }; static void xen_pci_passthrough_register_types(void) { type_register_static(&xen_pci_passthrough_info); } type_init(xen_pci_passthrough_register_types)