/* * QEMU Sun4u/Sun4v System Emulator common routines * * Copyright (c) 2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "cpu.h" #include "hw/boards.h" #include "hw/char/serial.h" #include "hw/sparc/sparc64.h" #include "qemu/timer.h" #include "sysemu/reset.h" #include "trace.h" #define TICK_MAX 0x7fffffffffffffffULL void cpu_check_irqs(CPUSPARCState *env) { CPUState *cs; uint32_t pil = env->pil_in | (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER)); /* We should be holding the BQL before we mess with IRQs */ g_assert(qemu_mutex_iothread_locked()); /* TT_IVEC has a higher priority (16) than TT_EXTINT (31..17) */ if (env->ivec_status & 0x20) { return; } cs = env_cpu(env); /* check if TM or SM in SOFTINT are set setting these also causes interrupt 14 */ if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) { pil |= 1 << 14; } /* The bit corresponding to psrpil is (1<< psrpil), the next bit is (2 << psrpil). */ if (pil < (2 << env->psrpil)) { if (cs->interrupt_request & CPU_INTERRUPT_HARD) { trace_sparc64_cpu_check_irqs_reset_irq(env->interrupt_index); env->interrupt_index = 0; cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); } return; } if (cpu_interrupts_enabled(env)) { unsigned int i; for (i = 15; i > env->psrpil; i--) { if (pil & (1 << i)) { int old_interrupt = env->interrupt_index; int new_interrupt = TT_EXTINT | i; if (unlikely(env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt && ((cpu_tsptr(env)->tt & 0x1f0) == TT_EXTINT))) { trace_sparc64_cpu_check_irqs_noset_irq(env->tl, cpu_tsptr(env)->tt, new_interrupt); } else if (old_interrupt != new_interrupt) { env->interrupt_index = new_interrupt; trace_sparc64_cpu_check_irqs_set_irq(i, old_interrupt, new_interrupt); cpu_interrupt(cs, CPU_INTERRUPT_HARD); } break; } } } else if (cs->interrupt_request & CPU_INTERRUPT_HARD) { trace_sparc64_cpu_check_irqs_disabled(pil, env->pil_in, env->softint, env->interrupt_index); env->interrupt_index = 0; cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); } } static void cpu_kick_irq(SPARCCPU *cpu) { CPUState *cs = CPU(cpu); CPUSPARCState *env = &cpu->env; cs->halted = 0; cpu_check_irqs(env); qemu_cpu_kick(cs); } void sparc64_cpu_set_ivec_irq(void *opaque, int irq, int level) { SPARCCPU *cpu = opaque; CPUSPARCState *env = &cpu->env; CPUState *cs; if (level) { if (!(env->ivec_status & 0x20)) { trace_sparc64_cpu_ivec_raise_irq(irq); cs = CPU(cpu); cs->halted = 0; env->interrupt_index = TT_IVEC; env->ivec_status |= 0x20; env->ivec_data[0] = (0x1f << 6) | irq; env->ivec_data[1] = 0; env->ivec_data[2] = 0; cpu_interrupt(cs, CPU_INTERRUPT_HARD); } } else { if (env->ivec_status & 0x20) { trace_sparc64_cpu_ivec_lower_irq(irq); cs = CPU(cpu); env->ivec_status &= ~0x20; cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); } } } typedef struct ResetData { SPARCCPU *cpu; uint64_t prom_addr; } ResetData; static CPUTimer *cpu_timer_create(const char *name, SPARCCPU *cpu, QEMUBHFunc *cb, uint32_t frequency, uint64_t disabled_mask, uint64_t npt_mask) { CPUTimer *timer = g_malloc0(sizeof(CPUTimer)); timer->name = name; timer->frequency = frequency; timer->disabled_mask = disabled_mask; timer->npt_mask = npt_mask; timer->disabled = 1; timer->npt = 1; timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); timer->qtimer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cb, cpu); return timer; } static void cpu_timer_reset(CPUTimer *timer) { timer->disabled = 1; timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); timer_del(timer->qtimer); } static void main_cpu_reset(void *opaque) { ResetData *s = (ResetData *)opaque; CPUSPARCState *env = &s->cpu->env; static unsigned int nr_resets; cpu_reset(CPU(s->cpu)); cpu_timer_reset(env->tick); cpu_timer_reset(env->stick); cpu_timer_reset(env->hstick); env->gregs[1] = 0; /* Memory start */ env->gregs[2] = current_machine->ram_size; /* Memory size */ env->gregs[3] = 0; /* Machine description XXX */ if (nr_resets++ == 0) { /* Power on reset */ env->pc = s->prom_addr + 0x20ULL; } else { env->pc = s->prom_addr + 0x40ULL; } env->npc = env->pc + 4; } static void tick_irq(void *opaque) { SPARCCPU *cpu = opaque; CPUSPARCState *env = &cpu->env; CPUTimer *timer = env->tick; if (timer->disabled) { trace_sparc64_cpu_tick_irq_disabled(); return; } else { trace_sparc64_cpu_tick_irq_fire(); } env->softint |= SOFTINT_TIMER; cpu_kick_irq(cpu); } static void stick_irq(void *opaque) { SPARCCPU *cpu = opaque; CPUSPARCState *env = &cpu->env; CPUTimer *timer = env->stick; if (timer->disabled) { trace_sparc64_cpu_stick_irq_disabled(); return; } else { trace_sparc64_cpu_stick_irq_fire(); } env->softint |= SOFTINT_STIMER; cpu_kick_irq(cpu); } static void hstick_irq(void *opaque) { SPARCCPU *cpu = opaque; CPUSPARCState *env = &cpu->env; CPUTimer *timer = env->hstick; if (timer->disabled) { trace_sparc64_cpu_hstick_irq_disabled(); return; } else { trace_sparc64_cpu_hstick_irq_fire(); } env->softint |= SOFTINT_STIMER; cpu_kick_irq(cpu); } static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency) { return muldiv64(cpu_ticks, NANOSECONDS_PER_SECOND, frequency); } static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency) { return muldiv64(timer_ticks, frequency, NANOSECONDS_PER_SECOND); } void cpu_tick_set_count(CPUTimer *timer, uint64_t count) { uint64_t real_count = count & ~timer->npt_mask; uint64_t npt_bit = count & timer->npt_mask; int64_t vm_clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - cpu_to_timer_ticks(real_count, timer->frequency); trace_sparc64_cpu_tick_set_count(timer->name, real_count, timer->npt ? "disabled" : "enabled", timer); timer->npt = npt_bit ? 1 : 0; timer->clock_offset = vm_clock_offset; } uint64_t cpu_tick_get_count(CPUTimer *timer) { uint64_t real_count = timer_to_cpu_ticks( qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->clock_offset, timer->frequency); trace_sparc64_cpu_tick_get_count(timer->name, real_count, timer->npt ? "disabled" : "enabled", timer); if (timer->npt) { real_count |= timer->npt_mask; } return real_count; } void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit) { int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); uint64_t real_limit = limit & ~timer->disabled_mask; timer->disabled = (limit & timer->disabled_mask) ? 1 : 0; int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) + timer->clock_offset; if (expires < now) { expires = now + 1; } trace_sparc64_cpu_tick_set_limit(timer->name, real_limit, timer->disabled ? "disabled" : "enabled", timer, limit, timer_to_cpu_ticks( now - timer->clock_offset, timer->frequency ), timer_to_cpu_ticks( expires - now, timer->frequency )); if (!real_limit) { trace_sparc64_cpu_tick_set_limit_zero(timer->name); timer_del(timer->qtimer); } else if (timer->disabled) { timer_del(timer->qtimer); } else { timer_mod(timer->qtimer, expires); } } SPARCCPU *sparc64_cpu_devinit(const char *cpu_type, uint64_t prom_addr) { SPARCCPU *cpu; CPUSPARCState *env; ResetData *reset_info; uint32_t tick_frequency = 100 * 1000000; uint32_t stick_frequency = 100 * 1000000; uint32_t hstick_frequency = 100 * 1000000; cpu = SPARC_CPU(cpu_create(cpu_type)); qdev_init_gpio_in_named(DEVICE(cpu), sparc64_cpu_set_ivec_irq, "ivec-irq", IVEC_MAX); env = &cpu->env; env->tick = cpu_timer_create("tick", cpu, tick_irq, tick_frequency, TICK_INT_DIS, TICK_NPT_MASK); env->stick = cpu_timer_create("stick", cpu, stick_irq, stick_frequency, TICK_INT_DIS, TICK_NPT_MASK); env->hstick = cpu_timer_create("hstick", cpu, hstick_irq, hstick_frequency, TICK_INT_DIS, TICK_NPT_MASK); reset_info = g_malloc0(sizeof(ResetData)); reset_info->cpu = cpu; reset_info->prom_addr = prom_addr; qemu_register_reset(main_cpu_reset, reset_info); return cpu; }