/* * QEMU 16450 UART emulation * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "qemu-char.h" #include "isa.h" #include "pc.h" #include "qemu-timer.h" //#define DEBUG_SERIAL #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */ #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */ #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */ #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */ #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */ #define UART_IIR_NO_INT 0x01 /* No interrupts pending */ #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */ #define UART_IIR_MSI 0x00 /* Modem status interrupt */ #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */ #define UART_IIR_RDI 0x04 /* Receiver data interrupt */ #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */ /* * These are the definitions for the Modem Control Register */ #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */ #define UART_MCR_OUT2 0x08 /* Out2 complement */ #define UART_MCR_OUT1 0x04 /* Out1 complement */ #define UART_MCR_RTS 0x02 /* RTS complement */ #define UART_MCR_DTR 0x01 /* DTR complement */ /* * These are the definitions for the Modem Status Register */ #define UART_MSR_DCD 0x80 /* Data Carrier Detect */ #define UART_MSR_RI 0x40 /* Ring Indicator */ #define UART_MSR_DSR 0x20 /* Data Set Ready */ #define UART_MSR_CTS 0x10 /* Clear to Send */ #define UART_MSR_DDCD 0x08 /* Delta DCD */ #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */ #define UART_MSR_DDSR 0x02 /* Delta DSR */ #define UART_MSR_DCTS 0x01 /* Delta CTS */ #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */ #define UART_LSR_TEMT 0x40 /* Transmitter empty */ #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */ #define UART_LSR_BI 0x10 /* Break interrupt indicator */ #define UART_LSR_FE 0x08 /* Frame error indicator */ #define UART_LSR_PE 0x04 /* Parity error indicator */ #define UART_LSR_OE 0x02 /* Overrun error indicator */ #define UART_LSR_DR 0x01 /* Receiver data ready */ /* * Delay TX IRQ after sending as much characters as the given interval would * contain on real hardware. This avoids overloading the guest if it processes * its output buffer in a loop inside the TX IRQ handler. */ #define THROTTLE_TX_INTERVAL 10 /* ms */ struct SerialState { uint16_t divider; uint8_t rbr; /* receive register */ uint8_t ier; uint8_t iir; /* read only */ uint8_t lcr; uint8_t mcr; uint8_t lsr; /* read only */ uint8_t msr; /* read only */ uint8_t scr; /* NOTE: this hidden state is necessary for tx irq generation as it can be reset while reading iir */ int thr_ipending; qemu_irq irq; CharDriverState *chr; int last_break_enable; target_phys_addr_t base; int it_shift; int baudbase; QEMUTimer *tx_timer; int tx_burst; }; static void serial_receive_byte(SerialState *s, int ch); static void serial_update_irq(SerialState *s) { if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) { s->iir = UART_IIR_RDI; } else if (s->thr_ipending && (s->ier & UART_IER_THRI)) { s->iir = UART_IIR_THRI; } else { s->iir = UART_IIR_NO_INT; } if (s->iir != UART_IIR_NO_INT) { qemu_irq_raise(s->irq); } else { qemu_irq_lower(s->irq); } } static void serial_tx_done(void *opaque) { SerialState *s = opaque; if (s->tx_burst < 0) { uint16_t divider; if (s->divider) divider = s->divider; else divider = 1; /* We assume 10 bits/char, OK for this purpose. */ s->tx_burst = THROTTLE_TX_INTERVAL * 1000 / (1000000 * 10 / (s->baudbase / divider)); } s->thr_ipending = 1; s->lsr |= UART_LSR_THRE; s->lsr |= UART_LSR_TEMT; serial_update_irq(s); } static void serial_update_parameters(SerialState *s) { int speed, parity, data_bits, stop_bits; QEMUSerialSetParams ssp; if (s->lcr & 0x08) { if (s->lcr & 0x10) parity = 'E'; else parity = 'O'; } else { parity = 'N'; } if (s->lcr & 0x04) stop_bits = 2; else stop_bits = 1; data_bits = (s->lcr & 0x03) + 5; if (s->divider == 0) return; speed = s->baudbase / s->divider; ssp.speed = speed; ssp.parity = parity; ssp.data_bits = data_bits; ssp.stop_bits = stop_bits; qemu_chr_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); #if 0 printf("speed=%d parity=%c data=%d stop=%d\n", speed, parity, data_bits, stop_bits); #endif } static void serial_ioport_write(void *opaque, uint32_t addr, uint32_t val) { SerialState *s = opaque; unsigned char ch; addr &= 7; #ifdef DEBUG_SERIAL printf("serial: write addr=0x%02x val=0x%02x\n", addr, val); #endif switch(addr) { default: case 0: if (s->lcr & UART_LCR_DLAB) { s->divider = (s->divider & 0xff00) | val; serial_update_parameters(s); } else { s->thr_ipending = 0; s->lsr &= ~UART_LSR_THRE; serial_update_irq(s); ch = val; if (!(s->mcr & UART_MCR_LOOP)) { /* when not in loopback mode, send the char */ qemu_chr_write(s->chr, &ch, 1); } else { /* in loopback mode, say that we just received a char */ serial_receive_byte(s, ch); } if (s->tx_burst > 0) { s->tx_burst--; serial_tx_done(s); } else if (s->tx_burst == 0) { s->tx_burst--; qemu_mod_timer(s->tx_timer, qemu_get_clock(vm_clock) + ticks_per_sec * THROTTLE_TX_INTERVAL / 1000); } } break; case 1: if (s->lcr & UART_LCR_DLAB) { s->divider = (s->divider & 0x00ff) | (val << 8); serial_update_parameters(s); } else { s->ier = val & 0x0f; if (s->lsr & UART_LSR_THRE) { s->thr_ipending = 1; } serial_update_irq(s); } break; case 2: break; case 3: { int break_enable; s->lcr = val; serial_update_parameters(s); break_enable = (val >> 6) & 1; if (break_enable != s->last_break_enable) { s->last_break_enable = break_enable; qemu_chr_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK, &break_enable); } } break; case 4: s->mcr = val & 0x1f; break; case 5: break; case 6: break; case 7: s->scr = val; break; } } static uint32_t serial_ioport_read(void *opaque, uint32_t addr) { SerialState *s = opaque; uint32_t ret; addr &= 7; switch(addr) { default: case 0: if (s->lcr & UART_LCR_DLAB) { ret = s->divider & 0xff; } else { ret = s->rbr; s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); serial_update_irq(s); if (!(s->mcr & UART_MCR_LOOP)) { /* in loopback mode, don't receive any data */ qemu_chr_accept_input(s->chr); } } break; case 1: if (s->lcr & UART_LCR_DLAB) { ret = (s->divider >> 8) & 0xff; } else { ret = s->ier; } break; case 2: ret = s->iir; /* reset THR pending bit */ if ((ret & 0x7) == UART_IIR_THRI) s->thr_ipending = 0; serial_update_irq(s); break; case 3: ret = s->lcr; break; case 4: ret = s->mcr; break; case 5: ret = s->lsr; break; case 6: if (s->mcr & UART_MCR_LOOP) { /* in loopback, the modem output pins are connected to the inputs */ ret = (s->mcr & 0x0c) << 4; ret |= (s->mcr & 0x02) << 3; ret |= (s->mcr & 0x01) << 5; } else { ret = s->msr; } break; case 7: ret = s->scr; break; } #ifdef DEBUG_SERIAL printf("serial: read addr=0x%02x val=0x%02x\n", addr, ret); #endif return ret; } static int serial_can_receive(SerialState *s) { return !(s->lsr & UART_LSR_DR); } static void serial_receive_byte(SerialState *s, int ch) { s->rbr = ch; s->lsr |= UART_LSR_DR; serial_update_irq(s); } static void serial_receive_break(SerialState *s) { s->rbr = 0; s->lsr |= UART_LSR_BI | UART_LSR_DR; serial_update_irq(s); } static int serial_can_receive1(void *opaque) { SerialState *s = opaque; return serial_can_receive(s); } static void serial_receive1(void *opaque, const uint8_t *buf, int size) { SerialState *s = opaque; serial_receive_byte(s, buf[0]); } static void serial_event(void *opaque, int event) { SerialState *s = opaque; if (event == CHR_EVENT_BREAK) serial_receive_break(s); } static void serial_save(QEMUFile *f, void *opaque) { SerialState *s = opaque; qemu_put_be16s(f,&s->divider); qemu_put_8s(f,&s->rbr); qemu_put_8s(f,&s->ier); qemu_put_8s(f,&s->iir); qemu_put_8s(f,&s->lcr); qemu_put_8s(f,&s->mcr); qemu_put_8s(f,&s->lsr); qemu_put_8s(f,&s->msr); qemu_put_8s(f,&s->scr); } static int serial_load(QEMUFile *f, void *opaque, int version_id) { SerialState *s = opaque; if(version_id > 2) return -EINVAL; if (version_id >= 2) qemu_get_be16s(f, &s->divider); else s->divider = qemu_get_byte(f); qemu_get_8s(f,&s->rbr); qemu_get_8s(f,&s->ier); qemu_get_8s(f,&s->iir); qemu_get_8s(f,&s->lcr); qemu_get_8s(f,&s->mcr); qemu_get_8s(f,&s->lsr); qemu_get_8s(f,&s->msr); qemu_get_8s(f,&s->scr); return 0; } static void serial_reset(void *opaque) { SerialState *s = opaque; s->divider = 0; s->rbr = 0; s->ier = 0; s->iir = UART_IIR_NO_INT; s->lcr = 0; s->mcr = 0; s->lsr = UART_LSR_TEMT | UART_LSR_THRE; s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS; s->scr = 0; s->thr_ipending = 0; s->last_break_enable = 0; qemu_irq_lower(s->irq); } /* If fd is zero, it means that the serial device uses the console */ SerialState *serial_init(int base, qemu_irq irq, int baudbase, CharDriverState *chr) { SerialState *s; s = qemu_mallocz(sizeof(SerialState)); if (!s) return NULL; s->irq = irq; s->baudbase = baudbase; s->tx_timer = qemu_new_timer(vm_clock, serial_tx_done, s); if (!s->tx_timer) return NULL; qemu_register_reset(serial_reset, s); serial_reset(s); register_savevm("serial", base, 2, serial_save, serial_load, s); register_ioport_write(base, 8, 1, serial_ioport_write, s); register_ioport_read(base, 8, 1, serial_ioport_read, s); s->chr = chr; qemu_chr_add_handlers(chr, serial_can_receive1, serial_receive1, serial_event, s); return s; } /* Memory mapped interface */ uint32_t serial_mm_readb (void *opaque, target_phys_addr_t addr) { SerialState *s = opaque; return serial_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFF; } void serial_mm_writeb (void *opaque, target_phys_addr_t addr, uint32_t value) { SerialState *s = opaque; serial_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFF); } uint32_t serial_mm_readw (void *opaque, target_phys_addr_t addr) { SerialState *s = opaque; uint32_t val; val = serial_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFFFF; #ifdef TARGET_WORDS_BIGENDIAN val = bswap16(val); #endif return val; } void serial_mm_writew (void *opaque, target_phys_addr_t addr, uint32_t value) { SerialState *s = opaque; #ifdef TARGET_WORDS_BIGENDIAN value = bswap16(value); #endif serial_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFFFF); } uint32_t serial_mm_readl (void *opaque, target_phys_addr_t addr) { SerialState *s = opaque; uint32_t val; val = serial_ioport_read(s, (addr - s->base) >> s->it_shift); #ifdef TARGET_WORDS_BIGENDIAN val = bswap32(val); #endif return val; } void serial_mm_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { SerialState *s = opaque; #ifdef TARGET_WORDS_BIGENDIAN value = bswap32(value); #endif serial_ioport_write(s, (addr - s->base) >> s->it_shift, value); } static CPUReadMemoryFunc *serial_mm_read[] = { &serial_mm_readb, &serial_mm_readw, &serial_mm_readl, }; static CPUWriteMemoryFunc *serial_mm_write[] = { &serial_mm_writeb, &serial_mm_writew, &serial_mm_writel, }; SerialState *serial_mm_init (target_phys_addr_t base, int it_shift, qemu_irq irq, int baudbase, CharDriverState *chr, int ioregister) { SerialState *s; int s_io_memory; s = qemu_mallocz(sizeof(SerialState)); if (!s) return NULL; s->irq = irq; s->base = base; s->it_shift = it_shift; s->baudbase= baudbase; s->tx_timer = qemu_new_timer(vm_clock, serial_tx_done, s); if (!s->tx_timer) return NULL; qemu_register_reset(serial_reset, s); serial_reset(s); register_savevm("serial", base, 2, serial_save, serial_load, s); if (ioregister) { s_io_memory = cpu_register_io_memory(0, serial_mm_read, serial_mm_write, s); cpu_register_physical_memory(base, 8 << it_shift, s_io_memory); } s->chr = chr; qemu_chr_add_handlers(chr, serial_can_receive1, serial_receive1, serial_event, s); return s; }