/* * QEMU PAPR Storage Class Memory Interfaces * * Copyright (c) 2019-2020, IBM Corporation. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qapi/error.h" #include "hw/ppc/spapr_drc.h" #include "hw/ppc/spapr_nvdimm.h" #include "hw/mem/nvdimm.h" #include "qemu/nvdimm-utils.h" #include "hw/ppc/fdt.h" #include "qemu/range.h" #include "hw/ppc/spapr_numa.h" bool spapr_nvdimm_validate(HotplugHandler *hotplug_dev, NVDIMMDevice *nvdimm, uint64_t size, Error **errp) { const MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); const MachineState *ms = MACHINE(hotplug_dev); g_autofree char *uuidstr = NULL; QemuUUID uuid; int ret; if (!mc->nvdimm_supported) { error_setg(errp, "NVDIMM hotplug not supported for this machine"); return false; } if (!ms->nvdimms_state->is_enabled) { error_setg(errp, "nvdimm device found but 'nvdimm=off' was set"); return false; } if (object_property_get_int(OBJECT(nvdimm), NVDIMM_LABEL_SIZE_PROP, &error_abort) == 0) { error_setg(errp, "PAPR requires NVDIMM devices to have label-size set"); return false; } if (size % SPAPR_MINIMUM_SCM_BLOCK_SIZE) { error_setg(errp, "PAPR requires NVDIMM memory size (excluding label)" " to be a multiple of %" PRIu64 "MB", SPAPR_MINIMUM_SCM_BLOCK_SIZE / MiB); return false; } uuidstr = object_property_get_str(OBJECT(nvdimm), NVDIMM_UUID_PROP, &error_abort); ret = qemu_uuid_parse(uuidstr, &uuid); g_assert(!ret); if (qemu_uuid_is_null(&uuid)) { error_setg(errp, "NVDIMM device requires the uuid to be set"); return false; } return true; } void spapr_add_nvdimm(DeviceState *dev, uint64_t slot) { SpaprDrc *drc; bool hotplugged = spapr_drc_hotplugged(dev); drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PMEM, slot); g_assert(drc); /* * pc_dimm_get_free_slot() provided a free slot at pre-plug. The * corresponding DRC is thus assumed to be attachable. */ spapr_drc_attach(drc, dev); if (hotplugged) { spapr_hotplug_req_add_by_index(drc); } } static int spapr_dt_nvdimm(SpaprMachineState *spapr, void *fdt, int parent_offset, NVDIMMDevice *nvdimm) { int child_offset; char *buf; SpaprDrc *drc; uint32_t drc_idx; uint32_t node = object_property_get_uint(OBJECT(nvdimm), PC_DIMM_NODE_PROP, &error_abort); uint64_t slot = object_property_get_uint(OBJECT(nvdimm), PC_DIMM_SLOT_PROP, &error_abort); uint64_t lsize = nvdimm->label_size; uint64_t size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP, NULL); drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PMEM, slot); g_assert(drc); drc_idx = spapr_drc_index(drc); buf = g_strdup_printf("ibm,pmemory@%x", drc_idx); child_offset = fdt_add_subnode(fdt, parent_offset, buf); g_free(buf); _FDT(child_offset); _FDT((fdt_setprop_cell(fdt, child_offset, "reg", drc_idx))); _FDT((fdt_setprop_string(fdt, child_offset, "compatible", "ibm,pmemory"))); _FDT((fdt_setprop_string(fdt, child_offset, "device_type", "ibm,pmemory"))); spapr_numa_write_associativity_dt(spapr, fdt, child_offset, node); buf = qemu_uuid_unparse_strdup(&nvdimm->uuid); _FDT((fdt_setprop_string(fdt, child_offset, "ibm,unit-guid", buf))); g_free(buf); _FDT((fdt_setprop_cell(fdt, child_offset, "ibm,my-drc-index", drc_idx))); _FDT((fdt_setprop_u64(fdt, child_offset, "ibm,block-size", SPAPR_MINIMUM_SCM_BLOCK_SIZE))); _FDT((fdt_setprop_u64(fdt, child_offset, "ibm,number-of-blocks", size / SPAPR_MINIMUM_SCM_BLOCK_SIZE))); _FDT((fdt_setprop_cell(fdt, child_offset, "ibm,metadata-size", lsize))); _FDT((fdt_setprop_string(fdt, child_offset, "ibm,pmem-application", "operating-system"))); _FDT(fdt_setprop(fdt, child_offset, "ibm,cache-flush-required", NULL, 0)); return child_offset; } int spapr_pmem_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, void *fdt, int *fdt_start_offset, Error **errp) { NVDIMMDevice *nvdimm = NVDIMM(drc->dev); *fdt_start_offset = spapr_dt_nvdimm(spapr, fdt, 0, nvdimm); return 0; } void spapr_dt_persistent_memory(SpaprMachineState *spapr, void *fdt) { int offset = fdt_subnode_offset(fdt, 0, "persistent-memory"); GSList *iter, *nvdimms = nvdimm_get_device_list(); if (offset < 0) { offset = fdt_add_subnode(fdt, 0, "persistent-memory"); _FDT(offset); _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0x1))); _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 0x0))); _FDT((fdt_setprop_string(fdt, offset, "device_type", "ibm,persistent-memory"))); } /* Create DT entries for cold plugged NVDIMM devices */ for (iter = nvdimms; iter; iter = iter->next) { NVDIMMDevice *nvdimm = iter->data; spapr_dt_nvdimm(spapr, fdt, offset, nvdimm); } g_slist_free(nvdimms); return; } static target_ulong h_scm_read_metadata(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { uint32_t drc_index = args[0]; uint64_t offset = args[1]; uint64_t len = args[2]; SpaprDrc *drc = spapr_drc_by_index(drc_index); NVDIMMDevice *nvdimm; NVDIMMClass *ddc; uint64_t data = 0; uint8_t buf[8] = { 0 }; if (!drc || !drc->dev || spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) { return H_PARAMETER; } if (len != 1 && len != 2 && len != 4 && len != 8) { return H_P3; } nvdimm = NVDIMM(drc->dev); if ((offset + len < offset) || (nvdimm->label_size < len + offset)) { return H_P2; } ddc = NVDIMM_GET_CLASS(nvdimm); ddc->read_label_data(nvdimm, buf, len, offset); switch (len) { case 1: data = ldub_p(buf); break; case 2: data = lduw_be_p(buf); break; case 4: data = ldl_be_p(buf); break; case 8: data = ldq_be_p(buf); break; default: g_assert_not_reached(); } args[0] = data; return H_SUCCESS; } static target_ulong h_scm_write_metadata(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { uint32_t drc_index = args[0]; uint64_t offset = args[1]; uint64_t data = args[2]; uint64_t len = args[3]; SpaprDrc *drc = spapr_drc_by_index(drc_index); NVDIMMDevice *nvdimm; NVDIMMClass *ddc; uint8_t buf[8] = { 0 }; if (!drc || !drc->dev || spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) { return H_PARAMETER; } if (len != 1 && len != 2 && len != 4 && len != 8) { return H_P4; } nvdimm = NVDIMM(drc->dev); if ((offset + len < offset) || (nvdimm->label_size < len + offset)) { return H_P2; } switch (len) { case 1: if (data & 0xffffffffffffff00) { return H_P2; } stb_p(buf, data); break; case 2: if (data & 0xffffffffffff0000) { return H_P2; } stw_be_p(buf, data); break; case 4: if (data & 0xffffffff00000000) { return H_P2; } stl_be_p(buf, data); break; case 8: stq_be_p(buf, data); break; default: g_assert_not_reached(); } ddc = NVDIMM_GET_CLASS(nvdimm); ddc->write_label_data(nvdimm, buf, len, offset); return H_SUCCESS; } static target_ulong h_scm_bind_mem(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { uint32_t drc_index = args[0]; uint64_t starting_idx = args[1]; uint64_t no_of_scm_blocks_to_bind = args[2]; uint64_t target_logical_mem_addr = args[3]; uint64_t continue_token = args[4]; uint64_t size; uint64_t total_no_of_scm_blocks; SpaprDrc *drc = spapr_drc_by_index(drc_index); hwaddr addr; NVDIMMDevice *nvdimm; if (!drc || !drc->dev || spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) { return H_PARAMETER; } /* * Currently continue token should be zero qemu has already bound * everything and this hcall doesnt return H_BUSY. */ if (continue_token > 0) { return H_P5; } /* Currently qemu assigns the address. */ if (target_logical_mem_addr != 0xffffffffffffffff) { return H_OVERLAP; } nvdimm = NVDIMM(drc->dev); size = object_property_get_uint(OBJECT(nvdimm), PC_DIMM_SIZE_PROP, &error_abort); total_no_of_scm_blocks = size / SPAPR_MINIMUM_SCM_BLOCK_SIZE; if (starting_idx > total_no_of_scm_blocks) { return H_P2; } if (((starting_idx + no_of_scm_blocks_to_bind) < starting_idx) || ((starting_idx + no_of_scm_blocks_to_bind) > total_no_of_scm_blocks)) { return H_P3; } addr = object_property_get_uint(OBJECT(nvdimm), PC_DIMM_ADDR_PROP, &error_abort); addr += starting_idx * SPAPR_MINIMUM_SCM_BLOCK_SIZE; /* Already bound, Return target logical address in R5 */ args[1] = addr; args[2] = no_of_scm_blocks_to_bind; return H_SUCCESS; } static target_ulong h_scm_unbind_mem(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { uint32_t drc_index = args[0]; uint64_t starting_scm_logical_addr = args[1]; uint64_t no_of_scm_blocks_to_unbind = args[2]; uint64_t continue_token = args[3]; uint64_t size_to_unbind; Range blockrange = range_empty; Range nvdimmrange = range_empty; SpaprDrc *drc = spapr_drc_by_index(drc_index); NVDIMMDevice *nvdimm; uint64_t size, addr; if (!drc || !drc->dev || spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) { return H_PARAMETER; } /* continue_token should be zero as this hcall doesn't return H_BUSY. */ if (continue_token > 0) { return H_P4; } /* Check if starting_scm_logical_addr is block aligned */ if (!QEMU_IS_ALIGNED(starting_scm_logical_addr, SPAPR_MINIMUM_SCM_BLOCK_SIZE)) { return H_P2; } size_to_unbind = no_of_scm_blocks_to_unbind * SPAPR_MINIMUM_SCM_BLOCK_SIZE; if (no_of_scm_blocks_to_unbind == 0 || no_of_scm_blocks_to_unbind != size_to_unbind / SPAPR_MINIMUM_SCM_BLOCK_SIZE) { return H_P3; } nvdimm = NVDIMM(drc->dev); size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP, &error_abort); addr = object_property_get_int(OBJECT(nvdimm), PC_DIMM_ADDR_PROP, &error_abort); range_init_nofail(&nvdimmrange, addr, size); range_init_nofail(&blockrange, starting_scm_logical_addr, size_to_unbind); if (!range_contains_range(&nvdimmrange, &blockrange)) { return H_P3; } args[1] = no_of_scm_blocks_to_unbind; /* let unplug take care of actual unbind */ return H_SUCCESS; } #define H_UNBIND_SCOPE_ALL 0x1 #define H_UNBIND_SCOPE_DRC 0x2 static target_ulong h_scm_unbind_all(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { uint64_t target_scope = args[0]; uint32_t drc_index = args[1]; uint64_t continue_token = args[2]; NVDIMMDevice *nvdimm; uint64_t size; uint64_t no_of_scm_blocks_unbound = 0; /* continue_token should be zero as this hcall doesn't return H_BUSY. */ if (continue_token > 0) { return H_P4; } if (target_scope == H_UNBIND_SCOPE_DRC) { SpaprDrc *drc = spapr_drc_by_index(drc_index); if (!drc || !drc->dev || spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) { return H_P2; } nvdimm = NVDIMM(drc->dev); size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP, &error_abort); no_of_scm_blocks_unbound = size / SPAPR_MINIMUM_SCM_BLOCK_SIZE; } else if (target_scope == H_UNBIND_SCOPE_ALL) { GSList *list, *nvdimms; nvdimms = nvdimm_get_device_list(); for (list = nvdimms; list; list = list->next) { nvdimm = list->data; size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP, &error_abort); no_of_scm_blocks_unbound += size / SPAPR_MINIMUM_SCM_BLOCK_SIZE; } g_slist_free(nvdimms); } else { return H_PARAMETER; } args[1] = no_of_scm_blocks_unbound; /* let unplug take care of actual unbind */ return H_SUCCESS; } static void spapr_scm_register_types(void) { /* qemu/scm specific hcalls */ spapr_register_hypercall(H_SCM_READ_METADATA, h_scm_read_metadata); spapr_register_hypercall(H_SCM_WRITE_METADATA, h_scm_write_metadata); spapr_register_hypercall(H_SCM_BIND_MEM, h_scm_bind_mem); spapr_register_hypercall(H_SCM_UNBIND_MEM, h_scm_unbind_mem); spapr_register_hypercall(H_SCM_UNBIND_ALL, h_scm_unbind_all); } type_init(spapr_scm_register_types)