#include "sysemu/sysemu.h" #include "cpu.h" #include "helper_regs.h" #include "hw/ppc/spapr.h" #include "mmu-hash64.h" static target_ulong compute_tlbie_rb(target_ulong v, target_ulong r, target_ulong pte_index) { target_ulong rb, va_low; rb = (v & ~0x7fULL) << 16; /* AVA field */ va_low = pte_index >> 3; if (v & HPTE64_V_SECONDARY) { va_low = ~va_low; } /* xor vsid from AVA */ if (!(v & HPTE64_V_1TB_SEG)) { va_low ^= v >> 12; } else { va_low ^= v >> 24; } va_low &= 0x7ff; if (v & HPTE64_V_LARGE) { rb |= 1; /* L field */ #if 0 /* Disable that P7 specific bit for now */ if (r & 0xff000) { /* non-16MB large page, must be 64k */ /* (masks depend on page size) */ rb |= 0x1000; /* page encoding in LP field */ rb |= (va_low & 0x7f) << 16; /* 7b of VA in AVA/LP field */ rb |= (va_low & 0xfe); /* AVAL field */ } #endif } else { /* 4kB page */ rb |= (va_low & 0x7ff) << 12; /* remaining 11b of AVA */ } rb |= (v >> 54) & 0x300; /* B field */ return rb; } static inline bool valid_pte_index(CPUPPCState *env, target_ulong pte_index) { /* * hash value/pteg group index is normalized by htab_mask */ if (((pte_index & ~7ULL) / HPTES_PER_GROUP) & ~env->htab_mask) { return false; } return true; } static target_ulong h_enter(PowerPCCPU *cpu, sPAPREnvironment *spapr, target_ulong opcode, target_ulong *args) { CPUPPCState *env = &cpu->env; target_ulong flags = args[0]; target_ulong pte_index = args[1]; target_ulong pteh = args[2]; target_ulong ptel = args[3]; target_ulong page_shift = 12; target_ulong raddr; target_ulong index; uint64_t token; /* only handle 4k and 16M pages for now */ if (pteh & HPTE64_V_LARGE) { #if 0 /* We don't support 64k pages yet */ if ((ptel & 0xf000) == 0x1000) { /* 64k page */ } else #endif if ((ptel & 0xff000) == 0) { /* 16M page */ page_shift = 24; /* lowest AVA bit must be 0 for 16M pages */ if (pteh & 0x80) { return H_PARAMETER; } } else { return H_PARAMETER; } } raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << page_shift) - 1); if (raddr < spapr->ram_limit) { /* Regular RAM - should have WIMG=0010 */ if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) { return H_PARAMETER; } } else { /* Looks like an IO address */ /* FIXME: What WIMG combinations could be sensible for IO? * For now we allow WIMG=010x, but are there others? */ /* FIXME: Should we check against registered IO addresses? */ if ((ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M)) != HPTE64_R_I) { return H_PARAMETER; } } pteh &= ~0x60ULL; if (!valid_pte_index(env, pte_index)) { return H_PARAMETER; } index = 0; if (likely((flags & H_EXACT) == 0)) { pte_index &= ~7ULL; token = ppc_hash64_start_access(cpu, pte_index); do { if (index == 8) { ppc_hash64_stop_access(token); return H_PTEG_FULL; } if ((ppc_hash64_load_hpte0(env, token, index) & HPTE64_V_VALID) == 0) { break; } } while (index++); ppc_hash64_stop_access(token); } else { token = ppc_hash64_start_access(cpu, pte_index); if (ppc_hash64_load_hpte0(env, token, 0) & HPTE64_V_VALID) { ppc_hash64_stop_access(token); return H_PTEG_FULL; } ppc_hash64_stop_access(token); } ppc_hash64_store_hpte(env, pte_index + index, pteh | HPTE64_V_HPTE_DIRTY, ptel); args[0] = pte_index + index; return H_SUCCESS; } typedef enum { REMOVE_SUCCESS = 0, REMOVE_NOT_FOUND = 1, REMOVE_PARM = 2, REMOVE_HW = 3, } RemoveResult; static RemoveResult remove_hpte(CPUPPCState *env, target_ulong ptex, target_ulong avpn, target_ulong flags, target_ulong *vp, target_ulong *rp) { uint64_t token; target_ulong v, r, rb; if (!valid_pte_index(env, ptex)) { return REMOVE_PARM; } token = ppc_hash64_start_access(ppc_env_get_cpu(env), ptex); v = ppc_hash64_load_hpte0(env, token, 0); r = ppc_hash64_load_hpte1(env, token, 0); ppc_hash64_stop_access(token); if ((v & HPTE64_V_VALID) == 0 || ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) || ((flags & H_ANDCOND) && (v & avpn) != 0)) { return REMOVE_NOT_FOUND; } *vp = v; *rp = r; ppc_hash64_store_hpte(env, ptex, HPTE64_V_HPTE_DIRTY, 0); rb = compute_tlbie_rb(v, r, ptex); ppc_tlb_invalidate_one(env, rb); return REMOVE_SUCCESS; } static target_ulong h_remove(PowerPCCPU *cpu, sPAPREnvironment *spapr, target_ulong opcode, target_ulong *args) { CPUPPCState *env = &cpu->env; target_ulong flags = args[0]; target_ulong pte_index = args[1]; target_ulong avpn = args[2]; RemoveResult ret; ret = remove_hpte(env, pte_index, avpn, flags, &args[0], &args[1]); switch (ret) { case REMOVE_SUCCESS: return H_SUCCESS; case REMOVE_NOT_FOUND: return H_NOT_FOUND; case REMOVE_PARM: return H_PARAMETER; case REMOVE_HW: return H_HARDWARE; } g_assert_not_reached(); } #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL #define H_BULK_REMOVE_END 0xc000000000000000ULL #define H_BULK_REMOVE_CODE 0x3000000000000000ULL #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL #define H_BULK_REMOVE_PARM 0x2000000000000000ULL #define H_BULK_REMOVE_HW 0x3000000000000000ULL #define H_BULK_REMOVE_RC 0x0c00000000000000ULL #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL #define H_BULK_REMOVE_MAX_BATCH 4 static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPREnvironment *spapr, target_ulong opcode, target_ulong *args) { CPUPPCState *env = &cpu->env; int i; for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) { target_ulong *tsh = &args[i*2]; target_ulong tsl = args[i*2 + 1]; target_ulong v, r, ret; if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) { break; } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) { return H_PARAMETER; } *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS; *tsh |= H_BULK_REMOVE_RESPONSE; if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) { *tsh |= H_BULK_REMOVE_PARM; return H_PARAMETER; } ret = remove_hpte(env, *tsh & H_BULK_REMOVE_PTEX, tsl, (*tsh & H_BULK_REMOVE_FLAGS) >> 26, &v, &r); *tsh |= ret << 60; switch (ret) { case REMOVE_SUCCESS: *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43; break; case REMOVE_PARM: return H_PARAMETER; case REMOVE_HW: return H_HARDWARE; } } return H_SUCCESS; } static target_ulong h_protect(PowerPCCPU *cpu, sPAPREnvironment *spapr, target_ulong opcode, target_ulong *args) { CPUPPCState *env = &cpu->env; target_ulong flags = args[0]; target_ulong pte_index = args[1]; target_ulong avpn = args[2]; uint64_t token; target_ulong v, r, rb; if (!valid_pte_index(env, pte_index)) { return H_PARAMETER; } token = ppc_hash64_start_access(cpu, pte_index); v = ppc_hash64_load_hpte0(env, token, 0); r = ppc_hash64_load_hpte1(env, token, 0); ppc_hash64_stop_access(token); if ((v & HPTE64_V_VALID) == 0 || ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) { return H_NOT_FOUND; } r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_HI | HPTE64_R_KEY_LO); r |= (flags << 55) & HPTE64_R_PP0; r |= (flags << 48) & HPTE64_R_KEY_HI; r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO); rb = compute_tlbie_rb(v, r, pte_index); ppc_hash64_store_hpte(env, pte_index, (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0); ppc_tlb_invalidate_one(env, rb); /* Don't need a memory barrier, due to qemu's global lock */ ppc_hash64_store_hpte(env, pte_index, v | HPTE64_V_HPTE_DIRTY, r); return H_SUCCESS; } static target_ulong h_read(PowerPCCPU *cpu, sPAPREnvironment *spapr, target_ulong opcode, target_ulong *args) { CPUPPCState *env = &cpu->env; target_ulong flags = args[0]; target_ulong pte_index = args[1]; uint8_t *hpte; int i, ridx, n_entries = 1; if (!valid_pte_index(env, pte_index)) { return H_PARAMETER; } if (flags & H_READ_4) { /* Clear the two low order bits */ pte_index &= ~(3ULL); n_entries = 4; } hpte = env->external_htab + (pte_index * HASH_PTE_SIZE_64); for (i = 0, ridx = 0; i < n_entries; i++) { args[ridx++] = ldq_p(hpte); args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2)); hpte += HASH_PTE_SIZE_64; } return H_SUCCESS; } static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPREnvironment *spapr, target_ulong opcode, target_ulong *args) { /* FIXME: actually implement this */ return H_HARDWARE; } #define FLAGS_REGISTER_VPA 0x0000200000000000ULL #define FLAGS_REGISTER_DTL 0x0000400000000000ULL #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL #define VPA_MIN_SIZE 640 #define VPA_SIZE_OFFSET 0x4 #define VPA_SHARED_PROC_OFFSET 0x9 #define VPA_SHARED_PROC_VAL 0x2 static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa) { CPUState *cs = CPU(ppc_env_get_cpu(env)); uint16_t size; uint8_t tmp; if (vpa == 0) { hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); return H_HARDWARE; } if (vpa % env->dcache_line_size) { return H_PARAMETER; } /* FIXME: bounds check the address */ size = lduw_be_phys(cs->as, vpa + 0x4); if (size < VPA_MIN_SIZE) { return H_PARAMETER; } /* VPA is not allowed to cross a page boundary */ if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { return H_PARAMETER; } env->vpa_addr = vpa; tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET); tmp |= VPA_SHARED_PROC_VAL; stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); return H_SUCCESS; } static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa) { if (env->slb_shadow_addr) { return H_RESOURCE; } if (env->dtl_addr) { return H_RESOURCE; } env->vpa_addr = 0; return H_SUCCESS; } static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr) { CPUState *cs = CPU(ppc_env_get_cpu(env)); uint32_t size; if (addr == 0) { hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); return H_HARDWARE; } size = ldl_be_phys(cs->as, addr + 0x4); if (size < 0x8) { return H_PARAMETER; } if ((addr / 4096) != ((addr + size - 1) / 4096)) { return H_PARAMETER; } if (!env->vpa_addr) { return H_RESOURCE; } env->slb_shadow_addr = addr; env->slb_shadow_size = size; return H_SUCCESS; } static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr) { env->slb_shadow_addr = 0; env->slb_shadow_size = 0; return H_SUCCESS; } static target_ulong register_dtl(CPUPPCState *env, target_ulong addr) { CPUState *cs = CPU(ppc_env_get_cpu(env)); uint32_t size; if (addr == 0) { hcall_dprintf("Can't cope with DTL at logical 0\n"); return H_HARDWARE; } size = ldl_be_phys(cs->as, addr + 0x4); if (size < 48) { return H_PARAMETER; } if (!env->vpa_addr) { return H_RESOURCE; } env->dtl_addr = addr; env->dtl_size = size; return H_SUCCESS; } static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr) { env->dtl_addr = 0; env->dtl_size = 0; return H_SUCCESS; } static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPREnvironment *spapr, target_ulong opcode, target_ulong *args) { target_ulong flags = args[0]; target_ulong procno = args[1]; target_ulong vpa = args[2]; target_ulong ret = H_PARAMETER; CPUPPCState *tenv; PowerPCCPU *tcpu; tcpu = ppc_get_vcpu_by_dt_id(procno); if (!tcpu) { return H_PARAMETER; } tenv = &tcpu->env; switch (flags) { case FLAGS_REGISTER_VPA: ret = register_vpa(tenv, vpa); break; case FLAGS_DEREGISTER_VPA: ret = deregister_vpa(tenv, vpa); break; case FLAGS_REGISTER_SLBSHADOW: ret = register_slb_shadow(tenv, vpa); break; case FLAGS_DEREGISTER_SLBSHADOW: ret = deregister_slb_shadow(tenv, vpa); break; case FLAGS_REGISTER_DTL: ret = register_dtl(tenv, vpa); break; case FLAGS_DEREGISTER_DTL: ret = deregister_dtl(tenv, vpa); break; } return ret; } static target_ulong h_cede(PowerPCCPU *cpu, sPAPREnvironment *spapr, target_ulong opcode, target_ulong *args) { CPUPPCState *env = &cpu->env; CPUState *cs = CPU(cpu); env->msr |= (1ULL << MSR_EE); hreg_compute_hflags(env); if (!cpu_has_work(cs)) { cs->halted = 1; cs->exception_index = EXCP_HLT; cs->exit_request = 1; } return H_SUCCESS; } static target_ulong h_rtas(PowerPCCPU *cpu, sPAPREnvironment *spapr, target_ulong opcode, target_ulong *args) { target_ulong rtas_r3 = args[0]; uint32_t token = rtas_ld(rtas_r3, 0); uint32_t nargs = rtas_ld(rtas_r3, 1); uint32_t nret = rtas_ld(rtas_r3, 2); return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12, nret, rtas_r3 + 12 + 4*nargs); } static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPREnvironment *spapr, target_ulong opcode, target_ulong *args) { CPUState *cs = CPU(cpu); target_ulong size = args[0]; target_ulong addr = args[1]; switch (size) { case 1: args[0] = ldub_phys(cs->as, addr); return H_SUCCESS; case 2: args[0] = lduw_phys(cs->as, addr); return H_SUCCESS; case 4: args[0] = ldl_phys(cs->as, addr); return H_SUCCESS; case 8: args[0] = ldq_phys(cs->as, addr); return H_SUCCESS; } return H_PARAMETER; } static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPREnvironment *spapr, target_ulong opcode, target_ulong *args) { CPUState *cs = CPU(cpu); target_ulong size = args[0]; target_ulong addr = args[1]; target_ulong val = args[2]; switch (size) { case 1: stb_phys(cs->as, addr, val); return H_SUCCESS; case 2: stw_phys(cs->as, addr, val); return H_SUCCESS; case 4: stl_phys(cs->as, addr, val); return H_SUCCESS; case 8: stq_phys(cs->as, addr, val); return H_SUCCESS; } return H_PARAMETER; } static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPREnvironment *spapr, target_ulong opcode, target_ulong *args) { CPUState *cs = CPU(cpu); target_ulong dst = args[0]; /* Destination address */ target_ulong src = args[1]; /* Source address */ target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */ target_ulong count = args[3]; /* Element count */ target_ulong op = args[4]; /* 0 = copy, 1 = invert */ uint64_t tmp; unsigned int mask = (1 << esize) - 1; int step = 1 << esize; if (count > 0x80000000) { return H_PARAMETER; } if ((dst & mask) || (src & mask) || (op > 1)) { return H_PARAMETER; } if (dst >= src && dst < (src + (count << esize))) { dst = dst + ((count - 1) << esize); src = src + ((count - 1) << esize); step = -step; } while (count--) { switch (esize) { case 0: tmp = ldub_phys(cs->as, src); break; case 1: tmp = lduw_phys(cs->as, src); break; case 2: tmp = ldl_phys(cs->as, src); break; case 3: tmp = ldq_phys(cs->as, src); break; default: return H_PARAMETER; } if (op == 1) { tmp = ~tmp; } switch (esize) { case 0: stb_phys(cs->as, dst, tmp); break; case 1: stw_phys(cs->as, dst, tmp); break; case 2: stl_phys(cs->as, dst, tmp); break; case 3: stq_phys(cs->as, dst, tmp); break; } dst = dst + step; src = src + step; } return H_SUCCESS; } static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPREnvironment *spapr, target_ulong opcode, target_ulong *args) { /* Nothing to do on emulation, KVM will trap this in the kernel */ return H_SUCCESS; } static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPREnvironment *spapr, target_ulong opcode, target_ulong *args) { /* Nothing to do on emulation, KVM will trap this in the kernel */ return H_SUCCESS; } static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPREnvironment *spapr, target_ulong opcode, target_ulong *args) { CPUState *cs; target_ulong mflags = args[0]; target_ulong resource = args[1]; target_ulong value1 = args[2]; target_ulong value2 = args[3]; target_ulong ret = H_P2; if (resource == H_SET_MODE_ENDIAN) { if (value1) { ret = H_P3; goto out; } if (value2) { ret = H_P4; goto out; } switch (mflags) { case H_SET_MODE_ENDIAN_BIG: CPU_FOREACH(cs) { PowerPCCPU *cp = POWERPC_CPU(cs); CPUPPCState *env = &cp->env; env->spr[SPR_LPCR] &= ~LPCR_ILE; } ret = H_SUCCESS; break; case H_SET_MODE_ENDIAN_LITTLE: CPU_FOREACH(cs) { PowerPCCPU *cp = POWERPC_CPU(cs); CPUPPCState *env = &cp->env; env->spr[SPR_LPCR] |= LPCR_ILE; } ret = H_SUCCESS; break; default: ret = H_UNSUPPORTED_FLAG; } } out: return ret; } static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) { spapr_hcall_fn *slot; if (opcode <= MAX_HCALL_OPCODE) { assert((opcode & 0x3) == 0); slot = &papr_hypercall_table[opcode / 4]; } else { assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; } assert(!(*slot)); *slot = fn; } target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode, target_ulong *args) { if ((opcode <= MAX_HCALL_OPCODE) && ((opcode & 0x3) == 0)) { spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; if (fn) { return fn(cpu, spapr, opcode, args); } } else if ((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)) { spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; if (fn) { return fn(cpu, spapr, opcode, args); } } hcall_dprintf("Unimplemented hcall 0x" TARGET_FMT_lx "\n", opcode); return H_FUNCTION; } static void hypercall_register_types(void) { /* hcall-pft */ spapr_register_hypercall(H_ENTER, h_enter); spapr_register_hypercall(H_REMOVE, h_remove); spapr_register_hypercall(H_PROTECT, h_protect); spapr_register_hypercall(H_READ, h_read); /* hcall-bulk */ spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove); /* hcall-dabr */ spapr_register_hypercall(H_SET_DABR, h_set_dabr); /* hcall-splpar */ spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); spapr_register_hypercall(H_CEDE, h_cede); /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate * here between the "CI" and the "CACHE" variants, they will use whatever * mapping attributes qemu is using. When using KVM, the kernel will * enforce the attributes more strongly */ spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop); /* qemu/KVM-PPC specific hcalls */ spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); spapr_register_hypercall(H_SET_MODE, h_set_mode); } type_init(hypercall_register_types)