/* * QEMU PowerPC e500-based platforms * * Copyright (C) 2009 Freescale Semiconductor, Inc. All rights reserved. * * Author: Yu Liu, * * This file is derived from hw/ppc440_bamboo.c, * the copyright for that material belongs to the original owners. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qapi/error.h" #include "e500.h" #include "e500-ccsr.h" #include "net/net.h" #include "qemu/config-file.h" #include "hw/hw.h" #include "hw/char/serial.h" #include "hw/pci/pci.h" #include "hw/boards.h" #include "sysemu/sysemu.h" #include "sysemu/kvm.h" #include "kvm_ppc.h" #include "sysemu/device_tree.h" #include "hw/ppc/openpic.h" #include "hw/ppc/openpic_kvm.h" #include "hw/ppc/ppc.h" #include "hw/loader.h" #include "elf.h" #include "hw/sysbus.h" #include "exec/address-spaces.h" #include "qemu/host-utils.h" #include "qemu/option.h" #include "hw/pci-host/ppce500.h" #include "qemu/error-report.h" #include "hw/platform-bus.h" #include "hw/net/fsl_etsec/etsec.h" #define EPAPR_MAGIC (0x45504150) #define BINARY_DEVICE_TREE_FILE "mpc8544ds.dtb" #define DTC_LOAD_PAD 0x1800000 #define DTC_PAD_MASK 0xFFFFF #define DTB_MAX_SIZE (8 * MiB) #define INITRD_LOAD_PAD 0x2000000 #define INITRD_PAD_MASK 0xFFFFFF #define RAM_SIZES_ALIGN (64 * MiB) /* TODO: parameterize */ #define MPC8544_CCSRBAR_SIZE 0x00100000ULL #define MPC8544_MPIC_REGS_OFFSET 0x40000ULL #define MPC8544_MSI_REGS_OFFSET 0x41600ULL #define MPC8544_SERIAL0_REGS_OFFSET 0x4500ULL #define MPC8544_SERIAL1_REGS_OFFSET 0x4600ULL #define MPC8544_PCI_REGS_OFFSET 0x8000ULL #define MPC8544_PCI_REGS_SIZE 0x1000ULL #define MPC8544_UTIL_OFFSET 0xe0000ULL #define MPC8XXX_GPIO_OFFSET 0x000FF000ULL #define MPC8XXX_GPIO_IRQ 47 struct boot_info { uint32_t dt_base; uint32_t dt_size; uint32_t entry; }; static uint32_t *pci_map_create(void *fdt, uint32_t mpic, int first_slot, int nr_slots, int *len) { int i = 0; int slot; int pci_irq; int host_irq; int last_slot = first_slot + nr_slots; uint32_t *pci_map; *len = nr_slots * 4 * 7 * sizeof(uint32_t); pci_map = g_malloc(*len); for (slot = first_slot; slot < last_slot; slot++) { for (pci_irq = 0; pci_irq < 4; pci_irq++) { pci_map[i++] = cpu_to_be32(slot << 11); pci_map[i++] = cpu_to_be32(0x0); pci_map[i++] = cpu_to_be32(0x0); pci_map[i++] = cpu_to_be32(pci_irq + 1); pci_map[i++] = cpu_to_be32(mpic); host_irq = ppce500_pci_map_irq_slot(slot, pci_irq); pci_map[i++] = cpu_to_be32(host_irq + 1); pci_map[i++] = cpu_to_be32(0x1); } } assert((i * sizeof(uint32_t)) == *len); return pci_map; } static void dt_serial_create(void *fdt, unsigned long long offset, const char *soc, const char *mpic, const char *alias, int idx, bool defcon) { char *ser; ser = g_strdup_printf("%s/serial@%llx", soc, offset); qemu_fdt_add_subnode(fdt, ser); qemu_fdt_setprop_string(fdt, ser, "device_type", "serial"); qemu_fdt_setprop_string(fdt, ser, "compatible", "ns16550"); qemu_fdt_setprop_cells(fdt, ser, "reg", offset, 0x100); qemu_fdt_setprop_cell(fdt, ser, "cell-index", idx); qemu_fdt_setprop_cell(fdt, ser, "clock-frequency", 0); qemu_fdt_setprop_cells(fdt, ser, "interrupts", 42, 2); qemu_fdt_setprop_phandle(fdt, ser, "interrupt-parent", mpic); qemu_fdt_setprop_string(fdt, "/aliases", alias, ser); if (defcon) { /* * "linux,stdout-path" and "stdout" properties are deprecated by linux * kernel. New platforms should only use the "stdout-path" property. Set * the new property and continue using older property to remain * compatible with the existing firmware. */ qemu_fdt_setprop_string(fdt, "/chosen", "linux,stdout-path", ser); qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", ser); } g_free(ser); } static void create_dt_mpc8xxx_gpio(void *fdt, const char *soc, const char *mpic) { hwaddr mmio0 = MPC8XXX_GPIO_OFFSET; int irq0 = MPC8XXX_GPIO_IRQ; gchar *node = g_strdup_printf("%s/gpio@%"PRIx64, soc, mmio0); gchar *poweroff = g_strdup_printf("%s/power-off", soc); int gpio_ph; qemu_fdt_add_subnode(fdt, node); qemu_fdt_setprop_string(fdt, node, "compatible", "fsl,qoriq-gpio"); qemu_fdt_setprop_cells(fdt, node, "reg", mmio0, 0x1000); qemu_fdt_setprop_cells(fdt, node, "interrupts", irq0, 0x2); qemu_fdt_setprop_phandle(fdt, node, "interrupt-parent", mpic); qemu_fdt_setprop_cells(fdt, node, "#gpio-cells", 2); qemu_fdt_setprop(fdt, node, "gpio-controller", NULL, 0); gpio_ph = qemu_fdt_alloc_phandle(fdt); qemu_fdt_setprop_cell(fdt, node, "phandle", gpio_ph); qemu_fdt_setprop_cell(fdt, node, "linux,phandle", gpio_ph); /* Power Off Pin */ qemu_fdt_add_subnode(fdt, poweroff); qemu_fdt_setprop_string(fdt, poweroff, "compatible", "gpio-poweroff"); qemu_fdt_setprop_cells(fdt, poweroff, "gpios", gpio_ph, 0, 0); g_free(node); g_free(poweroff); } typedef struct PlatformDevtreeData { void *fdt; const char *mpic; int irq_start; const char *node; PlatformBusDevice *pbus; } PlatformDevtreeData; static int create_devtree_etsec(SysBusDevice *sbdev, PlatformDevtreeData *data) { eTSEC *etsec = ETSEC_COMMON(sbdev); PlatformBusDevice *pbus = data->pbus; hwaddr mmio0 = platform_bus_get_mmio_addr(pbus, sbdev, 0); int irq0 = platform_bus_get_irqn(pbus, sbdev, 0); int irq1 = platform_bus_get_irqn(pbus, sbdev, 1); int irq2 = platform_bus_get_irqn(pbus, sbdev, 2); gchar *node = g_strdup_printf("/platform/ethernet@%"PRIx64, mmio0); gchar *group = g_strdup_printf("%s/queue-group", node); void *fdt = data->fdt; assert((int64_t)mmio0 >= 0); assert(irq0 >= 0); assert(irq1 >= 0); assert(irq2 >= 0); qemu_fdt_add_subnode(fdt, node); qemu_fdt_setprop_string(fdt, node, "device_type", "network"); qemu_fdt_setprop_string(fdt, node, "compatible", "fsl,etsec2"); qemu_fdt_setprop_string(fdt, node, "model", "eTSEC"); qemu_fdt_setprop(fdt, node, "local-mac-address", etsec->conf.macaddr.a, 6); qemu_fdt_setprop_cells(fdt, node, "fixed-link", 0, 1, 1000, 0, 0); qemu_fdt_add_subnode(fdt, group); qemu_fdt_setprop_cells(fdt, group, "reg", mmio0, 0x1000); qemu_fdt_setprop_cells(fdt, group, "interrupts", data->irq_start + irq0, 0x2, data->irq_start + irq1, 0x2, data->irq_start + irq2, 0x2); g_free(node); g_free(group); return 0; } static void sysbus_device_create_devtree(SysBusDevice *sbdev, void *opaque) { PlatformDevtreeData *data = opaque; bool matched = false; if (object_dynamic_cast(OBJECT(sbdev), TYPE_ETSEC_COMMON)) { create_devtree_etsec(sbdev, data); matched = true; } if (!matched) { error_report("Device %s is not supported by this machine yet.", qdev_fw_name(DEVICE(sbdev))); exit(1); } } static void platform_bus_create_devtree(PPCE500MachineState *pms, void *fdt, const char *mpic) { const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(pms); gchar *node = g_strdup_printf("/platform@%"PRIx64, pmc->platform_bus_base); const char platcomp[] = "qemu,platform\0simple-bus"; uint64_t addr = pmc->platform_bus_base; uint64_t size = pmc->platform_bus_size; int irq_start = pmc->platform_bus_first_irq; /* Create a /platform node that we can put all devices into */ qemu_fdt_add_subnode(fdt, node); qemu_fdt_setprop(fdt, node, "compatible", platcomp, sizeof(platcomp)); /* Our platform bus region is less than 32bit big, so 1 cell is enough for address and size */ qemu_fdt_setprop_cells(fdt, node, "#size-cells", 1); qemu_fdt_setprop_cells(fdt, node, "#address-cells", 1); qemu_fdt_setprop_cells(fdt, node, "ranges", 0, addr >> 32, addr, size); qemu_fdt_setprop_phandle(fdt, node, "interrupt-parent", mpic); /* Create dt nodes for dynamic devices */ PlatformDevtreeData data = { .fdt = fdt, .mpic = mpic, .irq_start = irq_start, .node = node, .pbus = pms->pbus_dev, }; /* Loop through all dynamic sysbus devices and create nodes for them */ foreach_dynamic_sysbus_device(sysbus_device_create_devtree, &data); g_free(node); } static int ppce500_load_device_tree(PPCE500MachineState *pms, hwaddr addr, hwaddr initrd_base, hwaddr initrd_size, hwaddr kernel_base, hwaddr kernel_size, bool dry_run) { MachineState *machine = MACHINE(pms); const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(pms); CPUPPCState *env = first_cpu->env_ptr; int ret = -1; uint64_t mem_reg_property[] = { 0, cpu_to_be64(machine->ram_size) }; int fdt_size; void *fdt; uint8_t hypercall[16]; uint32_t clock_freq = 400000000; uint32_t tb_freq = 400000000; int i; char compatible_sb[] = "fsl,mpc8544-immr\0simple-bus"; char *soc; char *mpic; uint32_t mpic_ph; uint32_t msi_ph; char *gutil; char *pci; char *msi; uint32_t *pci_map = NULL; int len; uint32_t pci_ranges[14] = { 0x2000000, 0x0, pmc->pci_mmio_bus_base, pmc->pci_mmio_base >> 32, pmc->pci_mmio_base, 0x0, 0x20000000, 0x1000000, 0x0, 0x0, pmc->pci_pio_base >> 32, pmc->pci_pio_base, 0x0, 0x10000, }; QemuOpts *machine_opts = qemu_get_machine_opts(); const char *dtb_file = qemu_opt_get(machine_opts, "dtb"); const char *toplevel_compat = qemu_opt_get(machine_opts, "dt_compatible"); if (dtb_file) { char *filename; filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, dtb_file); if (!filename) { goto out; } fdt = load_device_tree(filename, &fdt_size); g_free(filename); if (!fdt) { goto out; } goto done; } fdt = create_device_tree(&fdt_size); if (fdt == NULL) { goto out; } /* Manipulate device tree in memory. */ qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 2); qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 2); qemu_fdt_add_subnode(fdt, "/memory"); qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); qemu_fdt_setprop(fdt, "/memory", "reg", mem_reg_property, sizeof(mem_reg_property)); qemu_fdt_add_subnode(fdt, "/chosen"); if (initrd_size) { ret = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", initrd_base); if (ret < 0) { fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); } ret = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", (initrd_base + initrd_size)); if (ret < 0) { fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); } } if (kernel_base != -1ULL) { qemu_fdt_setprop_cells(fdt, "/chosen", "qemu,boot-kernel", kernel_base >> 32, kernel_base, kernel_size >> 32, kernel_size); } ret = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", machine->kernel_cmdline); if (ret < 0) fprintf(stderr, "couldn't set /chosen/bootargs\n"); if (kvm_enabled()) { /* Read out host's frequencies */ clock_freq = kvmppc_get_clockfreq(); tb_freq = kvmppc_get_tbfreq(); /* indicate KVM hypercall interface */ qemu_fdt_add_subnode(fdt, "/hypervisor"); qemu_fdt_setprop_string(fdt, "/hypervisor", "compatible", "linux,kvm"); kvmppc_get_hypercall(env, hypercall, sizeof(hypercall)); qemu_fdt_setprop(fdt, "/hypervisor", "hcall-instructions", hypercall, sizeof(hypercall)); /* if KVM supports the idle hcall, set property indicating this */ if (kvmppc_get_hasidle(env)) { qemu_fdt_setprop(fdt, "/hypervisor", "has-idle", NULL, 0); } } /* Create CPU nodes */ qemu_fdt_add_subnode(fdt, "/cpus"); qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 1); qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0); /* We need to generate the cpu nodes in reverse order, so Linux can pick the first node as boot node and be happy */ for (i = smp_cpus - 1; i >= 0; i--) { CPUState *cpu; char *cpu_name; uint64_t cpu_release_addr = pmc->spin_base + (i * 0x20); cpu = qemu_get_cpu(i); if (cpu == NULL) { continue; } env = cpu->env_ptr; cpu_name = g_strdup_printf("/cpus/PowerPC,8544@%x", i); qemu_fdt_add_subnode(fdt, cpu_name); qemu_fdt_setprop_cell(fdt, cpu_name, "clock-frequency", clock_freq); qemu_fdt_setprop_cell(fdt, cpu_name, "timebase-frequency", tb_freq); qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu"); qemu_fdt_setprop_cell(fdt, cpu_name, "reg", i); qemu_fdt_setprop_cell(fdt, cpu_name, "d-cache-line-size", env->dcache_line_size); qemu_fdt_setprop_cell(fdt, cpu_name, "i-cache-line-size", env->icache_line_size); qemu_fdt_setprop_cell(fdt, cpu_name, "d-cache-size", 0x8000); qemu_fdt_setprop_cell(fdt, cpu_name, "i-cache-size", 0x8000); qemu_fdt_setprop_cell(fdt, cpu_name, "bus-frequency", 0); if (cpu->cpu_index) { qemu_fdt_setprop_string(fdt, cpu_name, "status", "disabled"); qemu_fdt_setprop_string(fdt, cpu_name, "enable-method", "spin-table"); qemu_fdt_setprop_u64(fdt, cpu_name, "cpu-release-addr", cpu_release_addr); } else { qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay"); } g_free(cpu_name); } qemu_fdt_add_subnode(fdt, "/aliases"); /* XXX These should go into their respective devices' code */ soc = g_strdup_printf("/soc@%"PRIx64, pmc->ccsrbar_base); qemu_fdt_add_subnode(fdt, soc); qemu_fdt_setprop_string(fdt, soc, "device_type", "soc"); qemu_fdt_setprop(fdt, soc, "compatible", compatible_sb, sizeof(compatible_sb)); qemu_fdt_setprop_cell(fdt, soc, "#address-cells", 1); qemu_fdt_setprop_cell(fdt, soc, "#size-cells", 1); qemu_fdt_setprop_cells(fdt, soc, "ranges", 0x0, pmc->ccsrbar_base >> 32, pmc->ccsrbar_base, MPC8544_CCSRBAR_SIZE); /* XXX should contain a reasonable value */ qemu_fdt_setprop_cell(fdt, soc, "bus-frequency", 0); mpic = g_strdup_printf("%s/pic@%llx", soc, MPC8544_MPIC_REGS_OFFSET); qemu_fdt_add_subnode(fdt, mpic); qemu_fdt_setprop_string(fdt, mpic, "device_type", "open-pic"); qemu_fdt_setprop_string(fdt, mpic, "compatible", "fsl,mpic"); qemu_fdt_setprop_cells(fdt, mpic, "reg", MPC8544_MPIC_REGS_OFFSET, 0x40000); qemu_fdt_setprop_cell(fdt, mpic, "#address-cells", 0); qemu_fdt_setprop_cell(fdt, mpic, "#interrupt-cells", 2); mpic_ph = qemu_fdt_alloc_phandle(fdt); qemu_fdt_setprop_cell(fdt, mpic, "phandle", mpic_ph); qemu_fdt_setprop_cell(fdt, mpic, "linux,phandle", mpic_ph); qemu_fdt_setprop(fdt, mpic, "interrupt-controller", NULL, 0); /* * We have to generate ser1 first, because Linux takes the first * device it finds in the dt as serial output device. And we generate * devices in reverse order to the dt. */ if (serial_hd(1)) { dt_serial_create(fdt, MPC8544_SERIAL1_REGS_OFFSET, soc, mpic, "serial1", 1, false); } if (serial_hd(0)) { dt_serial_create(fdt, MPC8544_SERIAL0_REGS_OFFSET, soc, mpic, "serial0", 0, true); } gutil = g_strdup_printf("%s/global-utilities@%llx", soc, MPC8544_UTIL_OFFSET); qemu_fdt_add_subnode(fdt, gutil); qemu_fdt_setprop_string(fdt, gutil, "compatible", "fsl,mpc8544-guts"); qemu_fdt_setprop_cells(fdt, gutil, "reg", MPC8544_UTIL_OFFSET, 0x1000); qemu_fdt_setprop(fdt, gutil, "fsl,has-rstcr", NULL, 0); g_free(gutil); msi = g_strdup_printf("/%s/msi@%llx", soc, MPC8544_MSI_REGS_OFFSET); qemu_fdt_add_subnode(fdt, msi); qemu_fdt_setprop_string(fdt, msi, "compatible", "fsl,mpic-msi"); qemu_fdt_setprop_cells(fdt, msi, "reg", MPC8544_MSI_REGS_OFFSET, 0x200); msi_ph = qemu_fdt_alloc_phandle(fdt); qemu_fdt_setprop_cells(fdt, msi, "msi-available-ranges", 0x0, 0x100); qemu_fdt_setprop_phandle(fdt, msi, "interrupt-parent", mpic); qemu_fdt_setprop_cells(fdt, msi, "interrupts", 0xe0, 0x0, 0xe1, 0x0, 0xe2, 0x0, 0xe3, 0x0, 0xe4, 0x0, 0xe5, 0x0, 0xe6, 0x0, 0xe7, 0x0); qemu_fdt_setprop_cell(fdt, msi, "phandle", msi_ph); qemu_fdt_setprop_cell(fdt, msi, "linux,phandle", msi_ph); g_free(msi); pci = g_strdup_printf("/pci@%llx", pmc->ccsrbar_base + MPC8544_PCI_REGS_OFFSET); qemu_fdt_add_subnode(fdt, pci); qemu_fdt_setprop_cell(fdt, pci, "cell-index", 0); qemu_fdt_setprop_string(fdt, pci, "compatible", "fsl,mpc8540-pci"); qemu_fdt_setprop_string(fdt, pci, "device_type", "pci"); qemu_fdt_setprop_cells(fdt, pci, "interrupt-map-mask", 0xf800, 0x0, 0x0, 0x7); pci_map = pci_map_create(fdt, qemu_fdt_get_phandle(fdt, mpic), pmc->pci_first_slot, pmc->pci_nr_slots, &len); qemu_fdt_setprop(fdt, pci, "interrupt-map", pci_map, len); qemu_fdt_setprop_phandle(fdt, pci, "interrupt-parent", mpic); qemu_fdt_setprop_cells(fdt, pci, "interrupts", 24, 2); qemu_fdt_setprop_cells(fdt, pci, "bus-range", 0, 255); for (i = 0; i < 14; i++) { pci_ranges[i] = cpu_to_be32(pci_ranges[i]); } qemu_fdt_setprop_cell(fdt, pci, "fsl,msi", msi_ph); qemu_fdt_setprop(fdt, pci, "ranges", pci_ranges, sizeof(pci_ranges)); qemu_fdt_setprop_cells(fdt, pci, "reg", (pmc->ccsrbar_base + MPC8544_PCI_REGS_OFFSET) >> 32, (pmc->ccsrbar_base + MPC8544_PCI_REGS_OFFSET), 0, 0x1000); qemu_fdt_setprop_cell(fdt, pci, "clock-frequency", 66666666); qemu_fdt_setprop_cell(fdt, pci, "#interrupt-cells", 1); qemu_fdt_setprop_cell(fdt, pci, "#size-cells", 2); qemu_fdt_setprop_cell(fdt, pci, "#address-cells", 3); qemu_fdt_setprop_string(fdt, "/aliases", "pci0", pci); g_free(pci); if (pmc->has_mpc8xxx_gpio) { create_dt_mpc8xxx_gpio(fdt, soc, mpic); } g_free(soc); if (pms->pbus_dev) { platform_bus_create_devtree(pms, fdt, mpic); } g_free(mpic); pmc->fixup_devtree(fdt); if (toplevel_compat) { qemu_fdt_setprop(fdt, "/", "compatible", toplevel_compat, strlen(toplevel_compat) + 1); } done: if (!dry_run) { qemu_fdt_dumpdtb(fdt, fdt_size); cpu_physical_memory_write(addr, fdt, fdt_size); } ret = fdt_size; out: g_free(pci_map); return ret; } typedef struct DeviceTreeParams { PPCE500MachineState *machine; hwaddr addr; hwaddr initrd_base; hwaddr initrd_size; hwaddr kernel_base; hwaddr kernel_size; Notifier notifier; } DeviceTreeParams; static void ppce500_reset_device_tree(void *opaque) { DeviceTreeParams *p = opaque; ppce500_load_device_tree(p->machine, p->addr, p->initrd_base, p->initrd_size, p->kernel_base, p->kernel_size, false); } static void ppce500_init_notify(Notifier *notifier, void *data) { DeviceTreeParams *p = container_of(notifier, DeviceTreeParams, notifier); ppce500_reset_device_tree(p); } static int ppce500_prep_device_tree(PPCE500MachineState *machine, hwaddr addr, hwaddr initrd_base, hwaddr initrd_size, hwaddr kernel_base, hwaddr kernel_size) { DeviceTreeParams *p = g_new(DeviceTreeParams, 1); p->machine = machine; p->addr = addr; p->initrd_base = initrd_base; p->initrd_size = initrd_size; p->kernel_base = kernel_base; p->kernel_size = kernel_size; qemu_register_reset(ppce500_reset_device_tree, p); p->notifier.notify = ppce500_init_notify; qemu_add_machine_init_done_notifier(&p->notifier); /* Issue the device tree loader once, so that we get the size of the blob */ return ppce500_load_device_tree(machine, addr, initrd_base, initrd_size, kernel_base, kernel_size, true); } /* Create -kernel TLB entries for BookE. */ hwaddr booke206_page_size_to_tlb(uint64_t size) { return 63 - clz64(size / KiB); } static int booke206_initial_map_tsize(CPUPPCState *env) { struct boot_info *bi = env->load_info; hwaddr dt_end; int ps; /* Our initial TLB entry needs to cover everything from 0 to the device tree top */ dt_end = bi->dt_base + bi->dt_size; ps = booke206_page_size_to_tlb(dt_end) + 1; if (ps & 1) { /* e500v2 can only do even TLB size bits */ ps++; } return ps; } static uint64_t mmubooke_initial_mapsize(CPUPPCState *env) { int tsize; tsize = booke206_initial_map_tsize(env); return (1ULL << 10 << tsize); } static void mmubooke_create_initial_mapping(CPUPPCState *env) { ppcmas_tlb_t *tlb = booke206_get_tlbm(env, 1, 0, 0); hwaddr size; int ps; ps = booke206_initial_map_tsize(env); size = (ps << MAS1_TSIZE_SHIFT); tlb->mas1 = MAS1_VALID | size; tlb->mas2 = 0; tlb->mas7_3 = 0; tlb->mas7_3 |= MAS3_UR | MAS3_UW | MAS3_UX | MAS3_SR | MAS3_SW | MAS3_SX; env->tlb_dirty = true; } static void ppce500_cpu_reset_sec(void *opaque) { PowerPCCPU *cpu = opaque; CPUState *cs = CPU(cpu); cpu_reset(cs); /* Secondary CPU starts in halted state for now. Needs to change when implementing non-kernel boot. */ cs->halted = 1; cs->exception_index = EXCP_HLT; } static void ppce500_cpu_reset(void *opaque) { PowerPCCPU *cpu = opaque; CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; struct boot_info *bi = env->load_info; cpu_reset(cs); /* Set initial guest state. */ cs->halted = 0; env->gpr[1] = (16 * MiB) - 8; env->gpr[3] = bi->dt_base; env->gpr[4] = 0; env->gpr[5] = 0; env->gpr[6] = EPAPR_MAGIC; env->gpr[7] = mmubooke_initial_mapsize(env); env->gpr[8] = 0; env->gpr[9] = 0; env->nip = bi->entry; mmubooke_create_initial_mapping(env); } static DeviceState *ppce500_init_mpic_qemu(PPCE500MachineState *pms, IrqLines *irqs) { DeviceState *dev; SysBusDevice *s; int i, j, k; MachineState *machine = MACHINE(pms); const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(pms); dev = qdev_create(NULL, TYPE_OPENPIC); object_property_add_child(OBJECT(machine), "pic", OBJECT(dev), &error_fatal); qdev_prop_set_uint32(dev, "model", pmc->mpic_version); qdev_prop_set_uint32(dev, "nb_cpus", smp_cpus); qdev_init_nofail(dev); s = SYS_BUS_DEVICE(dev); k = 0; for (i = 0; i < smp_cpus; i++) { for (j = 0; j < OPENPIC_OUTPUT_NB; j++) { sysbus_connect_irq(s, k++, irqs[i].irq[j]); } } return dev; } static DeviceState *ppce500_init_mpic_kvm(const PPCE500MachineClass *pmc, IrqLines *irqs, Error **errp) { Error *err = NULL; DeviceState *dev; CPUState *cs; dev = qdev_create(NULL, TYPE_KVM_OPENPIC); qdev_prop_set_uint32(dev, "model", pmc->mpic_version); object_property_set_bool(OBJECT(dev), true, "realized", &err); if (err) { error_propagate(errp, err); object_unparent(OBJECT(dev)); return NULL; } CPU_FOREACH(cs) { if (kvm_openpic_connect_vcpu(dev, cs)) { fprintf(stderr, "%s: failed to connect vcpu to irqchip\n", __func__); abort(); } } return dev; } static DeviceState *ppce500_init_mpic(PPCE500MachineState *pms, MemoryRegion *ccsr, IrqLines *irqs) { MachineState *machine = MACHINE(pms); const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(pms); DeviceState *dev = NULL; SysBusDevice *s; if (kvm_enabled()) { Error *err = NULL; if (machine_kernel_irqchip_allowed(machine)) { dev = ppce500_init_mpic_kvm(pmc, irqs, &err); } if (machine_kernel_irqchip_required(machine) && !dev) { error_reportf_err(err, "kernel_irqchip requested but unavailable: "); exit(1); } } if (!dev) { dev = ppce500_init_mpic_qemu(pms, irqs); } s = SYS_BUS_DEVICE(dev); memory_region_add_subregion(ccsr, MPC8544_MPIC_REGS_OFFSET, s->mmio[0].memory); return dev; } static void ppce500_power_off(void *opaque, int line, int on) { if (on) { qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); } } void ppce500_init(MachineState *machine) { MemoryRegion *address_space_mem = get_system_memory(); MemoryRegion *ram = g_new(MemoryRegion, 1); PPCE500MachineState *pms = PPCE500_MACHINE(machine); const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(machine); PCIBus *pci_bus; CPUPPCState *env = NULL; uint64_t loadaddr; hwaddr kernel_base = -1LL; int kernel_size = 0; hwaddr dt_base = 0; hwaddr initrd_base = 0; int initrd_size = 0; hwaddr cur_base = 0; char *filename; const char *payload_name; bool kernel_as_payload; hwaddr bios_entry = 0; target_long payload_size; struct boot_info *boot_info; int dt_size; int i; /* irq num for pin INTA, INTB, INTC and INTD is 1, 2, 3 and * 4 respectively */ unsigned int pci_irq_nrs[PCI_NUM_PINS] = {1, 2, 3, 4}; IrqLines *irqs; DeviceState *dev, *mpicdev; CPUPPCState *firstenv = NULL; MemoryRegion *ccsr_addr_space; SysBusDevice *s; PPCE500CCSRState *ccsr; irqs = g_new0(IrqLines, smp_cpus); for (i = 0; i < smp_cpus; i++) { PowerPCCPU *cpu; CPUState *cs; qemu_irq *input; cpu = POWERPC_CPU(cpu_create(machine->cpu_type)); env = &cpu->env; cs = CPU(cpu); if (env->mmu_model != POWERPC_MMU_BOOKE206) { error_report("MMU model %i not supported by this machine", env->mmu_model); exit(1); } if (!firstenv) { firstenv = env; } input = (qemu_irq *)env->irq_inputs; irqs[i].irq[OPENPIC_OUTPUT_INT] = input[PPCE500_INPUT_INT]; irqs[i].irq[OPENPIC_OUTPUT_CINT] = input[PPCE500_INPUT_CINT]; env->spr_cb[SPR_BOOKE_PIR].default_value = cs->cpu_index = i; env->mpic_iack = pmc->ccsrbar_base + MPC8544_MPIC_REGS_OFFSET + 0xa0; ppc_booke_timers_init(cpu, 400000000, PPC_TIMER_E500); /* Register reset handler */ if (!i) { /* Primary CPU */ struct boot_info *boot_info; boot_info = g_malloc0(sizeof(struct boot_info)); qemu_register_reset(ppce500_cpu_reset, cpu); env->load_info = boot_info; } else { /* Secondary CPUs */ qemu_register_reset(ppce500_cpu_reset_sec, cpu); } } env = firstenv; /* Fixup Memory size on a alignment boundary */ ram_size &= ~(RAM_SIZES_ALIGN - 1); machine->ram_size = ram_size; /* Register Memory */ memory_region_allocate_system_memory(ram, NULL, "mpc8544ds.ram", ram_size); memory_region_add_subregion(address_space_mem, 0, ram); dev = qdev_create(NULL, "e500-ccsr"); object_property_add_child(qdev_get_machine(), "e500-ccsr", OBJECT(dev), NULL); qdev_init_nofail(dev); ccsr = CCSR(dev); ccsr_addr_space = &ccsr->ccsr_space; memory_region_add_subregion(address_space_mem, pmc->ccsrbar_base, ccsr_addr_space); mpicdev = ppce500_init_mpic(pms, ccsr_addr_space, irqs); /* Serial */ if (serial_hd(0)) { serial_mm_init(ccsr_addr_space, MPC8544_SERIAL0_REGS_OFFSET, 0, qdev_get_gpio_in(mpicdev, 42), 399193, serial_hd(0), DEVICE_BIG_ENDIAN); } if (serial_hd(1)) { serial_mm_init(ccsr_addr_space, MPC8544_SERIAL1_REGS_OFFSET, 0, qdev_get_gpio_in(mpicdev, 42), 399193, serial_hd(1), DEVICE_BIG_ENDIAN); } /* General Utility device */ dev = qdev_create(NULL, "mpc8544-guts"); qdev_init_nofail(dev); s = SYS_BUS_DEVICE(dev); memory_region_add_subregion(ccsr_addr_space, MPC8544_UTIL_OFFSET, sysbus_mmio_get_region(s, 0)); /* PCI */ dev = qdev_create(NULL, "e500-pcihost"); object_property_add_child(qdev_get_machine(), "pci-host", OBJECT(dev), &error_abort); qdev_prop_set_uint32(dev, "first_slot", pmc->pci_first_slot); qdev_prop_set_uint32(dev, "first_pin_irq", pci_irq_nrs[0]); qdev_init_nofail(dev); s = SYS_BUS_DEVICE(dev); for (i = 0; i < PCI_NUM_PINS; i++) { sysbus_connect_irq(s, i, qdev_get_gpio_in(mpicdev, pci_irq_nrs[i])); } memory_region_add_subregion(ccsr_addr_space, MPC8544_PCI_REGS_OFFSET, sysbus_mmio_get_region(s, 0)); pci_bus = (PCIBus *)qdev_get_child_bus(dev, "pci.0"); if (!pci_bus) printf("couldn't create PCI controller!\n"); if (pci_bus) { /* Register network interfaces. */ for (i = 0; i < nb_nics; i++) { pci_nic_init_nofail(&nd_table[i], pci_bus, "virtio-net-pci", NULL); } } /* Register spinning region */ sysbus_create_simple("e500-spin", pmc->spin_base, NULL); if (pmc->has_mpc8xxx_gpio) { qemu_irq poweroff_irq; dev = qdev_create(NULL, "mpc8xxx_gpio"); s = SYS_BUS_DEVICE(dev); qdev_init_nofail(dev); sysbus_connect_irq(s, 0, qdev_get_gpio_in(mpicdev, MPC8XXX_GPIO_IRQ)); memory_region_add_subregion(ccsr_addr_space, MPC8XXX_GPIO_OFFSET, sysbus_mmio_get_region(s, 0)); /* Power Off GPIO at Pin 0 */ poweroff_irq = qemu_allocate_irq(ppce500_power_off, NULL, 0); qdev_connect_gpio_out(dev, 0, poweroff_irq); } /* Platform Bus Device */ if (pmc->has_platform_bus) { dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); dev->id = TYPE_PLATFORM_BUS_DEVICE; qdev_prop_set_uint32(dev, "num_irqs", pmc->platform_bus_num_irqs); qdev_prop_set_uint32(dev, "mmio_size", pmc->platform_bus_size); qdev_init_nofail(dev); pms->pbus_dev = PLATFORM_BUS_DEVICE(dev); s = SYS_BUS_DEVICE(pms->pbus_dev); for (i = 0; i < pmc->platform_bus_num_irqs; i++) { int irqn = pmc->platform_bus_first_irq + i; sysbus_connect_irq(s, i, qdev_get_gpio_in(mpicdev, irqn)); } memory_region_add_subregion(address_space_mem, pmc->platform_bus_base, sysbus_mmio_get_region(s, 0)); } /* * Smart firmware defaults ahead! * * We follow the following table to select which payload we execute. * * -kernel | -bios | payload * ---------+-------+--------- * N | Y | u-boot * N | N | u-boot * Y | Y | u-boot * Y | N | kernel * * This ensures backwards compatibility with how we used to expose * -kernel to users but allows them to run through u-boot as well. */ kernel_as_payload = false; if (bios_name == NULL) { if (machine->kernel_filename) { payload_name = machine->kernel_filename; kernel_as_payload = true; } else { payload_name = "u-boot.e500"; } } else { payload_name = bios_name; } filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, payload_name); payload_size = load_elf(filename, NULL, NULL, &bios_entry, &loadaddr, NULL, 1, PPC_ELF_MACHINE, 0, 0); if (payload_size < 0) { /* * Hrm. No ELF image? Try a uImage, maybe someone is giving us an * ePAPR compliant kernel */ payload_size = load_uimage(filename, &bios_entry, &loadaddr, NULL, NULL, NULL); if (payload_size < 0) { error_report("could not load firmware '%s'", filename); exit(1); } } g_free(filename); if (kernel_as_payload) { kernel_base = loadaddr; kernel_size = payload_size; } cur_base = loadaddr + payload_size; if (cur_base < 32 * MiB) { /* u-boot occupies memory up to 32MB, so load blobs above */ cur_base = 32 * MiB; } /* Load bare kernel only if no bios/u-boot has been provided */ if (machine->kernel_filename && !kernel_as_payload) { kernel_base = cur_base; kernel_size = load_image_targphys(machine->kernel_filename, cur_base, ram_size - cur_base); if (kernel_size < 0) { error_report("could not load kernel '%s'", machine->kernel_filename); exit(1); } cur_base += kernel_size; } /* Load initrd. */ if (machine->initrd_filename) { initrd_base = (cur_base + INITRD_LOAD_PAD) & ~INITRD_PAD_MASK; initrd_size = load_image_targphys(machine->initrd_filename, initrd_base, ram_size - initrd_base); if (initrd_size < 0) { error_report("could not load initial ram disk '%s'", machine->initrd_filename); exit(1); } cur_base = initrd_base + initrd_size; } /* * Reserve space for dtb behind the kernel image because Linux has a bug * where it can only handle the dtb if it's within the first 64MB of where * starts. dtb cannot not reach initrd_base because INITRD_LOAD_PAD * ensures enough space between kernel and initrd. */ dt_base = (loadaddr + payload_size + DTC_LOAD_PAD) & ~DTC_PAD_MASK; if (dt_base + DTB_MAX_SIZE > ram_size) { error_report("not enough memory for device tree"); exit(1); } dt_size = ppce500_prep_device_tree(pms, dt_base, initrd_base, initrd_size, kernel_base, kernel_size); if (dt_size < 0) { error_report("couldn't load device tree"); exit(1); } assert(dt_size < DTB_MAX_SIZE); boot_info = env->load_info; boot_info->entry = bios_entry; boot_info->dt_base = dt_base; boot_info->dt_size = dt_size; } static void e500_ccsr_initfn(Object *obj) { PPCE500CCSRState *ccsr = CCSR(obj); memory_region_init(&ccsr->ccsr_space, obj, "e500-ccsr", MPC8544_CCSRBAR_SIZE); } static const TypeInfo e500_ccsr_info = { .name = TYPE_CCSR, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(PPCE500CCSRState), .instance_init = e500_ccsr_initfn, }; static const TypeInfo ppce500_info = { .name = TYPE_PPCE500_MACHINE, .parent = TYPE_MACHINE, .abstract = true, .instance_size = sizeof(PPCE500MachineState), .class_size = sizeof(PPCE500MachineClass), }; static void e500_register_types(void) { type_register_static(&e500_ccsr_info); type_register_static(&ppce500_info); } type_init(e500_register_types)