/* * QEMU PowerPC PowerNV (POWER8) PHB3 model * * Copyright (c) 2014-2020, IBM Corporation. * * This code is licensed under the GPL version 2 or later. See the * COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qapi/visitor.h" #include "qapi/error.h" #include "qemu-common.h" #include "hw/pci-host/pnv_phb3_regs.h" #include "hw/pci-host/pnv_phb3.h" #include "hw/pci/pcie_host.h" #include "hw/pci/pcie_port.h" #include "hw/ppc/pnv.h" #include "hw/irq.h" #include "hw/qdev-properties.h" #include "qom/object.h" #define phb3_error(phb, fmt, ...) \ qemu_log_mask(LOG_GUEST_ERROR, "phb3[%d:%d]: " fmt "\n", \ (phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__) static PCIDevice *pnv_phb3_find_cfg_dev(PnvPHB3 *phb) { PCIHostState *pci = PCI_HOST_BRIDGE(phb); uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3]; uint8_t bus, devfn; if (!(addr >> 63)) { return NULL; } bus = (addr >> 52) & 0xff; devfn = (addr >> 44) & 0xff; return pci_find_device(pci->bus, bus, devfn); } /* * The CONFIG_DATA register expects little endian accesses, but as the * region is big endian, we have to swap the value. */ static void pnv_phb3_config_write(PnvPHB3 *phb, unsigned off, unsigned size, uint64_t val) { uint32_t cfg_addr, limit; PCIDevice *pdev; pdev = pnv_phb3_find_cfg_dev(phb); if (!pdev) { return; } cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc; cfg_addr |= off; limit = pci_config_size(pdev); if (limit <= cfg_addr) { /* * conventional pci device can be behind pcie-to-pci bridge. * 256 <= addr < 4K has no effects. */ return; } switch (size) { case 1: break; case 2: val = bswap16(val); break; case 4: val = bswap32(val); break; default: g_assert_not_reached(); } pci_host_config_write_common(pdev, cfg_addr, limit, val, size); } static uint64_t pnv_phb3_config_read(PnvPHB3 *phb, unsigned off, unsigned size) { uint32_t cfg_addr, limit; PCIDevice *pdev; uint64_t val; pdev = pnv_phb3_find_cfg_dev(phb); if (!pdev) { return ~0ull; } cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc; cfg_addr |= off; limit = pci_config_size(pdev); if (limit <= cfg_addr) { /* * conventional pci device can be behind pcie-to-pci bridge. * 256 <= addr < 4K has no effects. */ return ~0ull; } val = pci_host_config_read_common(pdev, cfg_addr, limit, size); switch (size) { case 1: return val; case 2: return bswap16(val); case 4: return bswap32(val); default: g_assert_not_reached(); } } static void pnv_phb3_check_m32(PnvPHB3 *phb) { uint64_t base, start, size; MemoryRegion *parent; PnvPBCQState *pbcq = &phb->pbcq; if (memory_region_is_mapped(&phb->mr_m32)) { memory_region_del_subregion(phb->mr_m32.container, &phb->mr_m32); } if (!(phb->regs[PHB_PHB3_CONFIG >> 3] & PHB_PHB3C_M32_EN)) { return; } /* Grab geometry from registers */ base = phb->regs[PHB_M32_BASE_ADDR >> 3]; start = phb->regs[PHB_M32_START_ADDR >> 3]; size = ~(phb->regs[PHB_M32_BASE_MASK >> 3] | 0xfffc000000000000ull) + 1; /* Check if it matches an enabled MMIO region in the PBCQ */ if (memory_region_is_mapped(&pbcq->mmbar0) && base >= pbcq->mmio0_base && (base + size) <= (pbcq->mmio0_base + pbcq->mmio0_size)) { parent = &pbcq->mmbar0; base -= pbcq->mmio0_base; } else if (memory_region_is_mapped(&pbcq->mmbar1) && base >= pbcq->mmio1_base && (base + size) <= (pbcq->mmio1_base + pbcq->mmio1_size)) { parent = &pbcq->mmbar1; base -= pbcq->mmio1_base; } else { return; } /* Create alias */ memory_region_init_alias(&phb->mr_m32, OBJECT(phb), "phb3-m32", &phb->pci_mmio, start, size); memory_region_add_subregion(parent, base, &phb->mr_m32); } static void pnv_phb3_check_m64(PnvPHB3 *phb, uint32_t index) { uint64_t base, start, size, m64; MemoryRegion *parent; PnvPBCQState *pbcq = &phb->pbcq; if (memory_region_is_mapped(&phb->mr_m64[index])) { /* Should we destroy it in RCU friendly way... ? */ memory_region_del_subregion(phb->mr_m64[index].container, &phb->mr_m64[index]); } /* Get table entry */ m64 = phb->ioda_M64BT[index]; if (!(m64 & IODA2_M64BT_ENABLE)) { return; } /* Grab geometry from registers */ base = GETFIELD(IODA2_M64BT_BASE, m64) << 20; if (m64 & IODA2_M64BT_SINGLE_PE) { base &= ~0x1ffffffull; } size = GETFIELD(IODA2_M64BT_MASK, m64) << 20; size |= 0xfffc000000000000ull; size = ~size + 1; start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]); /* Check if it matches an enabled MMIO region in the PBCQ */ if (memory_region_is_mapped(&pbcq->mmbar0) && base >= pbcq->mmio0_base && (base + size) <= (pbcq->mmio0_base + pbcq->mmio0_size)) { parent = &pbcq->mmbar0; base -= pbcq->mmio0_base; } else if (memory_region_is_mapped(&pbcq->mmbar1) && base >= pbcq->mmio1_base && (base + size) <= (pbcq->mmio1_base + pbcq->mmio1_size)) { parent = &pbcq->mmbar1; base -= pbcq->mmio1_base; } else { return; } /* Create alias */ memory_region_init_alias(&phb->mr_m64[index], OBJECT(phb), "phb3-m64", &phb->pci_mmio, start, size); memory_region_add_subregion(parent, base, &phb->mr_m64[index]); } static void pnv_phb3_check_all_m64s(PnvPHB3 *phb) { uint64_t i; for (i = 0; i < PNV_PHB3_NUM_M64; i++) { pnv_phb3_check_m64(phb, i); } } static void pnv_phb3_lxivt_write(PnvPHB3 *phb, unsigned idx, uint64_t val) { uint8_t server, prio; phb->ioda_LXIVT[idx] = val & (IODA2_LXIVT_SERVER | IODA2_LXIVT_PRIORITY | IODA2_LXIVT_NODE_ID); server = GETFIELD(IODA2_LXIVT_SERVER, val); prio = GETFIELD(IODA2_LXIVT_PRIORITY, val); /* * The low order 2 bits are the link pointer (Type II interrupts). * Shift back to get a valid IRQ server. */ server >>= 2; ics_write_xive(&phb->lsis, idx, server, prio, prio); } static uint64_t *pnv_phb3_ioda_access(PnvPHB3 *phb, unsigned *out_table, unsigned *out_idx) { uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3]; unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg); unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg); unsigned int mask; uint64_t *tptr = NULL; switch (table) { case IODA2_TBL_LIST: tptr = phb->ioda_LIST; mask = 7; break; case IODA2_TBL_LXIVT: tptr = phb->ioda_LXIVT; mask = 7; break; case IODA2_TBL_IVC_CAM: case IODA2_TBL_RBA: mask = 31; break; case IODA2_TBL_RCAM: mask = 63; break; case IODA2_TBL_MRT: mask = 7; break; case IODA2_TBL_PESTA: case IODA2_TBL_PESTB: mask = 255; break; case IODA2_TBL_TVT: tptr = phb->ioda_TVT; mask = 511; break; case IODA2_TBL_TCAM: case IODA2_TBL_TDR: mask = 63; break; case IODA2_TBL_M64BT: tptr = phb->ioda_M64BT; mask = 15; break; case IODA2_TBL_M32DT: tptr = phb->ioda_MDT; mask = 255; break; case IODA2_TBL_PEEV: tptr = phb->ioda_PEEV; mask = 3; break; default: phb3_error(phb, "invalid IODA table %d", table); return NULL; } index &= mask; if (out_idx) { *out_idx = index; } if (out_table) { *out_table = table; } if (tptr) { tptr += index; } if (adreg & PHB_IODA_AD_AUTOINC) { index = (index + 1) & mask; adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index); } phb->regs[PHB_IODA_ADDR >> 3] = adreg; return tptr; } static uint64_t pnv_phb3_ioda_read(PnvPHB3 *phb) { unsigned table; uint64_t *tptr; tptr = pnv_phb3_ioda_access(phb, &table, NULL); if (!tptr) { /* Return 0 on unsupported tables, not ff's */ return 0; } return *tptr; } static void pnv_phb3_ioda_write(PnvPHB3 *phb, uint64_t val) { unsigned table, idx; uint64_t *tptr; tptr = pnv_phb3_ioda_access(phb, &table, &idx); if (!tptr) { return; } /* Handle side effects */ switch (table) { case IODA2_TBL_LXIVT: pnv_phb3_lxivt_write(phb, idx, val); break; case IODA2_TBL_M64BT: *tptr = val; pnv_phb3_check_m64(phb, idx); break; default: *tptr = val; } } /* * This is called whenever the PHB LSI, MSI source ID register or * the PBCQ irq filters are written. */ void pnv_phb3_remap_irqs(PnvPHB3 *phb) { ICSState *ics = &phb->lsis; uint32_t local, global, count, mask, comp; uint64_t baren; PnvPBCQState *pbcq = &phb->pbcq; /* * First check if we are enabled. Unlike real HW we don't separate * TX and RX so we enable if both are set */ baren = pbcq->nest_regs[PBCQ_NEST_BAR_EN]; if (!(baren & PBCQ_NEST_BAR_EN_IRSN_RX) || !(baren & PBCQ_NEST_BAR_EN_IRSN_TX)) { ics->offset = 0; return; } /* Grab local LSI source ID */ local = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]) << 3; /* Grab global one and compare */ global = GETFIELD(PBCQ_NEST_LSI_SRC, pbcq->nest_regs[PBCQ_NEST_LSI_SRC_ID]) << 3; if (global != local) { /* * This happens during initialization, let's come back when we * are properly configured */ ics->offset = 0; return; } /* Get the base on the powerbus */ comp = GETFIELD(PBCQ_NEST_IRSN_COMP, pbcq->nest_regs[PBCQ_NEST_IRSN_COMPARE]); mask = GETFIELD(PBCQ_NEST_IRSN_COMP, pbcq->nest_regs[PBCQ_NEST_IRSN_MASK]); count = ((~mask) + 1) & 0x7ffff; phb->total_irq = count; /* Sanity checks */ if ((global + PNV_PHB3_NUM_LSI) > count) { phb3_error(phb, "LSIs out of reach: LSI base=%d total irq=%d", global, count); } if (count > 2048) { phb3_error(phb, "More interrupts than supported: %d", count); } if ((comp & mask) != comp) { phb3_error(phb, "IRQ compare bits not in mask: comp=0x%x mask=0x%x", comp, mask); comp &= mask; } /* Setup LSI offset */ ics->offset = comp + global; /* Setup MSI offset */ pnv_phb3_msi_update_config(&phb->msis, comp, count - PNV_PHB3_NUM_LSI); } static void pnv_phb3_lsi_src_id_write(PnvPHB3 *phb, uint64_t val) { /* Sanitize content */ val &= PHB_LSI_SRC_ID; phb->regs[PHB_LSI_SOURCE_ID >> 3] = val; pnv_phb3_remap_irqs(phb); } static void pnv_phb3_rtc_invalidate(PnvPHB3 *phb, uint64_t val) { PnvPhb3DMASpace *ds; /* Always invalidate all for now ... */ QLIST_FOREACH(ds, &phb->dma_spaces, list) { ds->pe_num = PHB_INVALID_PE; } } static void pnv_phb3_update_msi_regions(PnvPhb3DMASpace *ds) { uint64_t cfg = ds->phb->regs[PHB_PHB3_CONFIG >> 3]; if (cfg & PHB_PHB3C_32BIT_MSI_EN) { if (!memory_region_is_mapped(&ds->msi32_mr)) { memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr), 0xffff0000, &ds->msi32_mr); } } else { if (memory_region_is_mapped(&ds->msi32_mr)) { memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr), &ds->msi32_mr); } } if (cfg & PHB_PHB3C_64BIT_MSI_EN) { if (!memory_region_is_mapped(&ds->msi64_mr)) { memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr), (1ull << 60), &ds->msi64_mr); } } else { if (memory_region_is_mapped(&ds->msi64_mr)) { memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr), &ds->msi64_mr); } } } static void pnv_phb3_update_all_msi_regions(PnvPHB3 *phb) { PnvPhb3DMASpace *ds; QLIST_FOREACH(ds, &phb->dma_spaces, list) { pnv_phb3_update_msi_regions(ds); } } void pnv_phb3_reg_write(void *opaque, hwaddr off, uint64_t val, unsigned size) { PnvPHB3 *phb = opaque; bool changed; /* Special case configuration data */ if ((off & 0xfffc) == PHB_CONFIG_DATA) { pnv_phb3_config_write(phb, off & 0x3, size, val); return; } /* Other registers are 64-bit only */ if (size != 8 || off & 0x7) { phb3_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d", off, size); return; } /* Handle masking & filtering */ switch (off) { case PHB_M64_UPPER_BITS: val &= 0xfffc000000000000ull; break; case PHB_Q_DMA_R: /* * This is enough logic to make SW happy but we aren't actually * quiescing the DMAs */ if (val & PHB_Q_DMA_R_AUTORESET) { val = 0; } else { val &= PHB_Q_DMA_R_QUIESCE_DMA; } break; /* LEM stuff */ case PHB_LEM_FIR_AND_MASK: phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val; return; case PHB_LEM_FIR_OR_MASK: phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val; return; case PHB_LEM_ERROR_AND_MASK: phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val; return; case PHB_LEM_ERROR_OR_MASK: phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val; return; case PHB_LEM_WOF: val = 0; break; } /* Record whether it changed */ changed = phb->regs[off >> 3] != val; /* Store in register cache first */ phb->regs[off >> 3] = val; /* Handle side effects */ switch (off) { case PHB_PHB3_CONFIG: if (changed) { pnv_phb3_update_all_msi_regions(phb); } /* fall through */ case PHB_M32_BASE_ADDR: case PHB_M32_BASE_MASK: case PHB_M32_START_ADDR: if (changed) { pnv_phb3_check_m32(phb); } break; case PHB_M64_UPPER_BITS: if (changed) { pnv_phb3_check_all_m64s(phb); } break; case PHB_LSI_SOURCE_ID: if (changed) { pnv_phb3_lsi_src_id_write(phb, val); } break; /* IODA table accesses */ case PHB_IODA_DATA0: pnv_phb3_ioda_write(phb, val); break; /* RTC invalidation */ case PHB_RTC_INVALIDATE: pnv_phb3_rtc_invalidate(phb, val); break; /* FFI request */ case PHB_FFI_REQUEST: pnv_phb3_msi_ffi(&phb->msis, val); break; /* Silent simple writes */ case PHB_CONFIG_ADDRESS: case PHB_IODA_ADDR: case PHB_TCE_KILL: case PHB_TCE_SPEC_CTL: case PHB_PEST_BAR: case PHB_PELTV_BAR: case PHB_RTT_BAR: case PHB_RBA_BAR: case PHB_IVT_BAR: case PHB_FFI_LOCK: case PHB_LEM_FIR_ACCUM: case PHB_LEM_ERROR_MASK: case PHB_LEM_ACTION0: case PHB_LEM_ACTION1: break; /* Noise on anything else */ default: qemu_log_mask(LOG_UNIMP, "phb3: reg_write 0x%"PRIx64"=%"PRIx64"\n", off, val); } } uint64_t pnv_phb3_reg_read(void *opaque, hwaddr off, unsigned size) { PnvPHB3 *phb = opaque; PCIHostState *pci = PCI_HOST_BRIDGE(phb); uint64_t val; if ((off & 0xfffc) == PHB_CONFIG_DATA) { return pnv_phb3_config_read(phb, off & 0x3, size); } /* Other registers are 64-bit only */ if (size != 8 || off & 0x7) { phb3_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d", off, size); return ~0ull; } /* Default read from cache */ val = phb->regs[off >> 3]; switch (off) { /* Simulate venice DD2.0 */ case PHB_VERSION: return 0x000000a300000005ull; case PHB_PCIE_SYSTEM_CONFIG: return 0x441100fc30000000; /* IODA table accesses */ case PHB_IODA_DATA0: return pnv_phb3_ioda_read(phb); /* Link training always appears trained */ case PHB_PCIE_DLP_TRAIN_CTL: if (!pci_find_device(pci->bus, 1, 0)) { return 0; } return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TC_DL_LINKACT; /* FFI Lock */ case PHB_FFI_LOCK: /* Set lock and return previous value */ phb->regs[off >> 3] |= PHB_FFI_LOCK_STATE; return val; /* DMA read sync: make it look like it's complete */ case PHB_DMARD_SYNC: return PHB_DMARD_SYNC_COMPLETE; /* Silent simple reads */ case PHB_PHB3_CONFIG: case PHB_M32_BASE_ADDR: case PHB_M32_BASE_MASK: case PHB_M32_START_ADDR: case PHB_CONFIG_ADDRESS: case PHB_IODA_ADDR: case PHB_RTC_INVALIDATE: case PHB_TCE_KILL: case PHB_TCE_SPEC_CTL: case PHB_PEST_BAR: case PHB_PELTV_BAR: case PHB_RTT_BAR: case PHB_RBA_BAR: case PHB_IVT_BAR: case PHB_M64_UPPER_BITS: case PHB_LEM_FIR_ACCUM: case PHB_LEM_ERROR_MASK: case PHB_LEM_ACTION0: case PHB_LEM_ACTION1: break; /* Noise on anything else */ default: qemu_log_mask(LOG_UNIMP, "phb3: reg_read 0x%"PRIx64"=%"PRIx64"\n", off, val); } return val; } static const MemoryRegionOps pnv_phb3_reg_ops = { .read = pnv_phb3_reg_read, .write = pnv_phb3_reg_write, .valid.min_access_size = 1, .valid.max_access_size = 8, .impl.min_access_size = 1, .impl.max_access_size = 8, .endianness = DEVICE_BIG_ENDIAN, }; static int pnv_phb3_map_irq(PCIDevice *pci_dev, int irq_num) { /* Check that out properly ... */ return irq_num & 3; } static void pnv_phb3_set_irq(void *opaque, int irq_num, int level) { PnvPHB3 *phb = opaque; /* LSI only ... */ if (irq_num > 3) { phb3_error(phb, "Unknown IRQ to set %d", irq_num); } qemu_set_irq(phb->qirqs[irq_num], level); } static bool pnv_phb3_resolve_pe(PnvPhb3DMASpace *ds) { uint64_t rtt, addr; uint16_t rte; int bus_num; /* Already resolved ? */ if (ds->pe_num != PHB_INVALID_PE) { return true; } /* We need to lookup the RTT */ rtt = ds->phb->regs[PHB_RTT_BAR >> 3]; if (!(rtt & PHB_RTT_BAR_ENABLE)) { phb3_error(ds->phb, "DMA with RTT BAR disabled !"); /* Set error bits ? fence ? ... */ return false; } /* Read RTE */ bus_num = pci_bus_num(ds->bus); addr = rtt & PHB_RTT_BASE_ADDRESS_MASK; addr += 2 * ((bus_num << 8) | ds->devfn); if (dma_memory_read(&address_space_memory, addr, &rte, sizeof(rte))) { phb3_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr); /* Set error bits ? fence ? ... */ return false; } rte = be16_to_cpu(rte); /* Fail upon reading of invalid PE# */ if (rte >= PNV_PHB3_NUM_PE) { phb3_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte); /* Set error bits ? fence ? ... */ return false; } ds->pe_num = rte; return true; } static void pnv_phb3_translate_tve(PnvPhb3DMASpace *ds, hwaddr addr, bool is_write, uint64_t tve, IOMMUTLBEntry *tlb) { uint64_t tta = GETFIELD(IODA2_TVT_TABLE_ADDR, tve); int32_t lev = GETFIELD(IODA2_TVT_NUM_LEVELS, tve); uint32_t tts = GETFIELD(IODA2_TVT_TCE_TABLE_SIZE, tve); uint32_t tps = GETFIELD(IODA2_TVT_IO_PSIZE, tve); PnvPHB3 *phb = ds->phb; /* Invalid levels */ if (lev > 4) { phb3_error(phb, "Invalid #levels in TVE %d", lev); return; } /* IO Page Size of 0 means untranslated, else use TCEs */ if (tps == 0) { /* * We only support non-translate in top window. * * TODO: Venice/Murano support it on bottom window above 4G and * Naples suports it on everything */ if (!(tve & PPC_BIT(51))) { phb3_error(phb, "xlate for invalid non-translate TVE"); return; } /* TODO: Handle boundaries */ /* Use 4k pages like q35 ... for now */ tlb->iova = addr & 0xfffffffffffff000ull; tlb->translated_addr = addr & 0x0003fffffffff000ull; tlb->addr_mask = 0xfffull; tlb->perm = IOMMU_RW; } else { uint32_t tce_shift, tbl_shift, sh; uint64_t base, taddr, tce, tce_mask; /* TVE disabled ? */ if (tts == 0) { phb3_error(phb, "xlate for invalid translated TVE"); return; } /* Address bits per bottom level TCE entry */ tce_shift = tps + 11; /* Address bits per table level */ tbl_shift = tts + 8; /* Top level table base address */ base = tta << 12; /* Total shift to first level */ sh = tbl_shift * lev + tce_shift; /* TODO: Multi-level untested */ while ((lev--) >= 0) { /* Grab the TCE address */ taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3); if (dma_memory_read(&address_space_memory, taddr, &tce, sizeof(tce))) { phb3_error(phb, "Failed to read TCE at 0x%"PRIx64, taddr); return; } tce = be64_to_cpu(tce); /* Check permission for indirect TCE */ if ((lev >= 0) && !(tce & 3)) { phb3_error(phb, "Invalid indirect TCE at 0x%"PRIx64, taddr); phb3_error(phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr, is_write ? 'W' : 'R', tve); phb3_error(phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d", tta, lev, tts, tps); return; } sh -= tbl_shift; base = tce & ~0xfffull; } /* We exit the loop with TCE being the final TCE */ tce_mask = ~((1ull << tce_shift) - 1); tlb->iova = addr & tce_mask; tlb->translated_addr = tce & tce_mask; tlb->addr_mask = ~tce_mask; tlb->perm = tce & 3; if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) { phb3_error(phb, "TCE access fault at 0x%"PRIx64, taddr); phb3_error(phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr, is_write ? 'W' : 'R', tve); phb3_error(phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d", tta, lev, tts, tps); } } } static IOMMUTLBEntry pnv_phb3_translate_iommu(IOMMUMemoryRegion *iommu, hwaddr addr, IOMMUAccessFlags flag, int iommu_idx) { PnvPhb3DMASpace *ds = container_of(iommu, PnvPhb3DMASpace, dma_mr); int tve_sel; uint64_t tve, cfg; IOMMUTLBEntry ret = { .target_as = &address_space_memory, .iova = addr, .translated_addr = 0, .addr_mask = ~(hwaddr)0, .perm = IOMMU_NONE, }; PnvPHB3 *phb = ds->phb; /* Resolve PE# */ if (!pnv_phb3_resolve_pe(ds)) { phb3_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x", ds->bus, pci_bus_num(ds->bus), ds->devfn); return ret; } /* Check top bits */ switch (addr >> 60) { case 00: /* DMA or 32-bit MSI ? */ cfg = ds->phb->regs[PHB_PHB3_CONFIG >> 3]; if ((cfg & PHB_PHB3C_32BIT_MSI_EN) && ((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) { phb3_error(phb, "xlate on 32-bit MSI region"); return ret; } /* Choose TVE XXX Use PHB3 Control Register */ tve_sel = (addr >> 59) & 1; tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel]; pnv_phb3_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret); break; case 01: phb3_error(phb, "xlate on 64-bit MSI region"); break; default: phb3_error(phb, "xlate on unsupported address 0x%"PRIx64, addr); } return ret; } #define TYPE_PNV_PHB3_IOMMU_MEMORY_REGION "pnv-phb3-iommu-memory-region" DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB3_IOMMU_MEMORY_REGION, TYPE_PNV_PHB3_IOMMU_MEMORY_REGION) static void pnv_phb3_iommu_memory_region_class_init(ObjectClass *klass, void *data) { IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); imrc->translate = pnv_phb3_translate_iommu; } static const TypeInfo pnv_phb3_iommu_memory_region_info = { .parent = TYPE_IOMMU_MEMORY_REGION, .name = TYPE_PNV_PHB3_IOMMU_MEMORY_REGION, .class_init = pnv_phb3_iommu_memory_region_class_init, }; /* * MSI/MSIX memory region implementation. * The handler handles both MSI and MSIX. */ static void pnv_phb3_msi_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { PnvPhb3DMASpace *ds = opaque; /* Resolve PE# */ if (!pnv_phb3_resolve_pe(ds)) { phb3_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x", ds->bus, pci_bus_num(ds->bus), ds->devfn); return; } pnv_phb3_msi_send(&ds->phb->msis, addr, data, ds->pe_num); } /* There is no .read as the read result is undefined by PCI spec */ static uint64_t pnv_phb3_msi_read(void *opaque, hwaddr addr, unsigned size) { PnvPhb3DMASpace *ds = opaque; phb3_error(ds->phb, "invalid read @ 0x%" HWADDR_PRIx, addr); return -1; } static const MemoryRegionOps pnv_phb3_msi_ops = { .read = pnv_phb3_msi_read, .write = pnv_phb3_msi_write, .endianness = DEVICE_LITTLE_ENDIAN }; static AddressSpace *pnv_phb3_dma_iommu(PCIBus *bus, void *opaque, int devfn) { PnvPHB3 *phb = opaque; PnvPhb3DMASpace *ds; QLIST_FOREACH(ds, &phb->dma_spaces, list) { if (ds->bus == bus && ds->devfn == devfn) { break; } } if (ds == NULL) { ds = g_malloc0(sizeof(PnvPhb3DMASpace)); ds->bus = bus; ds->devfn = devfn; ds->pe_num = PHB_INVALID_PE; ds->phb = phb; memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr), TYPE_PNV_PHB3_IOMMU_MEMORY_REGION, OBJECT(phb), "phb3_iommu", UINT64_MAX); address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr), "phb3_iommu"); memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb3_msi_ops, ds, "msi32", 0x10000); memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb3_msi_ops, ds, "msi64", 0x100000); pnv_phb3_update_msi_regions(ds); QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list); } return &ds->dma_as; } static void pnv_phb3_instance_init(Object *obj) { PnvPHB3 *phb = PNV_PHB3(obj); QLIST_INIT(&phb->dma_spaces); /* LSI sources */ object_initialize_child(obj, "lsi", &phb->lsis, TYPE_ICS); /* Default init ... will be fixed by HW inits */ phb->lsis.offset = 0; /* MSI sources */ object_initialize_child(obj, "msi", &phb->msis, TYPE_PHB3_MSI); /* Power Bus Common Queue */ object_initialize_child(obj, "pbcq", &phb->pbcq, TYPE_PNV_PBCQ); /* Root Port */ object_initialize_child(obj, "root", &phb->root, TYPE_PNV_PHB3_ROOT_PORT); qdev_prop_set_int32(DEVICE(&phb->root), "addr", PCI_DEVFN(0, 0)); qdev_prop_set_bit(DEVICE(&phb->root), "multifunction", false); } static void pnv_phb3_realize(DeviceState *dev, Error **errp) { PnvPHB3 *phb = PNV_PHB3(dev); PCIHostState *pci = PCI_HOST_BRIDGE(dev); PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); int i; if (phb->phb_id >= PNV8_CHIP_PHB3_MAX) { error_setg(errp, "invalid PHB index: %d", phb->phb_id); return; } /* LSI sources */ object_property_set_link(OBJECT(&phb->lsis), "xics", OBJECT(pnv), &error_abort); object_property_set_int(OBJECT(&phb->lsis), "nr-irqs", PNV_PHB3_NUM_LSI, &error_abort); if (!qdev_realize(DEVICE(&phb->lsis), NULL, errp)) { return; } for (i = 0; i < phb->lsis.nr_irqs; i++) { ics_set_irq_type(&phb->lsis, i, true); } phb->qirqs = qemu_allocate_irqs(ics_set_irq, &phb->lsis, phb->lsis.nr_irqs); /* MSI sources */ object_property_set_link(OBJECT(&phb->msis), "phb", OBJECT(phb), &error_abort); object_property_set_link(OBJECT(&phb->msis), "xics", OBJECT(pnv), &error_abort); object_property_set_int(OBJECT(&phb->msis), "nr-irqs", PHB3_MAX_MSI, &error_abort); if (!qdev_realize(DEVICE(&phb->msis), NULL, errp)) { return; } /* Power Bus Common Queue */ object_property_set_link(OBJECT(&phb->pbcq), "phb", OBJECT(phb), &error_abort); if (!qdev_realize(DEVICE(&phb->pbcq), NULL, errp)) { return; } /* Controller Registers */ memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb3_reg_ops, phb, "phb3-regs", 0x1000); /* * PHB3 doesn't support IO space. However, qemu gets very upset if * we don't have an IO region to anchor IO BARs onto so we just * initialize one which we never hook up to anything */ memory_region_init(&phb->pci_io, OBJECT(phb), "pci-io", 0x10000); memory_region_init(&phb->pci_mmio, OBJECT(phb), "pci-mmio", PCI_MMIO_TOTAL_SIZE); pci->bus = pci_register_root_bus(dev, "root-bus", pnv_phb3_set_irq, pnv_phb3_map_irq, phb, &phb->pci_mmio, &phb->pci_io, 0, 4, TYPE_PNV_PHB3_ROOT_BUS); pci_setup_iommu(pci->bus, pnv_phb3_dma_iommu, phb); /* Add a single Root port */ qdev_prop_set_uint8(DEVICE(&phb->root), "chassis", phb->chip_id); qdev_prop_set_uint16(DEVICE(&phb->root), "slot", phb->phb_id); qdev_realize(DEVICE(&phb->root), BUS(pci->bus), &error_fatal); } void pnv_phb3_update_regions(PnvPHB3 *phb) { PnvPBCQState *pbcq = &phb->pbcq; /* Unmap first always */ if (memory_region_is_mapped(&phb->mr_regs)) { memory_region_del_subregion(&pbcq->phbbar, &phb->mr_regs); } /* Map registers if enabled */ if (memory_region_is_mapped(&pbcq->phbbar)) { /* TODO: We should use the PHB BAR 2 register but we don't ... */ memory_region_add_subregion(&pbcq->phbbar, 0, &phb->mr_regs); } /* Check/update m32 */ if (memory_region_is_mapped(&phb->mr_m32)) { pnv_phb3_check_m32(phb); } pnv_phb3_check_all_m64s(phb); } static const char *pnv_phb3_root_bus_path(PCIHostState *host_bridge, PCIBus *rootbus) { PnvPHB3 *phb = PNV_PHB3(host_bridge); snprintf(phb->bus_path, sizeof(phb->bus_path), "00%02x:%02x", phb->chip_id, phb->phb_id); return phb->bus_path; } static Property pnv_phb3_properties[] = { DEFINE_PROP_UINT32("index", PnvPHB3, phb_id, 0), DEFINE_PROP_UINT32("chip-id", PnvPHB3, chip_id, 0), DEFINE_PROP_END_OF_LIST(), }; static void pnv_phb3_class_init(ObjectClass *klass, void *data) { PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); hc->root_bus_path = pnv_phb3_root_bus_path; dc->realize = pnv_phb3_realize; device_class_set_props(dc, pnv_phb3_properties); set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); dc->user_creatable = false; } static const TypeInfo pnv_phb3_type_info = { .name = TYPE_PNV_PHB3, .parent = TYPE_PCIE_HOST_BRIDGE, .instance_size = sizeof(PnvPHB3), .class_init = pnv_phb3_class_init, .instance_init = pnv_phb3_instance_init, }; static void pnv_phb3_root_bus_class_init(ObjectClass *klass, void *data) { BusClass *k = BUS_CLASS(klass); /* * PHB3 has only a single root complex. Enforce the limit on the * parent bus */ k->max_dev = 1; } static const TypeInfo pnv_phb3_root_bus_info = { .name = TYPE_PNV_PHB3_ROOT_BUS, .parent = TYPE_PCIE_BUS, .class_init = pnv_phb3_root_bus_class_init, .interfaces = (InterfaceInfo[]) { { INTERFACE_PCIE_DEVICE }, { } }, }; static void pnv_phb3_root_port_realize(DeviceState *dev, Error **errp) { PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev); Error *local_err = NULL; rpc->parent_realize(dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } } static void pnv_phb3_root_port_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); PCIERootPortClass *rpc = PCIE_ROOT_PORT_CLASS(klass); dc->desc = "IBM PHB3 PCIE Root Port"; device_class_set_parent_realize(dc, pnv_phb3_root_port_realize, &rpc->parent_realize); dc->user_creatable = false; k->vendor_id = PCI_VENDOR_ID_IBM; k->device_id = 0x03dc; k->revision = 0; rpc->exp_offset = 0x48; rpc->aer_offset = 0x100; } static const TypeInfo pnv_phb3_root_port_info = { .name = TYPE_PNV_PHB3_ROOT_PORT, .parent = TYPE_PCIE_ROOT_PORT, .instance_size = sizeof(PnvPHB3RootPort), .class_init = pnv_phb3_root_port_class_init, }; static void pnv_phb3_register_types(void) { type_register_static(&pnv_phb3_root_bus_info); type_register_static(&pnv_phb3_root_port_info); type_register_static(&pnv_phb3_type_info); type_register_static(&pnv_phb3_iommu_memory_region_info); } type_init(pnv_phb3_register_types)