/* * Status and system control registers for Xilinx Zynq Platform * * Copyright (c) 2011 Michal Simek * Copyright (c) 2012 PetaLogix Pty Ltd. * Based on hw/arm_sysctl.c, written by Paul Brook * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu/timer.h" #include "sysemu/runstate.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "qemu/log.h" #include "qemu/module.h" #include "hw/registerfields.h" #include "hw/qdev-clock.h" #include "qom/object.h" #ifndef ZYNQ_SLCR_ERR_DEBUG #define ZYNQ_SLCR_ERR_DEBUG 0 #endif #define DB_PRINT(...) do { \ if (ZYNQ_SLCR_ERR_DEBUG) { \ fprintf(stderr, ": %s: ", __func__); \ fprintf(stderr, ## __VA_ARGS__); \ } \ } while (0) #define XILINX_LOCK_KEY 0x767b #define XILINX_UNLOCK_KEY 0xdf0d REG32(SCL, 0x000) REG32(LOCK, 0x004) REG32(UNLOCK, 0x008) REG32(LOCKSTA, 0x00c) REG32(ARM_PLL_CTRL, 0x100) REG32(DDR_PLL_CTRL, 0x104) REG32(IO_PLL_CTRL, 0x108) /* fields for [ARM|DDR|IO]_PLL_CTRL registers */ FIELD(xxx_PLL_CTRL, PLL_RESET, 0, 1) FIELD(xxx_PLL_CTRL, PLL_PWRDWN, 1, 1) FIELD(xxx_PLL_CTRL, PLL_BYPASS_QUAL, 3, 1) FIELD(xxx_PLL_CTRL, PLL_BYPASS_FORCE, 4, 1) FIELD(xxx_PLL_CTRL, PLL_FPDIV, 12, 7) REG32(PLL_STATUS, 0x10c) REG32(ARM_PLL_CFG, 0x110) REG32(DDR_PLL_CFG, 0x114) REG32(IO_PLL_CFG, 0x118) REG32(ARM_CLK_CTRL, 0x120) REG32(DDR_CLK_CTRL, 0x124) REG32(DCI_CLK_CTRL, 0x128) REG32(APER_CLK_CTRL, 0x12c) REG32(USB0_CLK_CTRL, 0x130) REG32(USB1_CLK_CTRL, 0x134) REG32(GEM0_RCLK_CTRL, 0x138) REG32(GEM1_RCLK_CTRL, 0x13c) REG32(GEM0_CLK_CTRL, 0x140) REG32(GEM1_CLK_CTRL, 0x144) REG32(SMC_CLK_CTRL, 0x148) REG32(LQSPI_CLK_CTRL, 0x14c) REG32(SDIO_CLK_CTRL, 0x150) REG32(UART_CLK_CTRL, 0x154) FIELD(UART_CLK_CTRL, CLKACT0, 0, 1) FIELD(UART_CLK_CTRL, CLKACT1, 1, 1) FIELD(UART_CLK_CTRL, SRCSEL, 4, 2) FIELD(UART_CLK_CTRL, DIVISOR, 8, 6) REG32(SPI_CLK_CTRL, 0x158) REG32(CAN_CLK_CTRL, 0x15c) REG32(CAN_MIOCLK_CTRL, 0x160) REG32(DBG_CLK_CTRL, 0x164) REG32(PCAP_CLK_CTRL, 0x168) REG32(TOPSW_CLK_CTRL, 0x16c) #define FPGA_CTRL_REGS(n, start) \ REG32(FPGA ## n ## _CLK_CTRL, (start)) \ REG32(FPGA ## n ## _THR_CTRL, (start) + 0x4)\ REG32(FPGA ## n ## _THR_CNT, (start) + 0x8)\ REG32(FPGA ## n ## _THR_STA, (start) + 0xc) FPGA_CTRL_REGS(0, 0x170) FPGA_CTRL_REGS(1, 0x180) FPGA_CTRL_REGS(2, 0x190) FPGA_CTRL_REGS(3, 0x1a0) REG32(BANDGAP_TRIP, 0x1b8) REG32(PLL_PREDIVISOR, 0x1c0) REG32(CLK_621_TRUE, 0x1c4) REG32(PSS_RST_CTRL, 0x200) FIELD(PSS_RST_CTRL, SOFT_RST, 0, 1) REG32(DDR_RST_CTRL, 0x204) REG32(TOPSW_RESET_CTRL, 0x208) REG32(DMAC_RST_CTRL, 0x20c) REG32(USB_RST_CTRL, 0x210) REG32(GEM_RST_CTRL, 0x214) REG32(SDIO_RST_CTRL, 0x218) REG32(SPI_RST_CTRL, 0x21c) REG32(CAN_RST_CTRL, 0x220) REG32(I2C_RST_CTRL, 0x224) REG32(UART_RST_CTRL, 0x228) REG32(GPIO_RST_CTRL, 0x22c) REG32(LQSPI_RST_CTRL, 0x230) REG32(SMC_RST_CTRL, 0x234) REG32(OCM_RST_CTRL, 0x238) REG32(FPGA_RST_CTRL, 0x240) REG32(A9_CPU_RST_CTRL, 0x244) REG32(RS_AWDT_CTRL, 0x24c) REG32(RST_REASON, 0x250) REG32(REBOOT_STATUS, 0x258) REG32(BOOT_MODE, 0x25c) REG32(APU_CTRL, 0x300) REG32(WDT_CLK_SEL, 0x304) REG32(TZ_DMA_NS, 0x440) REG32(TZ_DMA_IRQ_NS, 0x444) REG32(TZ_DMA_PERIPH_NS, 0x448) REG32(PSS_IDCODE, 0x530) REG32(DDR_URGENT, 0x600) REG32(DDR_CAL_START, 0x60c) REG32(DDR_REF_START, 0x614) REG32(DDR_CMD_STA, 0x618) REG32(DDR_URGENT_SEL, 0x61c) REG32(DDR_DFI_STATUS, 0x620) REG32(MIO, 0x700) #define MIO_LENGTH 54 REG32(MIO_LOOPBACK, 0x804) REG32(MIO_MST_TRI0, 0x808) REG32(MIO_MST_TRI1, 0x80c) REG32(SD0_WP_CD_SEL, 0x830) REG32(SD1_WP_CD_SEL, 0x834) REG32(LVL_SHFTR_EN, 0x900) REG32(OCM_CFG, 0x910) REG32(CPU_RAM, 0xa00) REG32(IOU, 0xa30) REG32(DMAC_RAM, 0xa50) REG32(AFI0, 0xa60) REG32(AFI1, 0xa6c) REG32(AFI2, 0xa78) REG32(AFI3, 0xa84) #define AFI_LENGTH 3 REG32(OCM, 0xa90) REG32(DEVCI_RAM, 0xaa0) REG32(CSG_RAM, 0xab0) REG32(GPIOB_CTRL, 0xb00) REG32(GPIOB_CFG_CMOS18, 0xb04) REG32(GPIOB_CFG_CMOS25, 0xb08) REG32(GPIOB_CFG_CMOS33, 0xb0c) REG32(GPIOB_CFG_HSTL, 0xb14) REG32(GPIOB_DRVR_BIAS_CTRL, 0xb18) REG32(DDRIOB, 0xb40) #define DDRIOB_LENGTH 14 #define ZYNQ_SLCR_MMIO_SIZE 0x1000 #define ZYNQ_SLCR_NUM_REGS (ZYNQ_SLCR_MMIO_SIZE / 4) #define TYPE_ZYNQ_SLCR "xilinx,zynq_slcr" OBJECT_DECLARE_SIMPLE_TYPE(ZynqSLCRState, ZYNQ_SLCR) struct ZynqSLCRState { SysBusDevice parent_obj; MemoryRegion iomem; uint32_t regs[ZYNQ_SLCR_NUM_REGS]; Clock *ps_clk; Clock *uart0_ref_clk; Clock *uart1_ref_clk; }; /* * return the output frequency of ARM/DDR/IO pll * using input frequency and PLL_CTRL register */ static uint64_t zynq_slcr_compute_pll(uint64_t input, uint32_t ctrl_reg) { uint32_t mult = ((ctrl_reg & R_xxx_PLL_CTRL_PLL_FPDIV_MASK) >> R_xxx_PLL_CTRL_PLL_FPDIV_SHIFT); /* first, check if pll is bypassed */ if (ctrl_reg & R_xxx_PLL_CTRL_PLL_BYPASS_FORCE_MASK) { return input; } /* is pll disabled ? */ if (ctrl_reg & (R_xxx_PLL_CTRL_PLL_RESET_MASK | R_xxx_PLL_CTRL_PLL_PWRDWN_MASK)) { return 0; } /* Consider zero feedback as maximum divide ratio possible */ if (!mult) { mult = 1 << R_xxx_PLL_CTRL_PLL_FPDIV_LENGTH; } /* frequency multiplier -> period division */ return input / mult; } /* * return the output period of a clock given: * + the periods in an array corresponding to input mux selector * + the register xxx_CLK_CTRL value * + enable bit index in ctrl register * * This function makes the assumption that the ctrl_reg value is organized as * follows: * + bits[13:8] clock frequency divisor * + bits[5:4] clock mux selector (index in array) * + bits[index] clock enable */ static uint64_t zynq_slcr_compute_clock(const uint64_t periods[], uint32_t ctrl_reg, unsigned index) { uint32_t srcsel = extract32(ctrl_reg, 4, 2); /* bits [5:4] */ uint32_t divisor = extract32(ctrl_reg, 8, 6); /* bits [13:8] */ /* first, check if clock is disabled */ if (((ctrl_reg >> index) & 1u) == 0) { return 0; } /* * according to the Zynq technical ref. manual UG585 v1.12.2 in * Clocks chapter, section 25.10.1 page 705: * "The 6-bit divider provides a divide range of 1 to 63" * We follow here what is implemented in linux kernel and consider * the 0 value as a bypass (no division). */ /* frequency divisor -> period multiplication */ return periods[srcsel] * (divisor ? divisor : 1u); } /* * macro helper around zynq_slcr_compute_clock to avoid repeating * the register name. */ #define ZYNQ_COMPUTE_CLK(state, plls, reg, enable_field) \ zynq_slcr_compute_clock((plls), (state)->regs[reg], \ reg ## _ ## enable_field ## _SHIFT) /** * Compute and set the ouputs clocks periods. * But do not propagate them further. Connected clocks * will not receive any updates (See zynq_slcr_compute_clocks()) */ static void zynq_slcr_compute_clocks(ZynqSLCRState *s) { uint64_t ps_clk = clock_get(s->ps_clk); /* consider outputs clocks are disabled while in reset */ if (device_is_in_reset(DEVICE(s))) { ps_clk = 0; } uint64_t io_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_IO_PLL_CTRL]); uint64_t arm_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_ARM_PLL_CTRL]); uint64_t ddr_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_DDR_PLL_CTRL]); uint64_t uart_mux[4] = {io_pll, io_pll, arm_pll, ddr_pll}; /* compute uartX reference clocks */ clock_set(s->uart0_ref_clk, ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT0)); clock_set(s->uart1_ref_clk, ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT1)); } /** * Propagate the outputs clocks. * zynq_slcr_compute_clocks() should have been called before * to configure them. */ static void zynq_slcr_propagate_clocks(ZynqSLCRState *s) { clock_propagate(s->uart0_ref_clk); clock_propagate(s->uart1_ref_clk); } static void zynq_slcr_ps_clk_callback(void *opaque, ClockEvent event) { ZynqSLCRState *s = (ZynqSLCRState *) opaque; zynq_slcr_compute_clocks(s); zynq_slcr_propagate_clocks(s); } static void zynq_slcr_reset_init(Object *obj, ResetType type) { ZynqSLCRState *s = ZYNQ_SLCR(obj); int i; DB_PRINT("RESET\n"); s->regs[R_LOCKSTA] = 1; /* 0x100 - 0x11C */ s->regs[R_ARM_PLL_CTRL] = 0x0001A008; s->regs[R_DDR_PLL_CTRL] = 0x0001A008; s->regs[R_IO_PLL_CTRL] = 0x0001A008; s->regs[R_PLL_STATUS] = 0x0000003F; s->regs[R_ARM_PLL_CFG] = 0x00014000; s->regs[R_DDR_PLL_CFG] = 0x00014000; s->regs[R_IO_PLL_CFG] = 0x00014000; /* 0x120 - 0x16C */ s->regs[R_ARM_CLK_CTRL] = 0x1F000400; s->regs[R_DDR_CLK_CTRL] = 0x18400003; s->regs[R_DCI_CLK_CTRL] = 0x01E03201; s->regs[R_APER_CLK_CTRL] = 0x01FFCCCD; s->regs[R_USB0_CLK_CTRL] = s->regs[R_USB1_CLK_CTRL] = 0x00101941; s->regs[R_GEM0_RCLK_CTRL] = s->regs[R_GEM1_RCLK_CTRL] = 0x00000001; s->regs[R_GEM0_CLK_CTRL] = s->regs[R_GEM1_CLK_CTRL] = 0x00003C01; s->regs[R_SMC_CLK_CTRL] = 0x00003C01; s->regs[R_LQSPI_CLK_CTRL] = 0x00002821; s->regs[R_SDIO_CLK_CTRL] = 0x00001E03; s->regs[R_UART_CLK_CTRL] = 0x00003F03; s->regs[R_SPI_CLK_CTRL] = 0x00003F03; s->regs[R_CAN_CLK_CTRL] = 0x00501903; s->regs[R_DBG_CLK_CTRL] = 0x00000F03; s->regs[R_PCAP_CLK_CTRL] = 0x00000F01; /* 0x170 - 0x1AC */ s->regs[R_FPGA0_CLK_CTRL] = s->regs[R_FPGA1_CLK_CTRL] = s->regs[R_FPGA2_CLK_CTRL] = s->regs[R_FPGA3_CLK_CTRL] = 0x00101800; s->regs[R_FPGA0_THR_STA] = s->regs[R_FPGA1_THR_STA] = s->regs[R_FPGA2_THR_STA] = s->regs[R_FPGA3_THR_STA] = 0x00010000; /* 0x1B0 - 0x1D8 */ s->regs[R_BANDGAP_TRIP] = 0x0000001F; s->regs[R_PLL_PREDIVISOR] = 0x00000001; s->regs[R_CLK_621_TRUE] = 0x00000001; /* 0x200 - 0x25C */ s->regs[R_FPGA_RST_CTRL] = 0x01F33F0F; s->regs[R_RST_REASON] = 0x00000040; s->regs[R_BOOT_MODE] = 0x00000001; /* 0x700 - 0x7D4 */ for (i = 0; i < 54; i++) { s->regs[R_MIO + i] = 0x00001601; } for (i = 2; i <= 8; i++) { s->regs[R_MIO + i] = 0x00000601; } s->regs[R_MIO_MST_TRI0] = s->regs[R_MIO_MST_TRI1] = 0xFFFFFFFF; s->regs[R_CPU_RAM + 0] = s->regs[R_CPU_RAM + 1] = s->regs[R_CPU_RAM + 3] = s->regs[R_CPU_RAM + 4] = s->regs[R_CPU_RAM + 7] = 0x00010101; s->regs[R_CPU_RAM + 2] = s->regs[R_CPU_RAM + 5] = 0x01010101; s->regs[R_CPU_RAM + 6] = 0x00000001; s->regs[R_IOU + 0] = s->regs[R_IOU + 1] = s->regs[R_IOU + 2] = s->regs[R_IOU + 3] = 0x09090909; s->regs[R_IOU + 4] = s->regs[R_IOU + 5] = 0x00090909; s->regs[R_IOU + 6] = 0x00000909; s->regs[R_DMAC_RAM] = 0x00000009; s->regs[R_AFI0 + 0] = s->regs[R_AFI0 + 1] = 0x09090909; s->regs[R_AFI1 + 0] = s->regs[R_AFI1 + 1] = 0x09090909; s->regs[R_AFI2 + 0] = s->regs[R_AFI2 + 1] = 0x09090909; s->regs[R_AFI3 + 0] = s->regs[R_AFI3 + 1] = 0x09090909; s->regs[R_AFI0 + 2] = s->regs[R_AFI1 + 2] = s->regs[R_AFI2 + 2] = s->regs[R_AFI3 + 2] = 0x00000909; s->regs[R_OCM + 0] = 0x01010101; s->regs[R_OCM + 1] = s->regs[R_OCM + 2] = 0x09090909; s->regs[R_DEVCI_RAM] = 0x00000909; s->regs[R_CSG_RAM] = 0x00000001; s->regs[R_DDRIOB + 0] = s->regs[R_DDRIOB + 1] = s->regs[R_DDRIOB + 2] = s->regs[R_DDRIOB + 3] = 0x00000e00; s->regs[R_DDRIOB + 4] = s->regs[R_DDRIOB + 5] = s->regs[R_DDRIOB + 6] = 0x00000e00; s->regs[R_DDRIOB + 12] = 0x00000021; } static void zynq_slcr_reset_hold(Object *obj) { ZynqSLCRState *s = ZYNQ_SLCR(obj); /* will disable all output clocks */ zynq_slcr_compute_clocks(s); zynq_slcr_propagate_clocks(s); } static void zynq_slcr_reset_exit(Object *obj) { ZynqSLCRState *s = ZYNQ_SLCR(obj); /* will compute output clocks according to ps_clk and registers */ zynq_slcr_compute_clocks(s); zynq_slcr_propagate_clocks(s); } static bool zynq_slcr_check_offset(hwaddr offset, bool rnw) { switch (offset) { case R_LOCK: case R_UNLOCK: case R_DDR_CAL_START: case R_DDR_REF_START: return !rnw; /* Write only */ case R_LOCKSTA: case R_FPGA0_THR_STA: case R_FPGA1_THR_STA: case R_FPGA2_THR_STA: case R_FPGA3_THR_STA: case R_BOOT_MODE: case R_PSS_IDCODE: case R_DDR_CMD_STA: case R_DDR_DFI_STATUS: case R_PLL_STATUS: return rnw;/* read only */ case R_SCL: case R_ARM_PLL_CTRL ... R_IO_PLL_CTRL: case R_ARM_PLL_CFG ... R_IO_PLL_CFG: case R_ARM_CLK_CTRL ... R_TOPSW_CLK_CTRL: case R_FPGA0_CLK_CTRL ... R_FPGA0_THR_CNT: case R_FPGA1_CLK_CTRL ... R_FPGA1_THR_CNT: case R_FPGA2_CLK_CTRL ... R_FPGA2_THR_CNT: case R_FPGA3_CLK_CTRL ... R_FPGA3_THR_CNT: case R_BANDGAP_TRIP: case R_PLL_PREDIVISOR: case R_CLK_621_TRUE: case R_PSS_RST_CTRL ... R_A9_CPU_RST_CTRL: case R_RS_AWDT_CTRL: case R_RST_REASON: case R_REBOOT_STATUS: case R_APU_CTRL: case R_WDT_CLK_SEL: case R_TZ_DMA_NS ... R_TZ_DMA_PERIPH_NS: case R_DDR_URGENT: case R_DDR_URGENT_SEL: case R_MIO ... R_MIO + MIO_LENGTH - 1: case R_MIO_LOOPBACK ... R_MIO_MST_TRI1: case R_SD0_WP_CD_SEL: case R_SD1_WP_CD_SEL: case R_LVL_SHFTR_EN: case R_OCM_CFG: case R_CPU_RAM: case R_IOU: case R_DMAC_RAM: case R_AFI0 ... R_AFI3 + AFI_LENGTH - 1: case R_OCM: case R_DEVCI_RAM: case R_CSG_RAM: case R_GPIOB_CTRL ... R_GPIOB_CFG_CMOS33: case R_GPIOB_CFG_HSTL: case R_GPIOB_DRVR_BIAS_CTRL: case R_DDRIOB ... R_DDRIOB + DDRIOB_LENGTH - 1: return true; default: return false; } } static uint64_t zynq_slcr_read(void *opaque, hwaddr offset, unsigned size) { ZynqSLCRState *s = opaque; offset /= 4; uint32_t ret = s->regs[offset]; if (!zynq_slcr_check_offset(offset, true)) { qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid read access to " " addr %" HWADDR_PRIx "\n", offset * 4); } DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx32 "\n", offset * 4, ret); return ret; } static void zynq_slcr_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { ZynqSLCRState *s = (ZynqSLCRState *)opaque; offset /= 4; DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx64 "\n", offset * 4, val); if (!zynq_slcr_check_offset(offset, false)) { qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid write access to " "addr %" HWADDR_PRIx "\n", offset * 4); return; } switch (offset) { case R_SCL: s->regs[R_SCL] = val & 0x1; return; case R_LOCK: if ((val & 0xFFFF) == XILINX_LOCK_KEY) { DB_PRINT("XILINX LOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset, (unsigned)val & 0xFFFF); s->regs[R_LOCKSTA] = 1; } else { DB_PRINT("WRONG XILINX LOCK KEY 0xF8000000 + 0x%x <= 0x%x\n", (int)offset, (unsigned)val & 0xFFFF); } return; case R_UNLOCK: if ((val & 0xFFFF) == XILINX_UNLOCK_KEY) { DB_PRINT("XILINX UNLOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset, (unsigned)val & 0xFFFF); s->regs[R_LOCKSTA] = 0; } else { DB_PRINT("WRONG XILINX UNLOCK KEY 0xF8000000 + 0x%x <= 0x%x\n", (int)offset, (unsigned)val & 0xFFFF); } return; } if (s->regs[R_LOCKSTA]) { qemu_log_mask(LOG_GUEST_ERROR, "SCLR registers are locked. Unlock them first\n"); return; } s->regs[offset] = val; switch (offset) { case R_PSS_RST_CTRL: if (FIELD_EX32(val, PSS_RST_CTRL, SOFT_RST)) { qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); } break; case R_IO_PLL_CTRL: case R_ARM_PLL_CTRL: case R_DDR_PLL_CTRL: case R_UART_CLK_CTRL: zynq_slcr_compute_clocks(s); zynq_slcr_propagate_clocks(s); break; } } static const MemoryRegionOps slcr_ops = { .read = zynq_slcr_read, .write = zynq_slcr_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static const ClockPortInitArray zynq_slcr_clocks = { QDEV_CLOCK_IN(ZynqSLCRState, ps_clk, zynq_slcr_ps_clk_callback, ClockUpdate), QDEV_CLOCK_OUT(ZynqSLCRState, uart0_ref_clk), QDEV_CLOCK_OUT(ZynqSLCRState, uart1_ref_clk), QDEV_CLOCK_END }; static void zynq_slcr_init(Object *obj) { ZynqSLCRState *s = ZYNQ_SLCR(obj); memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr", ZYNQ_SLCR_MMIO_SIZE); sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem); qdev_init_clocks(DEVICE(obj), zynq_slcr_clocks); } static const VMStateDescription vmstate_zynq_slcr = { .name = "zynq_slcr", .version_id = 3, .minimum_version_id = 2, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS), VMSTATE_CLOCK_V(ps_clk, ZynqSLCRState, 3), VMSTATE_END_OF_LIST() } }; static void zynq_slcr_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ResettableClass *rc = RESETTABLE_CLASS(klass); dc->vmsd = &vmstate_zynq_slcr; rc->phases.enter = zynq_slcr_reset_init; rc->phases.hold = zynq_slcr_reset_hold; rc->phases.exit = zynq_slcr_reset_exit; } static const TypeInfo zynq_slcr_info = { .class_init = zynq_slcr_class_init, .name = TYPE_ZYNQ_SLCR, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(ZynqSLCRState), .instance_init = zynq_slcr_init, }; static void zynq_slcr_register_types(void) { type_register_static(&zynq_slcr_info); } type_init(zynq_slcr_register_types)