/* * BCM2835 CPRMAN clock manager * * Copyright (c) 2020 Luc Michel * * SPDX-License-Identifier: GPL-2.0-or-later */ /* * This peripheral is roughly divided into 3 main parts: * - the PLLs * - the PLL channels * - the clock muxes * * A main oscillator (xosc) feeds all the PLLs. Each PLLs has one or more * channels. Those channel are then connected to the clock muxes. Each mux has * multiples sources (usually the xosc, some of the PLL channels and some "test * debug" clocks). A mux is configured to select a given source through its * control register. Each mux has one output clock that also goes out of the * CPRMAN. This output clock usually connects to another peripheral in the SoC * (so a given mux is dedicated to a peripheral). * * At each level (PLL, channel and mux), the clock can be altered through * dividers (and multipliers in case of the PLLs), and can be disabled (in this * case, the next levels see no clock). * * This can be sum-up as follows (this is an example and not the actual BCM2835 * clock tree): * * /-->[PLL]-|->[PLL channel]--... [mux]--> to peripherals * | |->[PLL channel] muxes takes [mux] * | \->[PLL channel] inputs from [mux] * | some channels [mux] * [xosc]---|-->[PLL]-|->[PLL channel] and other srcs [mux] * | \->[PLL channel] ...-->[mux] * | [mux] * \-->[PLL]--->[PLL channel] [mux] * * The page at https://elinux.org/The_Undocumented_Pi gives the actual clock * tree configuration. * * The CPRMAN exposes clock outputs with the name of the clock mux suffixed * with "-out" (e.g. "uart-out", "h264-out", ...). */ #include "qemu/osdep.h" #include "qemu/log.h" #include "migration/vmstate.h" #include "hw/qdev-properties.h" #include "hw/misc/bcm2835_cprman.h" #include "hw/misc/bcm2835_cprman_internals.h" #include "trace.h" /* PLL */ static void pll_reset(DeviceState *dev) { CprmanPllState *s = CPRMAN_PLL(dev); const PLLResetInfo *info = &PLL_RESET_INFO[s->id]; *s->reg_cm = info->cm; *s->reg_a2w_ctrl = info->a2w_ctrl; memcpy(s->reg_a2w_ana, info->a2w_ana, sizeof(info->a2w_ana)); *s->reg_a2w_frac = info->a2w_frac; } static bool pll_is_locked(const CprmanPllState *pll) { return !FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PWRDN) && !FIELD_EX32(*pll->reg_cm, CM_PLLx, ANARST); } static void pll_update(CprmanPllState *pll) { uint64_t freq, ndiv, fdiv, pdiv; if (!pll_is_locked(pll)) { clock_update(pll->out, 0); return; } pdiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PDIV); if (!pdiv) { clock_update(pll->out, 0); return; } ndiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, NDIV); fdiv = FIELD_EX32(*pll->reg_a2w_frac, A2W_PLLx_FRAC, FRAC); if (pll->reg_a2w_ana[1] & pll->prediv_mask) { /* The prescaler doubles the parent frequency */ ndiv *= 2; fdiv *= 2; } /* * We have a multiplier with an integer part (ndiv) and a fractional part * (fdiv), and a divider (pdiv). */ freq = clock_get_hz(pll->xosc_in) * ((ndiv << R_A2W_PLLx_FRAC_FRAC_LENGTH) + fdiv); freq /= pdiv; freq >>= R_A2W_PLLx_FRAC_FRAC_LENGTH; clock_update_hz(pll->out, freq); } static void pll_xosc_update(void *opaque) { pll_update(CPRMAN_PLL(opaque)); } static void pll_init(Object *obj) { CprmanPllState *s = CPRMAN_PLL(obj); s->xosc_in = qdev_init_clock_in(DEVICE(s), "xosc-in", pll_xosc_update, s); s->out = qdev_init_clock_out(DEVICE(s), "out"); } static const VMStateDescription pll_vmstate = { .name = TYPE_CPRMAN_PLL, .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_CLOCK(xosc_in, CprmanPllState), VMSTATE_END_OF_LIST() } }; static void pll_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->reset = pll_reset; dc->vmsd = &pll_vmstate; } static const TypeInfo cprman_pll_info = { .name = TYPE_CPRMAN_PLL, .parent = TYPE_DEVICE, .instance_size = sizeof(CprmanPllState), .class_init = pll_class_init, .instance_init = pll_init, }; /* PLL channel */ static void pll_channel_reset(DeviceState *dev) { CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(dev); const PLLChannelResetInfo *info = &PLL_CHANNEL_RESET_INFO[s->id]; *s->reg_a2w_ctrl = info->a2w_ctrl; } static bool pll_channel_is_enabled(CprmanPllChannelState *channel) { /* * XXX I'm not sure of the purpose of the LOAD field. The Linux driver does * not set it when enabling the channel, but does clear it when disabling * it. */ return !FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DISABLE) && !(*channel->reg_cm & channel->hold_mask); } static void pll_channel_update(CprmanPllChannelState *channel) { uint64_t freq, div; if (!pll_channel_is_enabled(channel)) { clock_update(channel->out, 0); return; } div = FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DIV); if (!div) { /* * It seems that when the divider value is 0, it is considered as * being maximum by the hardware (see the Linux driver). */ div = R_A2W_PLLx_CHANNELy_DIV_MASK; } /* Some channels have an additional fixed divider */ freq = clock_get_hz(channel->pll_in) / (div * channel->fixed_divider); clock_update_hz(channel->out, freq); } /* Update a PLL and all its channels */ static void pll_update_all_channels(BCM2835CprmanState *s, CprmanPllState *pll) { size_t i; pll_update(pll); for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) { CprmanPllChannelState *channel = &s->channels[i]; if (channel->parent == pll->id) { pll_channel_update(channel); } } } static void pll_channel_pll_in_update(void *opaque) { pll_channel_update(CPRMAN_PLL_CHANNEL(opaque)); } static void pll_channel_init(Object *obj) { CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(obj); s->pll_in = qdev_init_clock_in(DEVICE(s), "pll-in", pll_channel_pll_in_update, s); s->out = qdev_init_clock_out(DEVICE(s), "out"); } static const VMStateDescription pll_channel_vmstate = { .name = TYPE_CPRMAN_PLL_CHANNEL, .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_CLOCK(pll_in, CprmanPllChannelState), VMSTATE_END_OF_LIST() } }; static void pll_channel_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->reset = pll_channel_reset; dc->vmsd = &pll_channel_vmstate; } static const TypeInfo cprman_pll_channel_info = { .name = TYPE_CPRMAN_PLL_CHANNEL, .parent = TYPE_DEVICE, .instance_size = sizeof(CprmanPllChannelState), .class_init = pll_channel_class_init, .instance_init = pll_channel_init, }; /* clock mux */ static bool clock_mux_is_enabled(CprmanClockMuxState *mux) { return FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, ENABLE); } static void clock_mux_update(CprmanClockMuxState *mux) { uint64_t freq; uint32_t div, src = FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, SRC); bool enabled = clock_mux_is_enabled(mux); *mux->reg_ctl = FIELD_DP32(*mux->reg_ctl, CM_CLOCKx_CTL, BUSY, enabled); if (!enabled) { clock_update(mux->out, 0); return; } freq = clock_get_hz(mux->srcs[src]); if (mux->int_bits == 0 && mux->frac_bits == 0) { clock_update_hz(mux->out, freq); return; } /* * The divider has an integer and a fractional part. The size of each part * varies with the muxes (int_bits and frac_bits). Both parts are * concatenated, with the integer part always starting at bit 12. * * 31 12 11 0 * ------------------------------ * CM_DIV | | int | frac | | * ------------------------------ * <-----> <------> * int_bits frac_bits */ div = extract32(*mux->reg_div, R_CM_CLOCKx_DIV_FRAC_LENGTH - mux->frac_bits, mux->int_bits + mux->frac_bits); if (!div) { clock_update(mux->out, 0); return; } freq = muldiv64(freq, 1 << mux->frac_bits, div); clock_update_hz(mux->out, freq); } static void clock_mux_src_update(void *opaque) { CprmanClockMuxState **backref = opaque; CprmanClockMuxState *s = *backref; CprmanClockMuxSource src = backref - s->backref; if (FIELD_EX32(*s->reg_ctl, CM_CLOCKx_CTL, SRC) != src) { return; } clock_mux_update(s); } static void clock_mux_reset(DeviceState *dev) { CprmanClockMuxState *clock = CPRMAN_CLOCK_MUX(dev); const ClockMuxResetInfo *info = &CLOCK_MUX_RESET_INFO[clock->id]; *clock->reg_ctl = info->cm_ctl; *clock->reg_div = info->cm_div; } static void clock_mux_init(Object *obj) { CprmanClockMuxState *s = CPRMAN_CLOCK_MUX(obj); size_t i; for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) { char *name = g_strdup_printf("srcs[%zu]", i); s->backref[i] = s; s->srcs[i] = qdev_init_clock_in(DEVICE(s), name, clock_mux_src_update, &s->backref[i]); g_free(name); } s->out = qdev_init_clock_out(DEVICE(s), "out"); } static const VMStateDescription clock_mux_vmstate = { .name = TYPE_CPRMAN_CLOCK_MUX, .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_ARRAY_CLOCK(srcs, CprmanClockMuxState, CPRMAN_NUM_CLOCK_MUX_SRC), VMSTATE_END_OF_LIST() } }; static void clock_mux_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->reset = clock_mux_reset; dc->vmsd = &clock_mux_vmstate; } static const TypeInfo cprman_clock_mux_info = { .name = TYPE_CPRMAN_CLOCK_MUX, .parent = TYPE_DEVICE, .instance_size = sizeof(CprmanClockMuxState), .class_init = clock_mux_class_init, .instance_init = clock_mux_init, }; /* DSI0HSCK mux */ static void dsi0hsck_mux_update(CprmanDsi0HsckMuxState *s) { bool src_is_plld = FIELD_EX32(*s->reg_cm, CM_DSI0HSCK, SELPLLD); Clock *src = src_is_plld ? s->plld_in : s->plla_in; clock_update(s->out, clock_get(src)); } static void dsi0hsck_mux_in_update(void *opaque) { dsi0hsck_mux_update(CPRMAN_DSI0HSCK_MUX(opaque)); } static void dsi0hsck_mux_init(Object *obj) { CprmanDsi0HsckMuxState *s = CPRMAN_DSI0HSCK_MUX(obj); DeviceState *dev = DEVICE(obj); s->plla_in = qdev_init_clock_in(dev, "plla-in", dsi0hsck_mux_in_update, s); s->plld_in = qdev_init_clock_in(dev, "plld-in", dsi0hsck_mux_in_update, s); s->out = qdev_init_clock_out(DEVICE(s), "out"); } static const VMStateDescription dsi0hsck_mux_vmstate = { .name = TYPE_CPRMAN_DSI0HSCK_MUX, .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_CLOCK(plla_in, CprmanDsi0HsckMuxState), VMSTATE_CLOCK(plld_in, CprmanDsi0HsckMuxState), VMSTATE_END_OF_LIST() } }; static void dsi0hsck_mux_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &dsi0hsck_mux_vmstate; } static const TypeInfo cprman_dsi0hsck_mux_info = { .name = TYPE_CPRMAN_DSI0HSCK_MUX, .parent = TYPE_DEVICE, .instance_size = sizeof(CprmanDsi0HsckMuxState), .class_init = dsi0hsck_mux_class_init, .instance_init = dsi0hsck_mux_init, }; /* CPRMAN "top level" model */ static uint32_t get_cm_lock(const BCM2835CprmanState *s) { static const int CM_LOCK_MAPPING[CPRMAN_NUM_PLL] = { [CPRMAN_PLLA] = R_CM_LOCK_FLOCKA_SHIFT, [CPRMAN_PLLC] = R_CM_LOCK_FLOCKC_SHIFT, [CPRMAN_PLLD] = R_CM_LOCK_FLOCKD_SHIFT, [CPRMAN_PLLH] = R_CM_LOCK_FLOCKH_SHIFT, [CPRMAN_PLLB] = R_CM_LOCK_FLOCKB_SHIFT, }; uint32_t r = 0; size_t i; for (i = 0; i < CPRMAN_NUM_PLL; i++) { r |= pll_is_locked(&s->plls[i]) << CM_LOCK_MAPPING[i]; } return r; } static uint64_t cprman_read(void *opaque, hwaddr offset, unsigned size) { BCM2835CprmanState *s = CPRMAN(opaque); uint64_t r = 0; size_t idx = offset / sizeof(uint32_t); switch (idx) { case R_CM_LOCK: r = get_cm_lock(s); break; default: r = s->regs[idx]; } trace_bcm2835_cprman_read(offset, r); return r; } static inline void update_pll_and_channels_from_cm(BCM2835CprmanState *s, size_t idx) { size_t i; for (i = 0; i < CPRMAN_NUM_PLL; i++) { if (PLL_INIT_INFO[i].cm_offset == idx) { pll_update_all_channels(s, &s->plls[i]); return; } } } static inline void update_channel_from_a2w(BCM2835CprmanState *s, size_t idx) { size_t i; for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) { if (PLL_CHANNEL_INIT_INFO[i].a2w_ctrl_offset == idx) { pll_channel_update(&s->channels[i]); return; } } } static inline void update_mux_from_cm(BCM2835CprmanState *s, size_t idx) { size_t i; for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) { if ((CLOCK_MUX_INIT_INFO[i].cm_offset == idx) || (CLOCK_MUX_INIT_INFO[i].cm_offset + 4 == idx)) { /* matches CM_CTL or CM_DIV mux register */ clock_mux_update(&s->clock_muxes[i]); return; } } } #define CASE_PLL_A2W_REGS(pll_) \ case R_A2W_ ## pll_ ## _CTRL: \ case R_A2W_ ## pll_ ## _ANA0: \ case R_A2W_ ## pll_ ## _ANA1: \ case R_A2W_ ## pll_ ## _ANA2: \ case R_A2W_ ## pll_ ## _ANA3: \ case R_A2W_ ## pll_ ## _FRAC static void cprman_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { BCM2835CprmanState *s = CPRMAN(opaque); size_t idx = offset / sizeof(uint32_t); if (FIELD_EX32(value, CPRMAN, PASSWORD) != CPRMAN_PASSWORD) { trace_bcm2835_cprman_write_invalid_magic(offset, value); return; } value &= ~R_CPRMAN_PASSWORD_MASK; trace_bcm2835_cprman_write(offset, value); s->regs[idx] = value; switch (idx) { case R_CM_PLLA ... R_CM_PLLH: case R_CM_PLLB: /* * A given CM_PLLx register is shared by both the PLL and the channels * of this PLL. */ update_pll_and_channels_from_cm(s, idx); break; CASE_PLL_A2W_REGS(PLLA) : pll_update(&s->plls[CPRMAN_PLLA]); break; CASE_PLL_A2W_REGS(PLLC) : pll_update(&s->plls[CPRMAN_PLLC]); break; CASE_PLL_A2W_REGS(PLLD) : pll_update(&s->plls[CPRMAN_PLLD]); break; CASE_PLL_A2W_REGS(PLLH) : pll_update(&s->plls[CPRMAN_PLLH]); break; CASE_PLL_A2W_REGS(PLLB) : pll_update(&s->plls[CPRMAN_PLLB]); break; case R_A2W_PLLA_DSI0: case R_A2W_PLLA_CORE: case R_A2W_PLLA_PER: case R_A2W_PLLA_CCP2: case R_A2W_PLLC_CORE2: case R_A2W_PLLC_CORE1: case R_A2W_PLLC_PER: case R_A2W_PLLC_CORE0: case R_A2W_PLLD_DSI0: case R_A2W_PLLD_CORE: case R_A2W_PLLD_PER: case R_A2W_PLLD_DSI1: case R_A2W_PLLH_AUX: case R_A2W_PLLH_RCAL: case R_A2W_PLLH_PIX: case R_A2W_PLLB_ARM: update_channel_from_a2w(s, idx); break; case R_CM_GNRICCTL ... R_CM_SMIDIV: case R_CM_TCNTCNT ... R_CM_VECDIV: case R_CM_PULSECTL ... R_CM_PULSEDIV: case R_CM_SDCCTL ... R_CM_ARMCTL: case R_CM_AVEOCTL ... R_CM_EMMCDIV: case R_CM_EMMC2CTL ... R_CM_EMMC2DIV: update_mux_from_cm(s, idx); break; case R_CM_DSI0HSCK: dsi0hsck_mux_update(&s->dsi0hsck_mux); break; } } #undef CASE_PLL_A2W_REGS static const MemoryRegionOps cprman_ops = { .read = cprman_read, .write = cprman_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid = { /* * Although this hasn't been checked against real hardware, nor the * information can be found in a datasheet, it seems reasonable because * of the "PASSWORD" magic value found in every registers. */ .min_access_size = 4, .max_access_size = 4, .unaligned = false, }, .impl = { .max_access_size = 4, }, }; static void cprman_reset(DeviceState *dev) { BCM2835CprmanState *s = CPRMAN(dev); size_t i; memset(s->regs, 0, sizeof(s->regs)); for (i = 0; i < CPRMAN_NUM_PLL; i++) { device_cold_reset(DEVICE(&s->plls[i])); } for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) { device_cold_reset(DEVICE(&s->channels[i])); } device_cold_reset(DEVICE(&s->dsi0hsck_mux)); for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) { device_cold_reset(DEVICE(&s->clock_muxes[i])); } clock_update_hz(s->xosc, s->xosc_freq); } static void cprman_init(Object *obj) { BCM2835CprmanState *s = CPRMAN(obj); size_t i; for (i = 0; i < CPRMAN_NUM_PLL; i++) { object_initialize_child(obj, PLL_INIT_INFO[i].name, &s->plls[i], TYPE_CPRMAN_PLL); set_pll_init_info(s, &s->plls[i], i); } for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) { object_initialize_child(obj, PLL_CHANNEL_INIT_INFO[i].name, &s->channels[i], TYPE_CPRMAN_PLL_CHANNEL); set_pll_channel_init_info(s, &s->channels[i], i); } object_initialize_child(obj, "dsi0hsck-mux", &s->dsi0hsck_mux, TYPE_CPRMAN_DSI0HSCK_MUX); s->dsi0hsck_mux.reg_cm = &s->regs[R_CM_DSI0HSCK]; for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) { char *alias; object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name, &s->clock_muxes[i], TYPE_CPRMAN_CLOCK_MUX); set_clock_mux_init_info(s, &s->clock_muxes[i], i); /* Expose muxes output as CPRMAN outputs */ alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name); qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias); g_free(alias); } s->xosc = clock_new(obj, "xosc"); s->gnd = clock_new(obj, "gnd"); clock_set(s->gnd, 0); memory_region_init_io(&s->iomem, obj, &cprman_ops, s, "bcm2835-cprman", 0x2000); sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem); } static void connect_mux_sources(BCM2835CprmanState *s, CprmanClockMuxState *mux, const CprmanPllChannel *clk_mapping) { size_t i; Clock *td0 = s->clock_muxes[CPRMAN_CLOCK_TD0].out; Clock *td1 = s->clock_muxes[CPRMAN_CLOCK_TD1].out; /* For sources from 0 to 3. Source 4 to 9 are mux specific */ Clock * const CLK_SRC_MAPPING[] = { [CPRMAN_CLOCK_SRC_GND] = s->gnd, [CPRMAN_CLOCK_SRC_XOSC] = s->xosc, [CPRMAN_CLOCK_SRC_TD0] = td0, [CPRMAN_CLOCK_SRC_TD1] = td1, }; for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) { CprmanPllChannel mapping = clk_mapping[i]; Clock *src; if (mapping == CPRMAN_CLOCK_SRC_FORCE_GROUND) { src = s->gnd; } else if (mapping == CPRMAN_CLOCK_SRC_DSI0HSCK) { src = s->dsi0hsck_mux.out; } else if (i < CPRMAN_CLOCK_SRC_PLLA) { src = CLK_SRC_MAPPING[i]; } else { src = s->channels[mapping].out; } clock_set_source(mux->srcs[i], src); } } static void cprman_realize(DeviceState *dev, Error **errp) { BCM2835CprmanState *s = CPRMAN(dev); size_t i; for (i = 0; i < CPRMAN_NUM_PLL; i++) { CprmanPllState *pll = &s->plls[i]; clock_set_source(pll->xosc_in, s->xosc); if (!qdev_realize(DEVICE(pll), NULL, errp)) { return; } } for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) { CprmanPllChannelState *channel = &s->channels[i]; CprmanPll parent = PLL_CHANNEL_INIT_INFO[i].parent; Clock *parent_clk = s->plls[parent].out; clock_set_source(channel->pll_in, parent_clk); if (!qdev_realize(DEVICE(channel), NULL, errp)) { return; } } clock_set_source(s->dsi0hsck_mux.plla_in, s->channels[CPRMAN_PLLA_CHANNEL_DSI0].out); clock_set_source(s->dsi0hsck_mux.plld_in, s->channels[CPRMAN_PLLD_CHANNEL_DSI0].out); if (!qdev_realize(DEVICE(&s->dsi0hsck_mux), NULL, errp)) { return; } for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) { CprmanClockMuxState *clock_mux = &s->clock_muxes[i]; connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping); if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) { return; } } } static const VMStateDescription cprman_vmstate = { .name = TYPE_BCM2835_CPRMAN, .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(regs, BCM2835CprmanState, CPRMAN_NUM_REGS), VMSTATE_END_OF_LIST() } }; static Property cprman_properties[] = { DEFINE_PROP_UINT32("xosc-freq-hz", BCM2835CprmanState, xosc_freq, 19200000), DEFINE_PROP_END_OF_LIST() }; static void cprman_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = cprman_realize; dc->reset = cprman_reset; dc->vmsd = &cprman_vmstate; device_class_set_props(dc, cprman_properties); } static const TypeInfo cprman_info = { .name = TYPE_BCM2835_CPRMAN, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(BCM2835CprmanState), .class_init = cprman_class_init, .instance_init = cprman_init, }; static void cprman_register_types(void) { type_register_static(&cprman_info); type_register_static(&cprman_pll_info); type_register_static(&cprman_pll_channel_info); type_register_static(&cprman_clock_mux_info); type_register_static(&cprman_dsi0hsck_mux_info); } type_init(cprman_register_types);