/* * QEMU PC System Emulator * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw/hw.h" #include "hw/i386/pc.h" #include "hw/char/serial.h" #include "hw/i386/apic.h" #include "hw/block/fdc.h" #include "hw/ide.h" #include "hw/pci/pci.h" #include "monitor/monitor.h" #include "hw/nvram/fw_cfg.h" #include "hw/timer/hpet.h" #include "hw/i386/smbios.h" #include "hw/loader.h" #include "elf.h" #include "multiboot.h" #include "hw/timer/mc146818rtc.h" #include "hw/timer/i8254.h" #include "hw/audio/pcspk.h" #include "hw/pci/msi.h" #include "hw/sysbus.h" #include "sysemu/sysemu.h" #include "sysemu/kvm.h" #include "kvm_i386.h" #include "hw/xen/xen.h" #include "sysemu/blockdev.h" #include "hw/block/block.h" #include "ui/qemu-spice.h" #include "exec/memory.h" #include "exec/address-spaces.h" #include "sysemu/arch_init.h" #include "qemu/bitmap.h" #include "qemu/config-file.h" #include "hw/acpi/acpi.h" #include "hw/acpi/cpu_hotplug.h" #include "hw/cpu/icc_bus.h" #include "hw/boards.h" #include "hw/pci/pci_host.h" #include "acpi-build.h" #include "hw/mem/pc-dimm.h" #include "trace.h" #include "qapi/visitor.h" /* debug PC/ISA interrupts */ //#define DEBUG_IRQ #ifdef DEBUG_IRQ #define DPRINTF(fmt, ...) \ do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) #endif /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */ #define ACPI_DATA_SIZE 0x10000 #define BIOS_CFG_IOPORT 0x510 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) #define E820_NR_ENTRIES 16 struct e820_entry { uint64_t address; uint64_t length; uint32_t type; } QEMU_PACKED __attribute((__aligned__(4))); struct e820_table { uint32_t count; struct e820_entry entry[E820_NR_ENTRIES]; } QEMU_PACKED __attribute((__aligned__(4))); static struct e820_table e820_reserve; static struct e820_entry *e820_table; static unsigned e820_entries; struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; void gsi_handler(void *opaque, int n, int level) { GSIState *s = opaque; DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); if (n < ISA_NUM_IRQS) { qemu_set_irq(s->i8259_irq[n], level); } qemu_set_irq(s->ioapic_irq[n], level); } static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { } static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) { return 0xffffffffffffffffULL; } /* MSDOS compatibility mode FPU exception support */ static qemu_irq ferr_irq; void pc_register_ferr_irq(qemu_irq irq) { ferr_irq = irq; } /* XXX: add IGNNE support */ void cpu_set_ferr(CPUX86State *s) { qemu_irq_raise(ferr_irq); } static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { qemu_irq_lower(ferr_irq); } static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) { return 0xffffffffffffffffULL; } /* TSC handling */ uint64_t cpu_get_tsc(CPUX86State *env) { return cpu_get_ticks(); } /* SMM support */ static cpu_set_smm_t smm_set; static void *smm_arg; void cpu_smm_register(cpu_set_smm_t callback, void *arg) { assert(smm_set == NULL); assert(smm_arg == NULL); smm_set = callback; smm_arg = arg; } void cpu_smm_update(CPUX86State *env) { if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) { smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg); } } /* IRQ handling */ int cpu_get_pic_interrupt(CPUX86State *env) { X86CPU *cpu = x86_env_get_cpu(env); int intno; intno = apic_get_interrupt(cpu->apic_state); if (intno >= 0) { return intno; } /* read the irq from the PIC */ if (!apic_accept_pic_intr(cpu->apic_state)) { return -1; } intno = pic_read_irq(isa_pic); return intno; } static void pic_irq_request(void *opaque, int irq, int level) { CPUState *cs = first_cpu; X86CPU *cpu = X86_CPU(cs); DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); if (cpu->apic_state) { CPU_FOREACH(cs) { cpu = X86_CPU(cs); if (apic_accept_pic_intr(cpu->apic_state)) { apic_deliver_pic_intr(cpu->apic_state, level); } } } else { if (level) { cpu_interrupt(cs, CPU_INTERRUPT_HARD); } else { cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); } } } /* PC cmos mappings */ #define REG_EQUIPMENT_BYTE 0x14 static int cmos_get_fd_drive_type(FDriveType fd0) { int val; switch (fd0) { case FDRIVE_DRV_144: /* 1.44 Mb 3"5 drive */ val = 4; break; case FDRIVE_DRV_288: /* 2.88 Mb 3"5 drive */ val = 5; break; case FDRIVE_DRV_120: /* 1.2 Mb 5"5 drive */ val = 2; break; case FDRIVE_DRV_NONE: default: val = 0; break; } return val; } static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, int16_t cylinders, int8_t heads, int8_t sectors) { rtc_set_memory(s, type_ofs, 47); rtc_set_memory(s, info_ofs, cylinders); rtc_set_memory(s, info_ofs + 1, cylinders >> 8); rtc_set_memory(s, info_ofs + 2, heads); rtc_set_memory(s, info_ofs + 3, 0xff); rtc_set_memory(s, info_ofs + 4, 0xff); rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); rtc_set_memory(s, info_ofs + 6, cylinders); rtc_set_memory(s, info_ofs + 7, cylinders >> 8); rtc_set_memory(s, info_ofs + 8, sectors); } /* convert boot_device letter to something recognizable by the bios */ static int boot_device2nibble(char boot_device) { switch(boot_device) { case 'a': case 'b': return 0x01; /* floppy boot */ case 'c': return 0x02; /* hard drive boot */ case 'd': return 0x03; /* CD-ROM boot */ case 'n': return 0x04; /* Network boot */ } return 0; } static int set_boot_dev(ISADevice *s, const char *boot_device) { #define PC_MAX_BOOT_DEVICES 3 int nbds, bds[3] = { 0, }; int i; nbds = strlen(boot_device); if (nbds > PC_MAX_BOOT_DEVICES) { error_report("Too many boot devices for PC"); return(1); } for (i = 0; i < nbds; i++) { bds[i] = boot_device2nibble(boot_device[i]); if (bds[i] == 0) { error_report("Invalid boot device for PC: '%c'", boot_device[i]); return(1); } } rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); return(0); } static int pc_boot_set(void *opaque, const char *boot_device) { return set_boot_dev(opaque, boot_device); } typedef struct pc_cmos_init_late_arg { ISADevice *rtc_state; BusState *idebus[2]; } pc_cmos_init_late_arg; static void pc_cmos_init_late(void *opaque) { pc_cmos_init_late_arg *arg = opaque; ISADevice *s = arg->rtc_state; int16_t cylinders; int8_t heads, sectors; int val; int i, trans; val = 0; if (ide_get_geometry(arg->idebus[0], 0, &cylinders, &heads, §ors) >= 0) { cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); val |= 0xf0; } if (ide_get_geometry(arg->idebus[0], 1, &cylinders, &heads, §ors) >= 0) { cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); val |= 0x0f; } rtc_set_memory(s, 0x12, val); val = 0; for (i = 0; i < 4; i++) { /* NOTE: ide_get_geometry() returns the physical geometry. It is always such that: 1 <= sects <= 63, 1 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS geometry can be different if a translation is done. */ if (ide_get_geometry(arg->idebus[i / 2], i % 2, &cylinders, &heads, §ors) >= 0) { trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; assert((trans & ~3) == 0); val |= trans << (i * 2); } } rtc_set_memory(s, 0x39, val); qemu_unregister_reset(pc_cmos_init_late, opaque); } typedef struct RTCCPUHotplugArg { Notifier cpu_added_notifier; ISADevice *rtc_state; } RTCCPUHotplugArg; static void rtc_notify_cpu_added(Notifier *notifier, void *data) { RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg, cpu_added_notifier); ISADevice *s = arg->rtc_state; /* increment the number of CPUs */ rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1); } void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size, const char *boot_device, ISADevice *floppy, BusState *idebus0, BusState *idebus1, ISADevice *s) { int val, nb, i; FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE }; static pc_cmos_init_late_arg arg; static RTCCPUHotplugArg cpu_hotplug_cb; /* various important CMOS locations needed by PC/Bochs bios */ /* memory size */ /* base memory (first MiB) */ val = MIN(ram_size / 1024, 640); rtc_set_memory(s, 0x15, val); rtc_set_memory(s, 0x16, val >> 8); /* extended memory (next 64MiB) */ if (ram_size > 1024 * 1024) { val = (ram_size - 1024 * 1024) / 1024; } else { val = 0; } if (val > 65535) val = 65535; rtc_set_memory(s, 0x17, val); rtc_set_memory(s, 0x18, val >> 8); rtc_set_memory(s, 0x30, val); rtc_set_memory(s, 0x31, val >> 8); /* memory between 16MiB and 4GiB */ if (ram_size > 16 * 1024 * 1024) { val = (ram_size - 16 * 1024 * 1024) / 65536; } else { val = 0; } if (val > 65535) val = 65535; rtc_set_memory(s, 0x34, val); rtc_set_memory(s, 0x35, val >> 8); /* memory above 4GiB */ val = above_4g_mem_size / 65536; rtc_set_memory(s, 0x5b, val); rtc_set_memory(s, 0x5c, val >> 8); rtc_set_memory(s, 0x5d, val >> 16); /* set the number of CPU */ rtc_set_memory(s, 0x5f, smp_cpus - 1); /* init CPU hotplug notifier */ cpu_hotplug_cb.rtc_state = s; cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added; qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier); if (set_boot_dev(s, boot_device)) { exit(1); } /* floppy type */ if (floppy) { for (i = 0; i < 2; i++) { fd_type[i] = isa_fdc_get_drive_type(floppy, i); } } val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | cmos_get_fd_drive_type(fd_type[1]); rtc_set_memory(s, 0x10, val); val = 0; nb = 0; if (fd_type[0] < FDRIVE_DRV_NONE) { nb++; } if (fd_type[1] < FDRIVE_DRV_NONE) { nb++; } switch (nb) { case 0: break; case 1: val |= 0x01; /* 1 drive, ready for boot */ break; case 2: val |= 0x41; /* 2 drives, ready for boot */ break; } val |= 0x02; /* FPU is there */ val |= 0x04; /* PS/2 mouse installed */ rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); /* hard drives */ arg.rtc_state = s; arg.idebus[0] = idebus0; arg.idebus[1] = idebus1; qemu_register_reset(pc_cmos_init_late, &arg); } #define TYPE_PORT92 "port92" #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) /* port 92 stuff: could be split off */ typedef struct Port92State { ISADevice parent_obj; MemoryRegion io; uint8_t outport; qemu_irq *a20_out; } Port92State; static void port92_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { Port92State *s = opaque; int oldval = s->outport; DPRINTF("port92: write 0x%02x\n", val); s->outport = val; qemu_set_irq(*s->a20_out, (val >> 1) & 1); if ((val & 1) && !(oldval & 1)) { qemu_system_reset_request(); } } static uint64_t port92_read(void *opaque, hwaddr addr, unsigned size) { Port92State *s = opaque; uint32_t ret; ret = s->outport; DPRINTF("port92: read 0x%02x\n", ret); return ret; } static void port92_init(ISADevice *dev, qemu_irq *a20_out) { Port92State *s = PORT92(dev); s->a20_out = a20_out; } static const VMStateDescription vmstate_port92_isa = { .name = "port92", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(outport, Port92State), VMSTATE_END_OF_LIST() } }; static void port92_reset(DeviceState *d) { Port92State *s = PORT92(d); s->outport &= ~1; } static const MemoryRegionOps port92_ops = { .read = port92_read, .write = port92_write, .impl = { .min_access_size = 1, .max_access_size = 1, }, .endianness = DEVICE_LITTLE_ENDIAN, }; static void port92_initfn(Object *obj) { Port92State *s = PORT92(obj); memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); s->outport = 0; } static void port92_realizefn(DeviceState *dev, Error **errp) { ISADevice *isadev = ISA_DEVICE(dev); Port92State *s = PORT92(dev); isa_register_ioport(isadev, &s->io, 0x92); } static void port92_class_initfn(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = port92_realizefn; dc->reset = port92_reset; dc->vmsd = &vmstate_port92_isa; /* * Reason: unlike ordinary ISA devices, this one needs additional * wiring: its A20 output line needs to be wired up by * port92_init(). */ dc->cannot_instantiate_with_device_add_yet = true; } static const TypeInfo port92_info = { .name = TYPE_PORT92, .parent = TYPE_ISA_DEVICE, .instance_size = sizeof(Port92State), .instance_init = port92_initfn, .class_init = port92_class_initfn, }; static void port92_register_types(void) { type_register_static(&port92_info); } type_init(port92_register_types) static void handle_a20_line_change(void *opaque, int irq, int level) { X86CPU *cpu = opaque; /* XXX: send to all CPUs ? */ /* XXX: add logic to handle multiple A20 line sources */ x86_cpu_set_a20(cpu, level); } int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) { int index = le32_to_cpu(e820_reserve.count); struct e820_entry *entry; if (type != E820_RAM) { /* old FW_CFG_E820_TABLE entry -- reservations only */ if (index >= E820_NR_ENTRIES) { return -EBUSY; } entry = &e820_reserve.entry[index++]; entry->address = cpu_to_le64(address); entry->length = cpu_to_le64(length); entry->type = cpu_to_le32(type); e820_reserve.count = cpu_to_le32(index); } /* new "etc/e820" file -- include ram too */ e820_table = g_realloc(e820_table, sizeof(struct e820_entry) * (e820_entries+1)); e820_table[e820_entries].address = cpu_to_le64(address); e820_table[e820_entries].length = cpu_to_le64(length); e820_table[e820_entries].type = cpu_to_le32(type); e820_entries++; return e820_entries; } int e820_get_num_entries(void) { return e820_entries; } bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) { if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { *address = le64_to_cpu(e820_table[idx].address); *length = le64_to_cpu(e820_table[idx].length); return true; } return false; } /* Calculates the limit to CPU APIC ID values * * This function returns the limit for the APIC ID value, so that all * CPU APIC IDs are < pc_apic_id_limit(). * * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). */ static unsigned int pc_apic_id_limit(unsigned int max_cpus) { return x86_cpu_apic_id_from_index(max_cpus - 1) + 1; } static FWCfgState *bochs_bios_init(void) { FWCfgState *fw_cfg; uint8_t *smbios_tables, *smbios_anchor; size_t smbios_tables_len, smbios_anchor_len; uint64_t *numa_fw_cfg; int i, j; unsigned int apic_id_limit = pc_apic_id_limit(max_cpus); fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0); /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: * * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS * may see". * * So, this means we must not use max_cpus, here, but the maximum possible * APIC ID value, plus one. * * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is * the APIC ID, not the "CPU index" */ fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit); fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, acpi_tables, acpi_tables_len); fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); smbios_tables = smbios_get_table_legacy(&smbios_tables_len); if (smbios_tables) { fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, smbios_tables, smbios_tables_len); } smbios_get_tables(&smbios_tables, &smbios_tables_len, &smbios_anchor, &smbios_anchor_len); if (smbios_anchor) { fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", smbios_tables, smbios_tables_len); fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", smbios_anchor, smbios_anchor_len); } fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, &e820_reserve, sizeof(e820_reserve)); fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, sizeof(struct e820_entry) * e820_entries); fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); /* allocate memory for the NUMA channel: one (64bit) word for the number * of nodes, one word for each VCPU->node and one word for each node to * hold the amount of memory. */ numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes); numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); for (i = 0; i < max_cpus; i++) { unsigned int apic_id = x86_cpu_apic_id_from_index(i); assert(apic_id < apic_id_limit); for (j = 0; j < nb_numa_nodes; j++) { if (test_bit(i, numa_info[j].node_cpu)) { numa_fw_cfg[apic_id + 1] = cpu_to_le64(j); break; } } } for (i = 0; i < nb_numa_nodes; i++) { numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem); } fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, (1 + apic_id_limit + nb_numa_nodes) * sizeof(*numa_fw_cfg)); return fw_cfg; } static long get_file_size(FILE *f) { long where, size; /* XXX: on Unix systems, using fstat() probably makes more sense */ where = ftell(f); fseek(f, 0, SEEK_END); size = ftell(f); fseek(f, where, SEEK_SET); return size; } static void load_linux(FWCfgState *fw_cfg, const char *kernel_filename, const char *initrd_filename, const char *kernel_cmdline, hwaddr max_ram_size) { uint16_t protocol; int setup_size, kernel_size, initrd_size = 0, cmdline_size; uint32_t initrd_max; uint8_t header[8192], *setup, *kernel, *initrd_data; hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; FILE *f; char *vmode; /* Align to 16 bytes as a paranoia measure */ cmdline_size = (strlen(kernel_cmdline)+16) & ~15; /* load the kernel header */ f = fopen(kernel_filename, "rb"); if (!f || !(kernel_size = get_file_size(f)) || fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != MIN(ARRAY_SIZE(header), kernel_size)) { fprintf(stderr, "qemu: could not load kernel '%s': %s\n", kernel_filename, strerror(errno)); exit(1); } /* kernel protocol version */ #if 0 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); #endif if (ldl_p(header+0x202) == 0x53726448) { protocol = lduw_p(header+0x206); } else { /* This looks like a multiboot kernel. If it is, let's stop treating it like a Linux kernel. */ if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, kernel_cmdline, kernel_size, header)) { return; } protocol = 0; } if (protocol < 0x200 || !(header[0x211] & 0x01)) { /* Low kernel */ real_addr = 0x90000; cmdline_addr = 0x9a000 - cmdline_size; prot_addr = 0x10000; } else if (protocol < 0x202) { /* High but ancient kernel */ real_addr = 0x90000; cmdline_addr = 0x9a000 - cmdline_size; prot_addr = 0x100000; } else { /* High and recent kernel */ real_addr = 0x10000; cmdline_addr = 0x20000; prot_addr = 0x100000; } #if 0 fprintf(stderr, "qemu: real_addr = 0x" TARGET_FMT_plx "\n" "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", real_addr, cmdline_addr, prot_addr); #endif /* highest address for loading the initrd */ if (protocol >= 0x203) { initrd_max = ldl_p(header+0x22c); } else { initrd_max = 0x37ffffff; } if (initrd_max >= max_ram_size-ACPI_DATA_SIZE) initrd_max = max_ram_size-ACPI_DATA_SIZE-1; fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); if (protocol >= 0x202) { stl_p(header+0x228, cmdline_addr); } else { stw_p(header+0x20, 0xA33F); stw_p(header+0x22, cmdline_addr-real_addr); } /* handle vga= parameter */ vmode = strstr(kernel_cmdline, "vga="); if (vmode) { unsigned int video_mode; /* skip "vga=" */ vmode += 4; if (!strncmp(vmode, "normal", 6)) { video_mode = 0xffff; } else if (!strncmp(vmode, "ext", 3)) { video_mode = 0xfffe; } else if (!strncmp(vmode, "ask", 3)) { video_mode = 0xfffd; } else { video_mode = strtol(vmode, NULL, 0); } stw_p(header+0x1fa, video_mode); } /* loader type */ /* High nybble = B reserved for QEMU; low nybble is revision number. If this code is substantially changed, you may want to consider incrementing the revision. */ if (protocol >= 0x200) { header[0x210] = 0xB0; } /* heap */ if (protocol >= 0x201) { header[0x211] |= 0x80; /* CAN_USE_HEAP */ stw_p(header+0x224, cmdline_addr-real_addr-0x200); } /* load initrd */ if (initrd_filename) { if (protocol < 0x200) { fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); exit(1); } initrd_size = get_image_size(initrd_filename); if (initrd_size < 0) { fprintf(stderr, "qemu: error reading initrd %s: %s\n", initrd_filename, strerror(errno)); exit(1); } initrd_addr = (initrd_max-initrd_size) & ~4095; initrd_data = g_malloc(initrd_size); load_image(initrd_filename, initrd_data); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); stl_p(header+0x218, initrd_addr); stl_p(header+0x21c, initrd_size); } /* load kernel and setup */ setup_size = header[0x1f1]; if (setup_size == 0) { setup_size = 4; } setup_size = (setup_size+1)*512; kernel_size -= setup_size; setup = g_malloc(setup_size); kernel = g_malloc(kernel_size); fseek(f, 0, SEEK_SET); if (fread(setup, 1, setup_size, f) != setup_size) { fprintf(stderr, "fread() failed\n"); exit(1); } if (fread(kernel, 1, kernel_size, f) != kernel_size) { fprintf(stderr, "fread() failed\n"); exit(1); } fclose(f); memcpy(setup, header, MIN(sizeof(header), setup_size)); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); option_rom[nb_option_roms].name = "linuxboot.bin"; option_rom[nb_option_roms].bootindex = 0; nb_option_roms++; } #define NE2000_NB_MAX 6 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 0x280, 0x380 }; static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) { static int nb_ne2k = 0; if (nb_ne2k == NE2000_NB_MAX) return; isa_ne2000_init(bus, ne2000_io[nb_ne2k], ne2000_irq[nb_ne2k], nd); nb_ne2k++; } DeviceState *cpu_get_current_apic(void) { if (current_cpu) { X86CPU *cpu = X86_CPU(current_cpu); return cpu->apic_state; } else { return NULL; } } void pc_acpi_smi_interrupt(void *opaque, int irq, int level) { X86CPU *cpu = opaque; if (level) { cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); } } static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id, DeviceState *icc_bridge, Error **errp) { X86CPU *cpu; Error *local_err = NULL; cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return NULL; } object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err); object_property_set_bool(OBJECT(cpu), true, "realized", &local_err); if (local_err) { error_propagate(errp, local_err); object_unref(OBJECT(cpu)); cpu = NULL; } return cpu; } static const char *current_cpu_model; void pc_hot_add_cpu(const int64_t id, Error **errp) { DeviceState *icc_bridge; int64_t apic_id = x86_cpu_apic_id_from_index(id); if (id < 0) { error_setg(errp, "Invalid CPU id: %" PRIi64, id); return; } if (cpu_exists(apic_id)) { error_setg(errp, "Unable to add CPU: %" PRIi64 ", it already exists", id); return; } if (id >= max_cpus) { error_setg(errp, "Unable to add CPU: %" PRIi64 ", max allowed: %d", id, max_cpus - 1); return; } if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { error_setg(errp, "Unable to add CPU: %" PRIi64 ", resulting APIC ID (%" PRIi64 ") is too large", id, apic_id); return; } icc_bridge = DEVICE(object_resolve_path_type("icc-bridge", TYPE_ICC_BRIDGE, NULL)); pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp); } void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge) { int i; X86CPU *cpu = NULL; Error *error = NULL; unsigned long apic_id_limit; /* init CPUs */ if (cpu_model == NULL) { #ifdef TARGET_X86_64 cpu_model = "qemu64"; #else cpu_model = "qemu32"; #endif } current_cpu_model = cpu_model; apic_id_limit = pc_apic_id_limit(max_cpus); if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) { error_report("max_cpus is too large. APIC ID of last CPU is %lu", apic_id_limit - 1); exit(1); } for (i = 0; i < smp_cpus; i++) { cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i), icc_bridge, &error); if (error) { error_report("%s", error_get_pretty(error)); error_free(error); exit(1); } } /* map APIC MMIO area if CPU has APIC */ if (cpu && cpu->apic_state) { /* XXX: what if the base changes? */ sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0, APIC_DEFAULT_ADDRESS, 0x1000); } /* tell smbios about cpuid version and features */ smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); } /* pci-info ROM file. Little endian format */ typedef struct PcRomPciInfo { uint64_t w32_min; uint64_t w32_max; uint64_t w64_min; uint64_t w64_max; } PcRomPciInfo; static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info) { PcRomPciInfo *info; Object *pci_info; bool ambiguous = false; if (!guest_info->has_pci_info || !guest_info->fw_cfg) { return; } pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous); g_assert(!ambiguous); if (!pci_info) { return; } info = g_malloc(sizeof *info); info->w32_min = cpu_to_le64(object_property_get_int(pci_info, PCI_HOST_PROP_PCI_HOLE_START, NULL)); info->w32_max = cpu_to_le64(object_property_get_int(pci_info, PCI_HOST_PROP_PCI_HOLE_END, NULL)); info->w64_min = cpu_to_le64(object_property_get_int(pci_info, PCI_HOST_PROP_PCI_HOLE64_START, NULL)); info->w64_max = cpu_to_le64(object_property_get_int(pci_info, PCI_HOST_PROP_PCI_HOLE64_END, NULL)); /* Pass PCI hole info to guest via a side channel. * Required so guest PCI enumeration does the right thing. */ fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info); } typedef struct PcGuestInfoState { PcGuestInfo info; Notifier machine_done; } PcGuestInfoState; static void pc_guest_info_machine_done(Notifier *notifier, void *data) { PcGuestInfoState *guest_info_state = container_of(notifier, PcGuestInfoState, machine_done); pc_fw_cfg_guest_info(&guest_info_state->info); acpi_setup(&guest_info_state->info); } PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size, ram_addr_t above_4g_mem_size) { PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); PcGuestInfo *guest_info = &guest_info_state->info; int i, j; guest_info->ram_size_below_4g = below_4g_mem_size; guest_info->ram_size = below_4g_mem_size + above_4g_mem_size; guest_info->apic_id_limit = pc_apic_id_limit(max_cpus); guest_info->apic_xrupt_override = kvm_allows_irq0_override(); guest_info->numa_nodes = nb_numa_nodes; guest_info->node_mem = g_malloc0(guest_info->numa_nodes * sizeof *guest_info->node_mem); for (i = 0; i < nb_numa_nodes; i++) { guest_info->node_mem[i] = numa_info[i].node_mem; } guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit * sizeof *guest_info->node_cpu); for (i = 0; i < max_cpus; i++) { unsigned int apic_id = x86_cpu_apic_id_from_index(i); assert(apic_id < guest_info->apic_id_limit); for (j = 0; j < nb_numa_nodes; j++) { if (test_bit(i, numa_info[j].node_cpu)) { guest_info->node_cpu[apic_id] = j; break; } } } guest_info_state->machine_done.notify = pc_guest_info_machine_done; qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); return guest_info; } /* setup pci memory address space mapping into system address space */ void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, MemoryRegion *pci_address_space) { /* Set to lower priority than RAM */ memory_region_add_subregion_overlap(system_memory, 0x0, pci_address_space, -1); } void pc_acpi_init(const char *default_dsdt) { char *filename; if (acpi_tables != NULL) { /* manually set via -acpitable, leave it alone */ return; } filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); if (filename == NULL) { fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt); } else { char *arg; QemuOpts *opts; Error *err = NULL; arg = g_strdup_printf("file=%s", filename); /* creates a deep copy of "arg" */ opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0); g_assert(opts != NULL); acpi_table_add_builtin(opts, &err); if (err) { error_report("WARNING: failed to load %s: %s", filename, error_get_pretty(err)); error_free(err); } g_free(arg); g_free(filename); } } FWCfgState *pc_memory_init(MemoryRegion *system_memory, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, ram_addr_t below_4g_mem_size, ram_addr_t above_4g_mem_size, MemoryRegion *rom_memory, MemoryRegion **ram_memory, PcGuestInfo *guest_info) { int linux_boot, i; MemoryRegion *ram, *option_rom_mr; MemoryRegion *ram_below_4g, *ram_above_4g; FWCfgState *fw_cfg; ram_addr_t ram_size = below_4g_mem_size + above_4g_mem_size; MachineState *machine = MACHINE(qdev_get_machine()); PCMachineState *pcms = PC_MACHINE(machine); linux_boot = (kernel_filename != NULL); /* Allocate RAM. We allocate it as a single memory region and use * aliases to address portions of it, mostly for backwards compatibility * with older qemus that used qemu_ram_alloc(). */ ram = g_malloc(sizeof(*ram)); memory_region_init_ram(ram, NULL, "pc.ram", ram_size); vmstate_register_ram_global(ram); *ram_memory = ram; ram_below_4g = g_malloc(sizeof(*ram_below_4g)); memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 0, below_4g_mem_size); memory_region_add_subregion(system_memory, 0, ram_below_4g); e820_add_entry(0, below_4g_mem_size, E820_RAM); if (above_4g_mem_size > 0) { ram_above_4g = g_malloc(sizeof(*ram_above_4g)); memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, below_4g_mem_size, above_4g_mem_size); memory_region_add_subregion(system_memory, 0x100000000ULL, ram_above_4g); e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM); } if (!guest_info->has_reserved_memory && (machine->ram_slots || (machine->maxram_size > ram_size))) { MachineClass *mc = MACHINE_GET_CLASS(machine); error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", mc->name); exit(EXIT_FAILURE); } /* initialize hotplug memory address space */ if (guest_info->has_reserved_memory && (ram_size < machine->maxram_size)) { ram_addr_t hotplug_mem_size = machine->maxram_size - ram_size; if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { error_report("unsupported amount of memory slots: %"PRIu64, machine->ram_slots); exit(EXIT_FAILURE); } pcms->hotplug_memory_base = ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30); if ((pcms->hotplug_memory_base + hotplug_mem_size) < hotplug_mem_size) { error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, machine->maxram_size); exit(EXIT_FAILURE); } memory_region_init(&pcms->hotplug_memory, OBJECT(pcms), "hotplug-memory", hotplug_mem_size); memory_region_add_subregion(system_memory, pcms->hotplug_memory_base, &pcms->hotplug_memory); } /* Initialize PC system firmware */ pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw); option_rom_mr = g_malloc(sizeof(*option_rom_mr)); memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE); vmstate_register_ram_global(option_rom_mr); memory_region_add_subregion_overlap(rom_memory, PC_ROM_MIN_VGA, option_rom_mr, 1); fw_cfg = bochs_bios_init(); rom_set_fw(fw_cfg); if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) { uint64_t *val = g_malloc(sizeof(*val)); *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30)); fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); } if (linux_boot) { load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size); } for (i = 0; i < nb_option_roms; i++) { rom_add_option(option_rom[i].name, option_rom[i].bootindex); } guest_info->fw_cfg = fw_cfg; return fw_cfg; } qemu_irq *pc_allocate_cpu_irq(void) { return qemu_allocate_irqs(pic_irq_request, NULL, 1); } DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) { DeviceState *dev = NULL; if (pci_bus) { PCIDevice *pcidev = pci_vga_init(pci_bus); dev = pcidev ? &pcidev->qdev : NULL; } else if (isa_bus) { ISADevice *isadev = isa_vga_init(isa_bus); dev = isadev ? DEVICE(isadev) : NULL; } return dev; } static void cpu_request_exit(void *opaque, int irq, int level) { CPUState *cpu = current_cpu; if (cpu && level) { cpu_exit(cpu); } } static const MemoryRegionOps ioport80_io_ops = { .write = ioport80_write, .read = ioport80_read, .endianness = DEVICE_NATIVE_ENDIAN, .impl = { .min_access_size = 1, .max_access_size = 1, }, }; static const MemoryRegionOps ioportF0_io_ops = { .write = ioportF0_write, .read = ioportF0_read, .endianness = DEVICE_NATIVE_ENDIAN, .impl = { .min_access_size = 1, .max_access_size = 1, }, }; void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, ISADevice **rtc_state, ISADevice **floppy, bool no_vmport, uint32 hpet_irqs) { int i; DriveInfo *fd[MAX_FD]; DeviceState *hpet = NULL; int pit_isa_irq = 0; qemu_irq pit_alt_irq = NULL; qemu_irq rtc_irq = NULL; qemu_irq *a20_line; ISADevice *i8042, *port92, *vmmouse, *pit = NULL; qemu_irq *cpu_exit_irq; MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); /* * Check if an HPET shall be created. * * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT * when the HPET wants to take over. Thus we have to disable the latter. */ if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { /* In order to set property, here not using sysbus_try_create_simple */ hpet = qdev_try_create(NULL, TYPE_HPET); if (hpet) { /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, * IRQ8 and IRQ2. */ uint8_t compat = object_property_get_int(OBJECT(hpet), HPET_INTCAP, NULL); if (!compat) { qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); } qdev_init_nofail(hpet); sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); for (i = 0; i < GSI_NUM_PINS; i++) { sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); } pit_isa_irq = -1; pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); } } *rtc_state = rtc_init(isa_bus, 2000, rtc_irq); qemu_register_boot_set(pc_boot_set, *rtc_state); if (!xen_enabled()) { if (kvm_irqchip_in_kernel()) { pit = kvm_pit_init(isa_bus, 0x40); } else { pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); } if (hpet) { /* connect PIT to output control line of the HPET */ qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); } pcspk_init(isa_bus, pit); } for(i = 0; i < MAX_SERIAL_PORTS; i++) { if (serial_hds[i]) { serial_isa_init(isa_bus, i, serial_hds[i]); } } for(i = 0; i < MAX_PARALLEL_PORTS; i++) { if (parallel_hds[i]) { parallel_init(isa_bus, i, parallel_hds[i]); } } a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); i8042 = isa_create_simple(isa_bus, "i8042"); i8042_setup_a20_line(i8042, &a20_line[0]); if (!no_vmport) { vmport_init(isa_bus); vmmouse = isa_try_create(isa_bus, "vmmouse"); } else { vmmouse = NULL; } if (vmmouse) { DeviceState *dev = DEVICE(vmmouse); qdev_prop_set_ptr(dev, "ps2_mouse", i8042); qdev_init_nofail(dev); } port92 = isa_create_simple(isa_bus, "port92"); port92_init(port92, &a20_line[1]); cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1); DMA_init(0, cpu_exit_irq); for(i = 0; i < MAX_FD; i++) { fd[i] = drive_get(IF_FLOPPY, 0, i); } *floppy = fdctrl_init_isa(isa_bus, fd); } void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus) { int i; for (i = 0; i < nb_nics; i++) { NICInfo *nd = &nd_table[i]; if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) { pc_init_ne2k_isa(isa_bus, nd); } else { pci_nic_init_nofail(nd, pci_bus, "e1000", NULL); } } } void pc_pci_device_init(PCIBus *pci_bus) { int max_bus; int bus; max_bus = drive_get_max_bus(IF_SCSI); for (bus = 0; bus <= max_bus; bus++) { pci_create_simple(pci_bus, -1, "lsi53c895a"); } } void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) { DeviceState *dev; SysBusDevice *d; unsigned int i; if (kvm_irqchip_in_kernel()) { dev = qdev_create(NULL, "kvm-ioapic"); } else { dev = qdev_create(NULL, "ioapic"); } if (parent_name) { object_property_add_child(object_resolve_path(parent_name, NULL), "ioapic", OBJECT(dev), NULL); } qdev_init_nofail(dev); d = SYS_BUS_DEVICE(dev); sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); for (i = 0; i < IOAPIC_NUM_PINS; i++) { gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); } } static void pc_generic_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); QEMUMachine *qm = data; mc->name = qm->name; mc->alias = qm->alias; mc->desc = qm->desc; mc->init = qm->init; mc->reset = qm->reset; mc->hot_add_cpu = qm->hot_add_cpu; mc->kvm_type = qm->kvm_type; mc->block_default_type = qm->block_default_type; mc->max_cpus = qm->max_cpus; mc->no_serial = qm->no_serial; mc->no_parallel = qm->no_parallel; mc->use_virtcon = qm->use_virtcon; mc->use_sclp = qm->use_sclp; mc->no_floppy = qm->no_floppy; mc->no_cdrom = qm->no_cdrom; mc->no_sdcard = qm->no_sdcard; mc->is_default = qm->is_default; mc->default_machine_opts = qm->default_machine_opts; mc->default_boot_order = qm->default_boot_order; mc->compat_props = qm->compat_props; mc->hw_version = qm->hw_version; } void qemu_register_pc_machine(QEMUMachine *m) { char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL); TypeInfo ti = { .name = name, .parent = TYPE_PC_MACHINE, .class_init = pc_generic_machine_class_init, .class_data = (void *)m, }; type_register(&ti); g_free(name); } static void pc_dimm_plug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { int slot; HotplugHandlerClass *hhc; Error *local_err = NULL; PCMachineState *pcms = PC_MACHINE(hotplug_dev); MachineState *machine = MACHINE(hotplug_dev); PCDIMMDevice *dimm = PC_DIMM(dev); PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); MemoryRegion *mr = ddc->get_memory_region(dimm); uint64_t addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err); if (local_err) { goto out; } addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base, memory_region_size(&pcms->hotplug_memory), !addr ? NULL : &addr, memory_region_size(mr), &local_err); if (local_err) { goto out; } object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err); if (local_err) { goto out; } trace_mhp_pc_dimm_assigned_address(addr); slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err); if (local_err) { goto out; } slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot, machine->ram_slots, &local_err); if (local_err) { goto out; } object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err); if (local_err) { goto out; } trace_mhp_pc_dimm_assigned_slot(slot); if (!pcms->acpi_dev) { error_setg(&local_err, "memory hotplug is not enabled: missing acpi device"); goto out; } memory_region_add_subregion(&pcms->hotplug_memory, addr - pcms->hotplug_memory_base, mr); vmstate_register_ram(mr, dev); hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); out: error_propagate(errp, local_err); } static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { pc_dimm_plug(hotplug_dev, dev, errp); } } static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, DeviceState *dev) { PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine); if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { return HOTPLUG_HANDLER(machine); } return pcmc->get_hotplug_handler ? pcmc->get_hotplug_handler(machine, dev) : NULL; } static void pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); int64_t value = memory_region_size(&pcms->hotplug_memory); visit_type_int(v, &value, name, errp); } static void pc_machine_initfn(Object *obj) { object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int", pc_machine_get_hotplug_memory_region_size, NULL, NULL, NULL, NULL); } static void pc_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); pcmc->get_hotplug_handler = mc->get_hotplug_handler; mc->get_hotplug_handler = pc_get_hotpug_handler; hc->plug = pc_machine_device_plug_cb; } static const TypeInfo pc_machine_info = { .name = TYPE_PC_MACHINE, .parent = TYPE_MACHINE, .abstract = true, .instance_size = sizeof(PCMachineState), .instance_init = pc_machine_initfn, .class_size = sizeof(PCMachineClass), .class_init = pc_machine_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_HOTPLUG_HANDLER }, { } }, }; static void pc_machine_register_types(void) { type_register_static(&pc_machine_info); } type_init(pc_machine_register_types)