/* * General purpose implementation of a simple periodic countdown timer. * * Copyright (c) 2007 CodeSourcery. * * This code is licensed under the GNU LGPL. */ #include "qemu/osdep.h" #include "hw/ptimer.h" #include "migration/vmstate.h" #include "qemu/host-utils.h" #include "sysemu/replay.h" #include "sysemu/cpu-timers.h" #include "sysemu/qtest.h" #include "block/aio.h" #include "sysemu/cpus.h" #include "hw/clock.h" #define DELTA_ADJUST 1 #define DELTA_NO_ADJUST -1 struct ptimer_state { uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */ uint64_t limit; uint64_t delta; uint32_t period_frac; int64_t period; int64_t last_event; int64_t next_event; uint8_t policy_mask; QEMUTimer *timer; ptimer_cb callback; void *callback_opaque; /* * These track whether we're in a transaction block, and if we * need to do a timer reload when the block finishes. They don't * need to be migrated because migration can never happen in the * middle of a transaction block. */ bool in_transaction; bool need_reload; }; /* Use a bottom-half routine to avoid reentrancy issues. */ static void ptimer_trigger(ptimer_state *s) { s->callback(s->callback_opaque); } static void ptimer_reload(ptimer_state *s, int delta_adjust) { uint32_t period_frac; uint64_t period; uint64_t delta; bool suppress_trigger = false; /* * Note that if delta_adjust is 0 then we must be here because of * a count register write or timer start, not because of timer expiry. * In that case the policy might require us to suppress the timer trigger * that we would otherwise generate for a zero delta. */ if (delta_adjust == 0 && (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) { suppress_trigger = true; } if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER) && !suppress_trigger) { ptimer_trigger(s); } /* * Note that ptimer_trigger() might call the device callback function, * which can then modify timer state, so we must not cache any fields * from ptimer_state until after we have called it. */ delta = s->delta; period = s->period; period_frac = s->period_frac; if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) { delta = s->delta = s->limit; } if (s->period == 0) { if (!qtest_enabled()) { fprintf(stderr, "Timer with period zero, disabling\n"); } timer_del(s->timer); s->enabled = 0; return; } if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { if (delta_adjust != DELTA_NO_ADJUST) { delta += delta_adjust; } } if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) { if (s->enabled == 1 && s->limit == 0) { delta = 1; } } if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { if (delta_adjust != DELTA_NO_ADJUST) { delta = 1; } } if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) { if (s->enabled == 1 && s->limit != 0) { delta = 1; } } if (delta == 0) { if (s->enabled == 0) { /* trigger callback disabled the timer already */ return; } if (!qtest_enabled()) { fprintf(stderr, "Timer with delta zero, disabling\n"); } timer_del(s->timer); s->enabled = 0; return; } /* * Artificially limit timeout rate to something * achievable under QEMU. Otherwise, QEMU spends all * its time generating timer interrupts, and there * is no forward progress. * About ten microseconds is the fastest that really works * on the current generation of host machines. */ if (s->enabled == 1 && (delta * period < 10000) && !icount_enabled() && !qtest_enabled()) { period = 10000 / delta; period_frac = 0; } s->last_event = s->next_event; s->next_event = s->last_event + delta * period; if (period_frac) { s->next_event += ((int64_t)period_frac * delta) >> 32; } timer_mod(s->timer, s->next_event); } static void ptimer_tick(void *opaque) { ptimer_state *s = (ptimer_state *)opaque; bool trigger = true; /* * We perform all the tick actions within a begin/commit block * because the callback function that ptimer_trigger() calls * might make calls into the ptimer APIs that provoke another * trigger, and we want that to cause the callback function * to be called iteratively, not recursively. */ ptimer_transaction_begin(s); if (s->enabled == 2) { s->delta = 0; s->enabled = 0; } else { int delta_adjust = DELTA_ADJUST; if (s->delta == 0 || s->limit == 0) { /* If a "continuous trigger" policy is not used and limit == 0, we should error out. delta == 0 means that this tick is caused by a "no immediate reload" policy, so it shouldn't be adjusted. */ delta_adjust = DELTA_NO_ADJUST; } if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { /* Avoid re-trigger on deferred reload if "no immediate trigger" policy isn't used. */ trigger = (delta_adjust == DELTA_ADJUST); } s->delta = s->limit; ptimer_reload(s, delta_adjust); } if (trigger) { ptimer_trigger(s); } ptimer_transaction_commit(s); } uint64_t ptimer_get_count(ptimer_state *s) { uint64_t counter; if (s->enabled && s->delta != 0) { int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); int64_t next = s->next_event; int64_t last = s->last_event; bool expired = (now - next >= 0); bool oneshot = (s->enabled == 2); /* Figure out the current counter value. */ if (expired) { /* Prevent timer underflowing if it should already have triggered. */ counter = 0; } else { uint64_t rem; uint64_t div; int clz1, clz2; int shift; uint32_t period_frac = s->period_frac; uint64_t period = s->period; if (!oneshot && (s->delta * period < 10000) && !icount_enabled() && !qtest_enabled()) { period = 10000 / s->delta; period_frac = 0; } /* We need to divide time by period, where time is stored in rem (64-bit integer) and period is stored in period/period_frac (64.32 fixed point). Doing full precision division is hard, so scale values and do a 64-bit division. The result should be rounded down, so that the rounding error never causes the timer to go backwards. */ rem = next - now; div = period; clz1 = clz64(rem); clz2 = clz64(div); shift = clz1 < clz2 ? clz1 : clz2; rem <<= shift; div <<= shift; if (shift >= 32) { div |= ((uint64_t)period_frac << (shift - 32)); } else { if (shift != 0) div |= (period_frac >> (32 - shift)); /* Look at remaining bits of period_frac and round div up if necessary. */ if ((uint32_t)(period_frac << shift)) div += 1; } counter = rem / div; if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { /* Before wrapping around, timer should stay with counter = 0 for a one period. */ if (!oneshot && s->delta == s->limit) { if (now == last) { /* Counter == delta here, check whether it was adjusted and if it was, then right now it is that "one period". */ if (counter == s->limit + DELTA_ADJUST) { return 0; } } else if (counter == s->limit) { /* Since the counter is rounded down and now != last, the counter == limit means that delta was adjusted by +1 and right now it is that adjusted period. */ return 0; } } } } if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) { /* If now == last then delta == limit, i.e. the counter already represents the correct value. It would be rounded down a 1ns later. */ if (now != last) { counter += 1; } } } else { counter = s->delta; } return counter; } void ptimer_set_count(ptimer_state *s, uint64_t count) { assert(s->in_transaction); s->delta = count; if (s->enabled) { s->need_reload = true; } } void ptimer_run(ptimer_state *s, int oneshot) { bool was_disabled = !s->enabled; assert(s->in_transaction); if (was_disabled && s->period == 0) { if (!qtest_enabled()) { fprintf(stderr, "Timer with period zero, disabling\n"); } return; } s->enabled = oneshot ? 2 : 1; if (was_disabled) { s->need_reload = true; } } /* Pause a timer. Note that this may cause it to "lose" time, even if it is immediately restarted. */ void ptimer_stop(ptimer_state *s) { assert(s->in_transaction); if (!s->enabled) return; s->delta = ptimer_get_count(s); timer_del(s->timer); s->enabled = 0; s->need_reload = false; } /* Set counter increment interval in nanoseconds. */ void ptimer_set_period(ptimer_state *s, int64_t period) { assert(s->in_transaction); s->delta = ptimer_get_count(s); s->period = period; s->period_frac = 0; if (s->enabled) { s->need_reload = true; } } /* Set counter increment interval from a Clock */ void ptimer_set_period_from_clock(ptimer_state *s, const Clock *clk, unsigned int divisor) { /* * The raw clock period is a 64-bit value in units of 2^-32 ns; * put another way it's a 32.32 fixed-point ns value. Our internal * representation of the period is 64.32 fixed point ns, so * the conversion is simple. */ uint64_t raw_period = clock_get(clk); uint64_t period_frac; assert(s->in_transaction); s->delta = ptimer_get_count(s); s->period = extract64(raw_period, 32, 32); period_frac = extract64(raw_period, 0, 32); /* * divisor specifies a possible frequency divisor between the * clock and the timer, so it is a multiplier on the period. * We do the multiply after splitting the raw period out into * period and frac to avoid having to do a 32*64->96 multiply. */ s->period *= divisor; period_frac *= divisor; s->period += extract64(period_frac, 32, 32); s->period_frac = (uint32_t)period_frac; if (s->enabled) { s->need_reload = true; } } /* Set counter frequency in Hz. */ void ptimer_set_freq(ptimer_state *s, uint32_t freq) { assert(s->in_transaction); s->delta = ptimer_get_count(s); s->period = 1000000000ll / freq; s->period_frac = (1000000000ll << 32) / freq; if (s->enabled) { s->need_reload = true; } } /* Set the initial countdown value. If reload is nonzero then also set count = limit. */ void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload) { assert(s->in_transaction); s->limit = limit; if (reload) s->delta = limit; if (s->enabled && reload) { s->need_reload = true; } } uint64_t ptimer_get_limit(ptimer_state *s) { return s->limit; } void ptimer_transaction_begin(ptimer_state *s) { assert(!s->in_transaction); s->in_transaction = true; s->need_reload = false; } void ptimer_transaction_commit(ptimer_state *s) { assert(s->in_transaction); /* * We must loop here because ptimer_reload() can call the callback * function, which might then update ptimer state in a way that * means we need to do another reload and possibly another callback. * A disabled timer never needs reloading (and if we don't check * this then we loop forever if ptimer_reload() disables the timer). */ while (s->need_reload && s->enabled) { s->need_reload = false; s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); ptimer_reload(s, 0); } /* Now we've finished reload we can leave the transaction block. */ s->in_transaction = false; } const VMStateDescription vmstate_ptimer = { .name = "ptimer", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(enabled, ptimer_state), VMSTATE_UINT64(limit, ptimer_state), VMSTATE_UINT64(delta, ptimer_state), VMSTATE_UINT32(period_frac, ptimer_state), VMSTATE_INT64(period, ptimer_state), VMSTATE_INT64(last_event, ptimer_state), VMSTATE_INT64(next_event, ptimer_state), VMSTATE_TIMER_PTR(timer, ptimer_state), VMSTATE_END_OF_LIST() } }; ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque, uint8_t policy_mask) { ptimer_state *s; /* The callback function is mandatory. */ assert(callback); s = g_new0(ptimer_state, 1); s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s); s->policy_mask = policy_mask; s->callback = callback; s->callback_opaque = callback_opaque; /* * These two policies are incompatible -- trigger-on-decrement implies * a timer trigger when the count becomes 0, but no-immediate-trigger * implies a trigger when the count stops being 0. */ assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) && (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER))); return s; } void ptimer_free(ptimer_state *s) { timer_free(s->timer); g_free(s); }