/* * QEMU 16550A UART emulation * * Copyright (c) 2003-2004 Fabrice Bellard * Copyright (c) 2008 Citrix Systems, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/bitops.h" #include "hw/char/serial.h" #include "hw/irq.h" #include "migration/vmstate.h" #include "chardev/char-serial.h" #include "qapi/error.h" #include "qemu/timer.h" #include "sysemu/reset.h" #include "sysemu/runstate.h" #include "qemu/error-report.h" #include "trace.h" #include "hw/qdev-properties.h" #include "hw/qdev-properties-system.h" #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */ #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */ #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */ #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */ #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */ #define UART_IIR_NO_INT 0x01 /* No interrupts pending */ #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */ #define UART_IIR_MSI 0x00 /* Modem status interrupt */ #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */ #define UART_IIR_RDI 0x04 /* Receiver data interrupt */ #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */ #define UART_IIR_CTI 0x0C /* Character Timeout Indication */ #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */ #define UART_IIR_FE 0xC0 /* Fifo enabled */ /* * These are the definitions for the Modem Control Register */ #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */ #define UART_MCR_OUT2 0x08 /* Out2 complement */ #define UART_MCR_OUT1 0x04 /* Out1 complement */ #define UART_MCR_RTS 0x02 /* RTS complement */ #define UART_MCR_DTR 0x01 /* DTR complement */ /* * These are the definitions for the Modem Status Register */ #define UART_MSR_DCD 0x80 /* Data Carrier Detect */ #define UART_MSR_RI 0x40 /* Ring Indicator */ #define UART_MSR_DSR 0x20 /* Data Set Ready */ #define UART_MSR_CTS 0x10 /* Clear to Send */ #define UART_MSR_DDCD 0x08 /* Delta DCD */ #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */ #define UART_MSR_DDSR 0x02 /* Delta DSR */ #define UART_MSR_DCTS 0x01 /* Delta CTS */ #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */ #define UART_LSR_TEMT 0x40 /* Transmitter empty */ #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */ #define UART_LSR_BI 0x10 /* Break interrupt indicator */ #define UART_LSR_FE 0x08 /* Frame error indicator */ #define UART_LSR_PE 0x04 /* Parity error indicator */ #define UART_LSR_OE 0x02 /* Overrun error indicator */ #define UART_LSR_DR 0x01 /* Receiver data ready */ #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */ /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */ #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */ #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */ #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */ #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */ #define UART_FCR_DMS 0x08 /* DMA Mode Select */ #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */ #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */ #define UART_FCR_FE 0x01 /* FIFO Enable */ #define MAX_XMIT_RETRY 4 static void serial_receive1(void *opaque, const uint8_t *buf, int size); static void serial_xmit(SerialState *s); static inline void recv_fifo_put(SerialState *s, uint8_t chr) { /* Receive overruns do not overwrite FIFO contents. */ if (!fifo8_is_full(&s->recv_fifo)) { fifo8_push(&s->recv_fifo, chr); } else { s->lsr |= UART_LSR_OE; } } static void serial_update_irq(SerialState *s) { uint8_t tmp_iir = UART_IIR_NO_INT; if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) { tmp_iir = UART_IIR_RLSI; } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) { /* Note that(s->ier & UART_IER_RDI) can mask this interrupt, * this is not in the specification but is observed on existing * hardware. */ tmp_iir = UART_IIR_CTI; } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) && (!(s->fcr & UART_FCR_FE) || s->recv_fifo.num >= s->recv_fifo_itl)) { tmp_iir = UART_IIR_RDI; } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) { tmp_iir = UART_IIR_THRI; } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) { tmp_iir = UART_IIR_MSI; } s->iir = tmp_iir | (s->iir & 0xF0); if (tmp_iir != UART_IIR_NO_INT) { qemu_irq_raise(s->irq); } else { qemu_irq_lower(s->irq); } } static void serial_update_parameters(SerialState *s) { float speed; int parity, data_bits, stop_bits, frame_size; QEMUSerialSetParams ssp; /* Start bit. */ frame_size = 1; if (s->lcr & 0x08) { /* Parity bit. */ frame_size++; if (s->lcr & 0x10) parity = 'E'; else parity = 'O'; } else { parity = 'N'; } if (s->lcr & 0x04) { stop_bits = 2; } else { stop_bits = 1; } data_bits = (s->lcr & 0x03) + 5; frame_size += data_bits + stop_bits; /* Zero divisor should give about 3500 baud */ speed = (s->divider == 0) ? 3500 : (float) s->baudbase / s->divider; ssp.speed = speed; ssp.parity = parity; ssp.data_bits = data_bits; ssp.stop_bits = stop_bits; s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size; qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); trace_serial_update_parameters(speed, parity, data_bits, stop_bits); } static void serial_update_msl(SerialState *s) { uint8_t omsr; int flags; timer_del(s->modem_status_poll); if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, &flags) == -ENOTSUP) { s->poll_msl = -1; return; } omsr = s->msr; s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS; s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR; s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD; s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI; if (s->msr != omsr) { /* Set delta bits */ s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4)); /* UART_MSR_TERI only if change was from 1 -> 0 */ if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI)) s->msr &= ~UART_MSR_TERI; serial_update_irq(s); } /* The real 16550A apparently has a 250ns response latency to line status changes. We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */ if (s->poll_msl) { timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + NANOSECONDS_PER_SECOND / 100); } } static gboolean serial_watch_cb(GIOChannel *chan, GIOCondition cond, void *opaque) { SerialState *s = opaque; s->watch_tag = 0; serial_xmit(s); return FALSE; } static void serial_xmit(SerialState *s) { do { assert(!(s->lsr & UART_LSR_TEMT)); if (s->tsr_retry == 0) { assert(!(s->lsr & UART_LSR_THRE)); if (s->fcr & UART_FCR_FE) { assert(!fifo8_is_empty(&s->xmit_fifo)); s->tsr = fifo8_pop(&s->xmit_fifo); if (!s->xmit_fifo.num) { s->lsr |= UART_LSR_THRE; } } else { s->tsr = s->thr; s->lsr |= UART_LSR_THRE; } if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) { s->thr_ipending = 1; serial_update_irq(s); } } if (s->mcr & UART_MCR_LOOP) { /* in loopback mode, say that we just received a char */ serial_receive1(s, &s->tsr, 1); } else { int rc = qemu_chr_fe_write(&s->chr, &s->tsr, 1); if ((rc == 0 || (rc == -1 && errno == EAGAIN)) && s->tsr_retry < MAX_XMIT_RETRY) { assert(s->watch_tag == 0); s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, serial_watch_cb, s); if (s->watch_tag > 0) { s->tsr_retry++; return; } } } s->tsr_retry = 0; /* Transmit another byte if it is already available. It is only possible when FIFO is enabled and not empty. */ } while (!(s->lsr & UART_LSR_THRE)); s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); s->lsr |= UART_LSR_TEMT; } /* Setter for FCR. is_load flag means, that value is set while loading VM state and interrupt should not be invoked */ static void serial_write_fcr(SerialState *s, uint8_t val) { /* Set fcr - val only has the bits that are supposed to "stick" */ s->fcr = val; if (val & UART_FCR_FE) { s->iir |= UART_IIR_FE; /* Set recv_fifo trigger Level */ switch (val & 0xC0) { case UART_FCR_ITL_1: s->recv_fifo_itl = 1; break; case UART_FCR_ITL_2: s->recv_fifo_itl = 4; break; case UART_FCR_ITL_3: s->recv_fifo_itl = 8; break; case UART_FCR_ITL_4: s->recv_fifo_itl = 14; break; } } else { s->iir &= ~UART_IIR_FE; } } static void serial_update_tiocm(SerialState *s) { int flags; qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, &flags); flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR); if (s->mcr & UART_MCR_RTS) { flags |= CHR_TIOCM_RTS; } if (s->mcr & UART_MCR_DTR) { flags |= CHR_TIOCM_DTR; } qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_TIOCM, &flags); } static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { SerialState *s = opaque; assert(size == 1 && addr < 8); trace_serial_write(addr, val); switch(addr) { default: case 0: if (s->lcr & UART_LCR_DLAB) { s->divider = deposit32(s->divider, 8 * addr, 8, val); serial_update_parameters(s); } else { s->thr = (uint8_t) val; if(s->fcr & UART_FCR_FE) { /* xmit overruns overwrite data, so make space if needed */ if (fifo8_is_full(&s->xmit_fifo)) { fifo8_pop(&s->xmit_fifo); } fifo8_push(&s->xmit_fifo, s->thr); } s->thr_ipending = 0; s->lsr &= ~UART_LSR_THRE; s->lsr &= ~UART_LSR_TEMT; serial_update_irq(s); if (s->tsr_retry == 0) { serial_xmit(s); } } break; case 1: if (s->lcr & UART_LCR_DLAB) { s->divider = deposit32(s->divider, 8 * addr, 8, val); serial_update_parameters(s); } else { uint8_t changed = (s->ier ^ val) & 0x0f; s->ier = val & 0x0f; /* If the backend device is a real serial port, turn polling of the modem * status lines on physical port on or off depending on UART_IER_MSI state. */ if ((changed & UART_IER_MSI) && s->poll_msl >= 0) { if (s->ier & UART_IER_MSI) { s->poll_msl = 1; serial_update_msl(s); } else { timer_del(s->modem_status_poll); s->poll_msl = 0; } } /* Turning on the THRE interrupt on IER can trigger the interrupt * if LSR.THRE=1, even if it had been masked before by reading IIR. * This is not in the datasheet, but Windows relies on it. It is * unclear if THRE has to be resampled every time THRI becomes * 1, or only on the rising edge. Bochs does the latter, and Windows * always toggles IER to all zeroes and back to all ones, so do the * same. * * If IER.THRI is zero, thr_ipending is not used. Set it to zero * so that the thr_ipending subsection is not migrated. */ if (changed & UART_IER_THRI) { if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) { s->thr_ipending = 1; } else { s->thr_ipending = 0; } } if (changed) { serial_update_irq(s); } } break; case 2: /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */ if ((val ^ s->fcr) & UART_FCR_FE) { val |= UART_FCR_XFR | UART_FCR_RFR; } /* FIFO clear */ if (val & UART_FCR_RFR) { s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); timer_del(s->fifo_timeout_timer); s->timeout_ipending = 0; fifo8_reset(&s->recv_fifo); } if (val & UART_FCR_XFR) { s->lsr |= UART_LSR_THRE; s->thr_ipending = 1; fifo8_reset(&s->xmit_fifo); } serial_write_fcr(s, val & 0xC9); serial_update_irq(s); break; case 3: { int break_enable; s->lcr = val; serial_update_parameters(s); break_enable = (val >> 6) & 1; if (break_enable != s->last_break_enable) { s->last_break_enable = break_enable; qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK, &break_enable); } } break; case 4: { int old_mcr = s->mcr; s->mcr = val & 0x1f; if (val & UART_MCR_LOOP) break; if (s->poll_msl >= 0 && old_mcr != s->mcr) { serial_update_tiocm(s); /* Update the modem status after a one-character-send wait-time, since there may be a response from the device/computer at the other end of the serial line */ timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time); } } break; case 5: break; case 6: break; case 7: s->scr = val; break; } } static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size) { SerialState *s = opaque; uint32_t ret; assert(size == 1 && addr < 8); switch(addr) { default: case 0: if (s->lcr & UART_LCR_DLAB) { ret = extract16(s->divider, 8 * addr, 8); } else { if(s->fcr & UART_FCR_FE) { ret = fifo8_is_empty(&s->recv_fifo) ? 0 : fifo8_pop(&s->recv_fifo); if (s->recv_fifo.num == 0) { s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); } else { timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4); } s->timeout_ipending = 0; } else { ret = s->rbr; s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); } serial_update_irq(s); if (!(s->mcr & UART_MCR_LOOP)) { /* in loopback mode, don't receive any data */ qemu_chr_fe_accept_input(&s->chr); } } break; case 1: if (s->lcr & UART_LCR_DLAB) { ret = extract16(s->divider, 8 * addr, 8); } else { ret = s->ier; } break; case 2: ret = s->iir; if ((ret & UART_IIR_ID) == UART_IIR_THRI) { s->thr_ipending = 0; serial_update_irq(s); } break; case 3: ret = s->lcr; break; case 4: ret = s->mcr; break; case 5: ret = s->lsr; /* Clear break and overrun interrupts */ if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) { s->lsr &= ~(UART_LSR_BI|UART_LSR_OE); serial_update_irq(s); } break; case 6: if (s->mcr & UART_MCR_LOOP) { /* in loopback, the modem output pins are connected to the inputs */ ret = (s->mcr & 0x0c) << 4; ret |= (s->mcr & 0x02) << 3; ret |= (s->mcr & 0x01) << 5; } else { if (s->poll_msl >= 0) serial_update_msl(s); ret = s->msr; /* Clear delta bits & msr int after read, if they were set */ if (s->msr & UART_MSR_ANY_DELTA) { s->msr &= 0xF0; serial_update_irq(s); } } break; case 7: ret = s->scr; break; } trace_serial_read(addr, ret); return ret; } static int serial_can_receive(SerialState *s) { if(s->fcr & UART_FCR_FE) { if (s->recv_fifo.num < UART_FIFO_LENGTH) { /* * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the * effect will be to almost always fill the fifo completely before * the guest has a chance to respond, effectively overriding the ITL * that the guest has set. */ return (s->recv_fifo.num <= s->recv_fifo_itl) ? s->recv_fifo_itl - s->recv_fifo.num : 1; } else { return 0; } } else { return !(s->lsr & UART_LSR_DR); } } static void serial_receive_break(SerialState *s) { s->rbr = 0; /* When the LSR_DR is set a null byte is pushed into the fifo */ recv_fifo_put(s, '\0'); s->lsr |= UART_LSR_BI | UART_LSR_DR; serial_update_irq(s); } /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */ static void fifo_timeout_int (void *opaque) { SerialState *s = opaque; if (s->recv_fifo.num) { s->timeout_ipending = 1; serial_update_irq(s); } } static int serial_can_receive1(void *opaque) { SerialState *s = opaque; return serial_can_receive(s); } static void serial_receive1(void *opaque, const uint8_t *buf, int size) { SerialState *s = opaque; if (s->wakeup) { qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER, NULL); } if(s->fcr & UART_FCR_FE) { int i; for (i = 0; i < size; i++) { recv_fifo_put(s, buf[i]); } s->lsr |= UART_LSR_DR; /* call the timeout receive callback in 4 char transmit time */ timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4); } else { if (s->lsr & UART_LSR_DR) s->lsr |= UART_LSR_OE; s->rbr = buf[0]; s->lsr |= UART_LSR_DR; } serial_update_irq(s); } static void serial_event(void *opaque, QEMUChrEvent event) { SerialState *s = opaque; if (event == CHR_EVENT_BREAK) serial_receive_break(s); } static int serial_pre_save(void *opaque) { SerialState *s = opaque; s->fcr_vmstate = s->fcr; return 0; } static int serial_pre_load(void *opaque) { SerialState *s = opaque; s->thr_ipending = -1; s->poll_msl = -1; return 0; } static int serial_post_load(void *opaque, int version_id) { SerialState *s = opaque; if (version_id < 3) { s->fcr_vmstate = 0; } if (s->thr_ipending == -1) { s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI); } if (s->tsr_retry > 0) { /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty). */ if (s->lsr & UART_LSR_TEMT) { error_report("inconsistent state in serial device " "(tsr empty, tsr_retry=%d", s->tsr_retry); return -1; } if (s->tsr_retry > MAX_XMIT_RETRY) { s->tsr_retry = MAX_XMIT_RETRY; } assert(s->watch_tag == 0); s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, serial_watch_cb, s); } else { /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty). */ if (!(s->lsr & UART_LSR_TEMT)) { error_report("inconsistent state in serial device " "(tsr not empty, tsr_retry=0"); return -1; } } s->last_break_enable = (s->lcr >> 6) & 1; /* Initialize fcr via setter to perform essential side-effects */ serial_write_fcr(s, s->fcr_vmstate); serial_update_parameters(s); return 0; } static bool serial_thr_ipending_needed(void *opaque) { SerialState *s = opaque; if (s->ier & UART_IER_THRI) { bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI); return s->thr_ipending != expected_value; } else { /* LSR.THRE will be sampled again when the interrupt is * enabled. thr_ipending is not used in this case, do * not migrate it. */ return false; } } static const VMStateDescription vmstate_serial_thr_ipending = { .name = "serial/thr_ipending", .version_id = 1, .minimum_version_id = 1, .needed = serial_thr_ipending_needed, .fields = (VMStateField[]) { VMSTATE_INT32(thr_ipending, SerialState), VMSTATE_END_OF_LIST() } }; static bool serial_tsr_needed(void *opaque) { SerialState *s = (SerialState *)opaque; return s->tsr_retry != 0; } static const VMStateDescription vmstate_serial_tsr = { .name = "serial/tsr", .version_id = 1, .minimum_version_id = 1, .needed = serial_tsr_needed, .fields = (VMStateField[]) { VMSTATE_UINT32(tsr_retry, SerialState), VMSTATE_UINT8(thr, SerialState), VMSTATE_UINT8(tsr, SerialState), VMSTATE_END_OF_LIST() } }; static bool serial_recv_fifo_needed(void *opaque) { SerialState *s = (SerialState *)opaque; return !fifo8_is_empty(&s->recv_fifo); } static const VMStateDescription vmstate_serial_recv_fifo = { .name = "serial/recv_fifo", .version_id = 1, .minimum_version_id = 1, .needed = serial_recv_fifo_needed, .fields = (VMStateField[]) { VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8), VMSTATE_END_OF_LIST() } }; static bool serial_xmit_fifo_needed(void *opaque) { SerialState *s = (SerialState *)opaque; return !fifo8_is_empty(&s->xmit_fifo); } static const VMStateDescription vmstate_serial_xmit_fifo = { .name = "serial/xmit_fifo", .version_id = 1, .minimum_version_id = 1, .needed = serial_xmit_fifo_needed, .fields = (VMStateField[]) { VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8), VMSTATE_END_OF_LIST() } }; static bool serial_fifo_timeout_timer_needed(void *opaque) { SerialState *s = (SerialState *)opaque; return timer_pending(s->fifo_timeout_timer); } static const VMStateDescription vmstate_serial_fifo_timeout_timer = { .name = "serial/fifo_timeout_timer", .version_id = 1, .minimum_version_id = 1, .needed = serial_fifo_timeout_timer_needed, .fields = (VMStateField[]) { VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState), VMSTATE_END_OF_LIST() } }; static bool serial_timeout_ipending_needed(void *opaque) { SerialState *s = (SerialState *)opaque; return s->timeout_ipending != 0; } static const VMStateDescription vmstate_serial_timeout_ipending = { .name = "serial/timeout_ipending", .version_id = 1, .minimum_version_id = 1, .needed = serial_timeout_ipending_needed, .fields = (VMStateField[]) { VMSTATE_INT32(timeout_ipending, SerialState), VMSTATE_END_OF_LIST() } }; static bool serial_poll_needed(void *opaque) { SerialState *s = (SerialState *)opaque; return s->poll_msl >= 0; } static const VMStateDescription vmstate_serial_poll = { .name = "serial/poll", .version_id = 1, .needed = serial_poll_needed, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_INT32(poll_msl, SerialState), VMSTATE_TIMER_PTR(modem_status_poll, SerialState), VMSTATE_END_OF_LIST() } }; const VMStateDescription vmstate_serial = { .name = "serial", .version_id = 3, .minimum_version_id = 2, .pre_save = serial_pre_save, .pre_load = serial_pre_load, .post_load = serial_post_load, .fields = (VMStateField[]) { VMSTATE_UINT16_V(divider, SerialState, 2), VMSTATE_UINT8(rbr, SerialState), VMSTATE_UINT8(ier, SerialState), VMSTATE_UINT8(iir, SerialState), VMSTATE_UINT8(lcr, SerialState), VMSTATE_UINT8(mcr, SerialState), VMSTATE_UINT8(lsr, SerialState), VMSTATE_UINT8(msr, SerialState), VMSTATE_UINT8(scr, SerialState), VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_serial_thr_ipending, &vmstate_serial_tsr, &vmstate_serial_recv_fifo, &vmstate_serial_xmit_fifo, &vmstate_serial_fifo_timeout_timer, &vmstate_serial_timeout_ipending, &vmstate_serial_poll, NULL } }; static void serial_reset(void *opaque) { SerialState *s = opaque; if (s->watch_tag > 0) { g_source_remove(s->watch_tag); s->watch_tag = 0; } s->rbr = 0; s->ier = 0; s->iir = UART_IIR_NO_INT; s->lcr = 0; s->lsr = UART_LSR_TEMT | UART_LSR_THRE; s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS; /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */ s->divider = 0x0C; s->mcr = UART_MCR_OUT2; s->scr = 0; s->tsr_retry = 0; s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10; s->poll_msl = 0; s->timeout_ipending = 0; timer_del(s->fifo_timeout_timer); timer_del(s->modem_status_poll); fifo8_reset(&s->recv_fifo); fifo8_reset(&s->xmit_fifo); s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); s->thr_ipending = 0; s->last_break_enable = 0; qemu_irq_lower(s->irq); serial_update_msl(s); s->msr &= ~UART_MSR_ANY_DELTA; } static int serial_be_change(void *opaque) { SerialState *s = opaque; qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1, serial_event, serial_be_change, s, NULL, true); serial_update_parameters(s); qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK, &s->last_break_enable); s->poll_msl = (s->ier & UART_IER_MSI) ? 1 : 0; serial_update_msl(s); if (s->poll_msl >= 0 && !(s->mcr & UART_MCR_LOOP)) { serial_update_tiocm(s); } if (s->watch_tag > 0) { g_source_remove(s->watch_tag); s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, serial_watch_cb, s); } return 0; } static void serial_realize(DeviceState *dev, Error **errp) { SerialState *s = SERIAL(dev); s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s); s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s); qemu_register_reset(serial_reset, s); qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1, serial_event, serial_be_change, s, NULL, true); fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH); fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH); serial_reset(s); } static void serial_unrealize(DeviceState *dev) { SerialState *s = SERIAL(dev); qemu_chr_fe_deinit(&s->chr, false); timer_free(s->modem_status_poll); timer_free(s->fifo_timeout_timer); fifo8_destroy(&s->recv_fifo); fifo8_destroy(&s->xmit_fifo); qemu_unregister_reset(serial_reset, s); } /* Change the main reference oscillator frequency. */ void serial_set_frequency(SerialState *s, uint32_t frequency) { s->baudbase = frequency; serial_update_parameters(s); } const MemoryRegionOps serial_io_ops = { .read = serial_ioport_read, .write = serial_ioport_write, .impl = { .min_access_size = 1, .max_access_size = 1, }, .endianness = DEVICE_LITTLE_ENDIAN, }; static Property serial_properties[] = { DEFINE_PROP_CHR("chardev", SerialState, chr), DEFINE_PROP_UINT32("baudbase", SerialState, baudbase, 115200), DEFINE_PROP_BOOL("wakeup", SerialState, wakeup, false), DEFINE_PROP_END_OF_LIST(), }; static void serial_class_init(ObjectClass *klass, void* data) { DeviceClass *dc = DEVICE_CLASS(klass); /* internal device for serialio/serialmm, not user-creatable */ dc->user_creatable = false; dc->realize = serial_realize; dc->unrealize = serial_unrealize; device_class_set_props(dc, serial_properties); } static const TypeInfo serial_info = { .name = TYPE_SERIAL, .parent = TYPE_DEVICE, .instance_size = sizeof(SerialState), .class_init = serial_class_init, }; /* Memory mapped interface */ static uint64_t serial_mm_read(void *opaque, hwaddr addr, unsigned size) { SerialMM *s = SERIAL_MM(opaque); return serial_ioport_read(&s->serial, addr >> s->regshift, 1); } static void serial_mm_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { SerialMM *s = SERIAL_MM(opaque); value &= 255; serial_ioport_write(&s->serial, addr >> s->regshift, value, 1); } static const MemoryRegionOps serial_mm_ops[3] = { [DEVICE_NATIVE_ENDIAN] = { .read = serial_mm_read, .write = serial_mm_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid.max_access_size = 8, .impl.max_access_size = 8, }, [DEVICE_LITTLE_ENDIAN] = { .read = serial_mm_read, .write = serial_mm_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid.max_access_size = 8, .impl.max_access_size = 8, }, [DEVICE_BIG_ENDIAN] = { .read = serial_mm_read, .write = serial_mm_write, .endianness = DEVICE_BIG_ENDIAN, .valid.max_access_size = 8, .impl.max_access_size = 8, }, }; static void serial_mm_realize(DeviceState *dev, Error **errp) { SerialMM *smm = SERIAL_MM(dev); SerialState *s = &smm->serial; if (!qdev_realize(DEVICE(s), NULL, errp)) { return; } memory_region_init_io(&s->io, OBJECT(dev), &serial_mm_ops[smm->endianness], smm, "serial", 8 << smm->regshift); sysbus_init_mmio(SYS_BUS_DEVICE(smm), &s->io); sysbus_init_irq(SYS_BUS_DEVICE(smm), &smm->serial.irq); } static const VMStateDescription vmstate_serial_mm = { .name = "serial", .version_id = 3, .minimum_version_id = 2, .fields = (VMStateField[]) { VMSTATE_STRUCT(serial, SerialMM, 0, vmstate_serial, SerialState), VMSTATE_END_OF_LIST() } }; SerialMM *serial_mm_init(MemoryRegion *address_space, hwaddr base, int regshift, qemu_irq irq, int baudbase, Chardev *chr, enum device_endian end) { SerialMM *smm = SERIAL_MM(qdev_new(TYPE_SERIAL_MM)); MemoryRegion *mr; qdev_prop_set_uint8(DEVICE(smm), "regshift", regshift); qdev_prop_set_uint32(DEVICE(smm), "baudbase", baudbase); qdev_prop_set_chr(DEVICE(smm), "chardev", chr); qdev_set_legacy_instance_id(DEVICE(smm), base, 2); qdev_prop_set_uint8(DEVICE(smm), "endianness", end); sysbus_realize_and_unref(SYS_BUS_DEVICE(smm), &error_fatal); sysbus_connect_irq(SYS_BUS_DEVICE(smm), 0, irq); mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(smm), 0); memory_region_add_subregion(address_space, base, mr); return smm; } static void serial_mm_instance_init(Object *o) { SerialMM *smm = SERIAL_MM(o); object_initialize_child(o, "serial", &smm->serial, TYPE_SERIAL); qdev_alias_all_properties(DEVICE(&smm->serial), o); } static Property serial_mm_properties[] = { /* * Set the spacing between adjacent memory-mapped UART registers. * Each register will be at (1 << regshift) bytes after the * previous one. */ DEFINE_PROP_UINT8("regshift", SerialMM, regshift, 0), DEFINE_PROP_UINT8("endianness", SerialMM, endianness, DEVICE_NATIVE_ENDIAN), DEFINE_PROP_END_OF_LIST(), }; static void serial_mm_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); device_class_set_props(dc, serial_mm_properties); dc->realize = serial_mm_realize; dc->vmsd = &vmstate_serial_mm; } static const TypeInfo serial_mm_info = { .name = TYPE_SERIAL_MM, .parent = TYPE_SYS_BUS_DEVICE, .class_init = serial_mm_class_init, .instance_init = serial_mm_instance_init, .instance_size = sizeof(SerialMM), }; static void serial_register_types(void) { type_register_static(&serial_info); type_register_static(&serial_mm_info); } type_init(serial_register_types)