/* * nRF51 SoC UART emulation * * See nRF51 Series Reference Manual, "29 Universal Asynchronous * Receiver/Transmitter" for hardware specifications: * http://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf * * Copyright (c) 2018 Julia Suvorova * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 or * (at your option) any later version. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/module.h" #include "hw/char/nrf51_uart.h" #include "hw/irq.h" #include "hw/qdev-properties.h" #include "hw/qdev-properties-system.h" #include "migration/vmstate.h" #include "trace.h" static void nrf51_uart_update_irq(NRF51UARTState *s) { bool irq = false; irq |= (s->reg[R_UART_RXDRDY] && (s->reg[R_UART_INTEN] & R_UART_INTEN_RXDRDY_MASK)); irq |= (s->reg[R_UART_TXDRDY] && (s->reg[R_UART_INTEN] & R_UART_INTEN_TXDRDY_MASK)); irq |= (s->reg[R_UART_ERROR] && (s->reg[R_UART_INTEN] & R_UART_INTEN_ERROR_MASK)); irq |= (s->reg[R_UART_RXTO] && (s->reg[R_UART_INTEN] & R_UART_INTEN_RXTO_MASK)); qemu_set_irq(s->irq, irq); } static uint64_t uart_read(void *opaque, hwaddr addr, unsigned int size) { NRF51UARTState *s = NRF51_UART(opaque); uint64_t r; if (!s->enabled) { return 0; } switch (addr) { case A_UART_RXD: r = s->rx_fifo[s->rx_fifo_pos]; if (s->rx_started && s->rx_fifo_len) { s->rx_fifo_pos = (s->rx_fifo_pos + 1) % UART_FIFO_LENGTH; s->rx_fifo_len--; if (s->rx_fifo_len) { s->reg[R_UART_RXDRDY] = 1; nrf51_uart_update_irq(s); } qemu_chr_fe_accept_input(&s->chr); } break; case A_UART_INTENSET: case A_UART_INTENCLR: case A_UART_INTEN: r = s->reg[R_UART_INTEN]; break; default: r = s->reg[addr / 4]; break; } trace_nrf51_uart_read(addr, r, size); return r; } static gboolean uart_transmit(GIOChannel *chan, GIOCondition cond, void *opaque) { NRF51UARTState *s = NRF51_UART(opaque); int r; uint8_t c = s->reg[R_UART_TXD]; s->watch_tag = 0; r = qemu_chr_fe_write(&s->chr, &c, 1); if (r <= 0) { s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, uart_transmit, s); if (!s->watch_tag) { /* The hardware has no transmit error reporting, * so silently drop the byte */ goto buffer_drained; } return FALSE; } buffer_drained: s->reg[R_UART_TXDRDY] = 1; s->pending_tx_byte = false; return FALSE; } static void uart_cancel_transmit(NRF51UARTState *s) { if (s->watch_tag) { g_source_remove(s->watch_tag); s->watch_tag = 0; } } static void uart_write(void *opaque, hwaddr addr, uint64_t value, unsigned int size) { NRF51UARTState *s = NRF51_UART(opaque); trace_nrf51_uart_write(addr, value, size); if (!s->enabled && (addr != A_UART_ENABLE)) { return; } switch (addr) { case A_UART_TXD: if (!s->pending_tx_byte && s->tx_started) { s->reg[R_UART_TXD] = value; s->pending_tx_byte = true; uart_transmit(NULL, G_IO_OUT, s); } break; case A_UART_INTEN: s->reg[R_UART_INTEN] = value; break; case A_UART_INTENSET: s->reg[R_UART_INTEN] |= value; break; case A_UART_INTENCLR: s->reg[R_UART_INTEN] &= ~value; break; case A_UART_TXDRDY ... A_UART_RXTO: s->reg[addr / 4] = value; break; case A_UART_ERRORSRC: s->reg[addr / 4] &= ~value; break; case A_UART_RXD: break; case A_UART_RXDRDY: if (value == 0) { s->reg[R_UART_RXDRDY] = 0; } break; case A_UART_STARTTX: if (value == 1) { s->tx_started = true; } break; case A_UART_STARTRX: if (value == 1) { s->rx_started = true; } break; case A_UART_ENABLE: if (value) { if (value == 4) { s->enabled = true; } break; } s->enabled = false; value = 1; /* fall through */ case A_UART_SUSPEND: case A_UART_STOPTX: if (value == 1) { s->tx_started = false; } /* fall through */ case A_UART_STOPRX: if (addr != A_UART_STOPTX && value == 1) { s->rx_started = false; s->reg[R_UART_RXTO] = 1; } break; default: s->reg[addr / 4] = value; break; } nrf51_uart_update_irq(s); } static const MemoryRegionOps uart_ops = { .read = uart_read, .write = uart_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void nrf51_uart_reset(DeviceState *dev) { NRF51UARTState *s = NRF51_UART(dev); s->pending_tx_byte = 0; uart_cancel_transmit(s); memset(s->reg, 0, sizeof(s->reg)); s->reg[R_UART_PSELRTS] = 0xFFFFFFFF; s->reg[R_UART_PSELTXD] = 0xFFFFFFFF; s->reg[R_UART_PSELCTS] = 0xFFFFFFFF; s->reg[R_UART_PSELRXD] = 0xFFFFFFFF; s->reg[R_UART_BAUDRATE] = 0x4000000; s->rx_fifo_len = 0; s->rx_fifo_pos = 0; s->rx_started = false; s->tx_started = false; s->enabled = false; } static void uart_receive(void *opaque, const uint8_t *buf, int size) { NRF51UARTState *s = NRF51_UART(opaque); int i; if (size == 0 || s->rx_fifo_len >= UART_FIFO_LENGTH) { return; } for (i = 0; i < size; i++) { uint32_t pos = (s->rx_fifo_pos + s->rx_fifo_len) % UART_FIFO_LENGTH; s->rx_fifo[pos] = buf[i]; s->rx_fifo_len++; } s->reg[R_UART_RXDRDY] = 1; nrf51_uart_update_irq(s); } static int uart_can_receive(void *opaque) { NRF51UARTState *s = NRF51_UART(opaque); return s->rx_started ? (UART_FIFO_LENGTH - s->rx_fifo_len) : 0; } static void uart_event(void *opaque, QEMUChrEvent event) { NRF51UARTState *s = NRF51_UART(opaque); if (event == CHR_EVENT_BREAK) { s->reg[R_UART_ERRORSRC] |= 3; s->reg[R_UART_ERROR] = 1; nrf51_uart_update_irq(s); } } static void nrf51_uart_realize(DeviceState *dev, Error **errp) { NRF51UARTState *s = NRF51_UART(dev); qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive, uart_event, NULL, s, NULL, true); } static void nrf51_uart_init(Object *obj) { NRF51UARTState *s = NRF51_UART(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(obj); memory_region_init_io(&s->iomem, obj, &uart_ops, s, "nrf51_soc.uart", UART_SIZE); sysbus_init_mmio(sbd, &s->iomem); sysbus_init_irq(sbd, &s->irq); } static int nrf51_uart_post_load(void *opaque, int version_id) { NRF51UARTState *s = NRF51_UART(opaque); if (s->pending_tx_byte) { s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, uart_transmit, s); } return 0; } static const VMStateDescription nrf51_uart_vmstate = { .name = "nrf51_soc.uart", .post_load = nrf51_uart_post_load, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(reg, NRF51UARTState, 0x56C), VMSTATE_UINT8_ARRAY(rx_fifo, NRF51UARTState, UART_FIFO_LENGTH), VMSTATE_UINT32(rx_fifo_pos, NRF51UARTState), VMSTATE_UINT32(rx_fifo_len, NRF51UARTState), VMSTATE_BOOL(rx_started, NRF51UARTState), VMSTATE_BOOL(tx_started, NRF51UARTState), VMSTATE_BOOL(pending_tx_byte, NRF51UARTState), VMSTATE_BOOL(enabled, NRF51UARTState), VMSTATE_END_OF_LIST() } }; static Property nrf51_uart_properties[] = { DEFINE_PROP_CHR("chardev", NRF51UARTState, chr), DEFINE_PROP_END_OF_LIST(), }; static void nrf51_uart_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->reset = nrf51_uart_reset; dc->realize = nrf51_uart_realize; device_class_set_props(dc, nrf51_uart_properties); dc->vmsd = &nrf51_uart_vmstate; } static const TypeInfo nrf51_uart_info = { .name = TYPE_NRF51_UART, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(NRF51UARTState), .instance_init = nrf51_uart_init, .class_init = nrf51_uart_class_init }; static void nrf51_uart_register_types(void) { type_register_static(&nrf51_uart_info); } type_init(nrf51_uart_register_types)