/* * ARM PrimeCell Timer modules. * * Copyright (c) 2005-2006 CodeSourcery. * Written by Paul Brook * * This code is licenced under the GPL. */ #include "hw.h" #include "qemu-timer.h" #include "primecell.h" /* Common timer implementation. */ #define TIMER_CTRL_ONESHOT (1 << 0) #define TIMER_CTRL_32BIT (1 << 1) #define TIMER_CTRL_DIV1 (0 << 2) #define TIMER_CTRL_DIV16 (1 << 2) #define TIMER_CTRL_DIV256 (2 << 2) #define TIMER_CTRL_IE (1 << 5) #define TIMER_CTRL_PERIODIC (1 << 6) #define TIMER_CTRL_ENABLE (1 << 7) typedef struct { ptimer_state *timer; uint32_t control; uint32_t limit; int freq; int int_level; qemu_irq irq; } arm_timer_state; /* Check all active timers, and schedule the next timer interrupt. */ static void arm_timer_update(arm_timer_state *s) { /* Update interrupts. */ if (s->int_level && (s->control & TIMER_CTRL_IE)) { qemu_irq_raise(s->irq); } else { qemu_irq_lower(s->irq); } } static uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset) { arm_timer_state *s = (arm_timer_state *)opaque; switch (offset >> 2) { case 0: /* TimerLoad */ case 6: /* TimerBGLoad */ return s->limit; case 1: /* TimerValue */ return ptimer_get_count(s->timer); case 2: /* TimerControl */ return s->control; case 4: /* TimerRIS */ return s->int_level; case 5: /* TimerMIS */ if ((s->control & TIMER_CTRL_IE) == 0) return 0; return s->int_level; default: cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n", (int)offset); return 0; } } /* Reset the timer limit after settings have changed. */ static void arm_timer_recalibrate(arm_timer_state *s, int reload) { uint32_t limit; if ((s->control & TIMER_CTRL_PERIODIC) == 0) { /* Free running. */ if (s->control & TIMER_CTRL_32BIT) limit = 0xffffffff; else limit = 0xffff; } else { /* Periodic. */ limit = s->limit; } ptimer_set_limit(s->timer, limit, reload); } static void arm_timer_write(void *opaque, target_phys_addr_t offset, uint32_t value) { arm_timer_state *s = (arm_timer_state *)opaque; int freq; switch (offset >> 2) { case 0: /* TimerLoad */ s->limit = value; arm_timer_recalibrate(s, 1); break; case 1: /* TimerValue */ /* ??? Linux seems to want to write to this readonly register. Ignore it. */ break; case 2: /* TimerControl */ if (s->control & TIMER_CTRL_ENABLE) { /* Pause the timer if it is running. This may cause some inaccuracy dure to rounding, but avoids a whole lot of other messyness. */ ptimer_stop(s->timer); } s->control = value; freq = s->freq; /* ??? Need to recalculate expiry time after changing divisor. */ switch ((value >> 2) & 3) { case 1: freq >>= 4; break; case 2: freq >>= 8; break; } arm_timer_recalibrate(s, 0); ptimer_set_freq(s->timer, freq); if (s->control & TIMER_CTRL_ENABLE) { /* Restart the timer if still enabled. */ ptimer_run(s->timer, (s->control & TIMER_CTRL_ONESHOT) != 0); } break; case 3: /* TimerIntClr */ s->int_level = 0; break; case 6: /* TimerBGLoad */ s->limit = value; arm_timer_recalibrate(s, 0); break; default: cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n", (int)offset); } arm_timer_update(s); } static void arm_timer_tick(void *opaque) { arm_timer_state *s = (arm_timer_state *)opaque; s->int_level = 1; arm_timer_update(s); } static void *arm_timer_init(uint32_t freq, qemu_irq irq) { arm_timer_state *s; QEMUBH *bh; s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state)); s->irq = irq; s->freq = freq; s->control = TIMER_CTRL_IE; bh = qemu_bh_new(arm_timer_tick, s); s->timer = ptimer_init(bh); /* ??? Save/restore. */ return s; } /* ARM PrimeCell SP804 dual timer module. Docs for this device don't seem to be publicly available. This implementation is based on guesswork, the linux kernel sources and the Integrator/CP timer modules. */ typedef struct { void *timer[2]; int level[2]; uint32_t base; qemu_irq irq; } sp804_state; /* Merge the IRQs from the two component devices. */ static void sp804_set_irq(void *opaque, int irq, int level) { sp804_state *s = (sp804_state *)opaque; s->level[irq] = level; qemu_set_irq(s->irq, s->level[0] || s->level[1]); } static uint32_t sp804_read(void *opaque, target_phys_addr_t offset) { sp804_state *s = (sp804_state *)opaque; /* ??? Don't know the PrimeCell ID for this device. */ offset -= s->base; if (offset < 0x20) { return arm_timer_read(s->timer[0], offset); } else { return arm_timer_read(s->timer[1], offset - 0x20); } } static void sp804_write(void *opaque, target_phys_addr_t offset, uint32_t value) { sp804_state *s = (sp804_state *)opaque; offset -= s->base; if (offset < 0x20) { arm_timer_write(s->timer[0], offset, value); } else { arm_timer_write(s->timer[1], offset - 0x20, value); } } static CPUReadMemoryFunc *sp804_readfn[] = { sp804_read, sp804_read, sp804_read }; static CPUWriteMemoryFunc *sp804_writefn[] = { sp804_write, sp804_write, sp804_write }; void sp804_init(uint32_t base, qemu_irq irq) { int iomemtype; sp804_state *s; qemu_irq *qi; s = (sp804_state *)qemu_mallocz(sizeof(sp804_state)); qi = qemu_allocate_irqs(sp804_set_irq, s, 2); s->base = base; s->irq = irq; /* ??? The timers are actually configurable between 32kHz and 1MHz, but we don't implement that. */ s->timer[0] = arm_timer_init(1000000, qi[0]); s->timer[1] = arm_timer_init(1000000, qi[1]); iomemtype = cpu_register_io_memory(0, sp804_readfn, sp804_writefn, s); cpu_register_physical_memory(base, 0x00001000, iomemtype); /* ??? Save/restore. */ } /* Integrator/CP timer module. */ typedef struct { void *timer[3]; uint32_t base; } icp_pit_state; static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset) { icp_pit_state *s = (icp_pit_state *)opaque; int n; /* ??? Don't know the PrimeCell ID for this device. */ offset -= s->base; n = offset >> 8; if (n > 3) cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n); return arm_timer_read(s->timer[n], offset & 0xff); } static void icp_pit_write(void *opaque, target_phys_addr_t offset, uint32_t value) { icp_pit_state *s = (icp_pit_state *)opaque; int n; offset -= s->base; n = offset >> 8; if (n > 3) cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n); arm_timer_write(s->timer[n], offset & 0xff, value); } static CPUReadMemoryFunc *icp_pit_readfn[] = { icp_pit_read, icp_pit_read, icp_pit_read }; static CPUWriteMemoryFunc *icp_pit_writefn[] = { icp_pit_write, icp_pit_write, icp_pit_write }; void icp_pit_init(uint32_t base, qemu_irq *pic, int irq) { int iomemtype; icp_pit_state *s; s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state)); s->base = base; /* Timer 0 runs at the system clock speed (40MHz). */ s->timer[0] = arm_timer_init(40000000, pic[irq]); /* The other two timers run at 1MHz. */ s->timer[1] = arm_timer_init(1000000, pic[irq + 1]); s->timer[2] = arm_timer_init(1000000, pic[irq + 2]); iomemtype = cpu_register_io_memory(0, icp_pit_readfn, icp_pit_writefn, s); cpu_register_physical_memory(base, 0x00001000, iomemtype); /* ??? Save/restore. */ }