/* * ARM V2M MPS2 board emulation, trustzone aware FPGA images * * Copyright (c) 2017 Linaro Limited * Written by Peter Maydell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 or * (at your option) any later version. */ /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger * FPGA but is otherwise the same as the 2). Since the CPU itself * and most of the devices are in the FPGA, the details of the board * as seen by the guest depend significantly on the FPGA image. * This source file covers the following FPGA images, for TrustZone cores: * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521 * * Links to the TRM for the board itself and to the various Application * Notes which document the FPGA images can be found here: * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2 * * Board TRM: * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf * Application Note AN505: * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html * Application Note AN521: * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html * * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide * (ARM ECM0601256) for the details of some of the device layout: * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines * most of the device layout: * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf * */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/cutils.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "hw/arm/boot.h" #include "hw/arm/armv7m.h" #include "hw/or-irq.h" #include "hw/boards.h" #include "exec/address-spaces.h" #include "sysemu/sysemu.h" #include "hw/misc/unimp.h" #include "hw/char/cmsdk-apb-uart.h" #include "hw/timer/cmsdk-apb-timer.h" #include "hw/misc/mps2-scc.h" #include "hw/misc/mps2-fpgaio.h" #include "hw/misc/tz-mpc.h" #include "hw/misc/tz-msc.h" #include "hw/arm/armsse.h" #include "hw/dma/pl080.h" #include "hw/ssi/pl022.h" #include "hw/i2c/arm_sbcon_i2c.h" #include "hw/net/lan9118.h" #include "net/net.h" #include "hw/core/split-irq.h" #include "hw/qdev-clock.h" #include "qom/object.h" #define MPS2TZ_NUMIRQ_MAX 92 #define MPS2TZ_RAM_MAX 4 typedef enum MPS2TZFPGAType { FPGA_AN505, FPGA_AN521, } MPS2TZFPGAType; /* * Define the layout of RAM in a board, including which parts are * behind which MPCs. * mrindex specifies the index into mms->ram[] to use for the backing RAM; * -1 means "use the system RAM". */ typedef struct RAMInfo { const char *name; uint32_t base; uint32_t size; int mpc; /* MPC number, -1 for "not behind an MPC" */ int mrindex; int flags; } RAMInfo; /* * Flag values: * IS_ALIAS: this RAM area is an alias to the upstream end of the * MPC specified by its .mpc value */ #define IS_ALIAS 1 struct MPS2TZMachineClass { MachineClass parent; MPS2TZFPGAType fpga_type; uint32_t scc_id; uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */ uint32_t len_oscclk; const uint32_t *oscclk; uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */ bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */ int numirq; /* Number of external interrupts */ const RAMInfo *raminfo; const char *armsse_type; }; struct MPS2TZMachineState { MachineState parent; ARMSSE iotkit; MemoryRegion ram[MPS2TZ_RAM_MAX]; MPS2SCC scc; MPS2FPGAIO fpgaio; TZPPC ppc[5]; TZMPC mpc[3]; PL022State spi[5]; ArmSbconI2CState i2c[4]; UnimplementedDeviceState i2s_audio; UnimplementedDeviceState gpio[4]; UnimplementedDeviceState gfx; PL080State dma[4]; TZMSC msc[4]; CMSDKAPBUART uart[5]; SplitIRQ sec_resp_splitter; qemu_or_irq uart_irq_orgate; DeviceState *lan9118; SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX]; Clock *sysclk; Clock *s32kclk; }; #define TYPE_MPS2TZ_MACHINE "mps2tz" #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505") #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521") OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE) /* Slow 32Khz S32KCLK frequency in Hz */ #define S32KCLK_FRQ (32 * 1000) static const uint32_t an505_oscclk[] = { 40000000, 24580000, 25000000, }; static const RAMInfo an505_raminfo[] = { { .name = "ssram-0", .base = 0x00000000, .size = 0x00400000, .mpc = 0, .mrindex = 0, }, { .name = "ssram-1", .base = 0x28000000, .size = 0x00200000, .mpc = 1, .mrindex = 1, }, { .name = "ssram-2", .base = 0x28200000, .size = 0x00200000, .mpc = 2, .mrindex = 2, }, { .name = "ssram-0-alias", .base = 0x00400000, .size = 0x00400000, .mpc = 0, .mrindex = 3, .flags = IS_ALIAS, }, { /* Use the largest bit of contiguous RAM as our "system memory" */ .name = "mps.ram", .base = 0x80000000, .size = 16 * MiB, .mpc = -1, .mrindex = -1, }, { .name = NULL, }, }; static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc) { MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); const RAMInfo *p; for (p = mmc->raminfo; p->name; p++) { if (p->mpc == mpc && !(p->flags & IS_ALIAS)) { return p; } } /* if raminfo array doesn't have an entry for each MPC this is a bug */ g_assert_not_reached(); } static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms, const RAMInfo *raminfo) { /* Return an initialized MemoryRegion for the RAMInfo. */ MemoryRegion *ram; if (raminfo->mrindex < 0) { /* Means this RAMInfo is for QEMU's "system memory" */ MachineState *machine = MACHINE(mms); return machine->ram; } assert(raminfo->mrindex < MPS2TZ_RAM_MAX); ram = &mms->ram[raminfo->mrindex]; memory_region_init_ram(ram, NULL, raminfo->name, raminfo->size, &error_fatal); return ram; } /* Create an alias of an entire original MemoryRegion @orig * located at @base in the memory map. */ static void make_ram_alias(MemoryRegion *mr, const char *name, MemoryRegion *orig, hwaddr base) { memory_region_init_alias(mr, NULL, name, orig, 0, memory_region_size(orig)); memory_region_add_subregion(get_system_memory(), base, mr); } static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno) { /* * Return a qemu_irq which will signal IRQ n to all CPUs in the * SSE. The irqno should be as the CPU sees it, so the first * external-to-the-SSE interrupt is 32. */ MachineClass *mc = MACHINE_GET_CLASS(mms); MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); assert(irqno >= 32 && irqno < (mmc->numirq + 32)); /* * Convert from "CPU irq number" (as listed in the FPGA image * documentation) to the SSE external-interrupt number. */ irqno -= 32; if (mc->max_cpus > 1) { return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0); } else { return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno); } } /* Most of the devices in the AN505 FPGA image sit behind * Peripheral Protection Controllers. These data structures * define the layout of which devices sit behind which PPCs. * The devfn for each port is a function which creates, configures * and initializes the device, returning the MemoryRegion which * needs to be plugged into the downstream end of the PPC port. */ typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque, const char *name, hwaddr size, const int *irqs); typedef struct PPCPortInfo { const char *name; MakeDevFn *devfn; void *opaque; hwaddr addr; hwaddr size; int irqs[3]; /* currently no device needs more IRQ lines than this */ } PPCPortInfo; typedef struct PPCInfo { const char *name; PPCPortInfo ports[TZ_NUM_PORTS]; } PPCInfo; static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms, void *opaque, const char *name, hwaddr size, const int *irqs) { /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE, * and return a pointer to its MemoryRegion. */ UnimplementedDeviceState *uds = opaque; object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE); qdev_prop_set_string(DEVICE(uds), "name", name); qdev_prop_set_uint64(DEVICE(uds), "size", size); sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal); return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0); } static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque, const char *name, hwaddr size, const int *irqs) { /* The irq[] array is tx, rx, combined, in that order */ MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); CMSDKAPBUART *uart = opaque; int i = uart - &mms->uart[0]; SysBusDevice *s; DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate); object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART); qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i)); qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->sysclk_frq); sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal); s = SYS_BUS_DEVICE(uart); sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0])); sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1])); sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2)); sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1)); sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2])); return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0); } static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque, const char *name, hwaddr size, const int *irqs) { MPS2SCC *scc = opaque; DeviceState *sccdev; MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); int i; object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC); sccdev = DEVICE(scc); qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2); qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008); qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id); qdev_prop_set_uint32(sccdev, "len-oscclk", mmc->len_oscclk); for (i = 0; i < mmc->len_oscclk; i++) { g_autofree char *propname = g_strdup_printf("oscclk[%d]", i); qdev_prop_set_uint32(sccdev, propname, mmc->oscclk[i]); } sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal); return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0); } static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque, const char *name, hwaddr size, const int *irqs) { MPS2FPGAIO *fpgaio = opaque; MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO); qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds); qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches); sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal); return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0); } static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque, const char *name, hwaddr size, const int *irqs) { SysBusDevice *s; NICInfo *nd = &nd_table[0]; /* In hardware this is a LAN9220; the LAN9118 is software compatible * except that it doesn't support the checksum-offload feature. */ qemu_check_nic_model(nd, "lan9118"); mms->lan9118 = qdev_new(TYPE_LAN9118); qdev_set_nic_properties(mms->lan9118, nd); s = SYS_BUS_DEVICE(mms->lan9118); sysbus_realize_and_unref(s, &error_fatal); sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0])); return sysbus_mmio_get_region(s, 0); } static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque, const char *name, hwaddr size, const int *irqs) { TZMPC *mpc = opaque; int i = mpc - &mms->mpc[0]; MemoryRegion *upstream; const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i); MemoryRegion *ram = mr_for_raminfo(mms, raminfo); object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC); object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram), &error_fatal); sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal); /* Map the upstream end of the MPC into system memory */ upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1); memory_region_add_subregion(get_system_memory(), raminfo->base, upstream); /* and connect its interrupt to the IoTKit */ qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0, qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "mpcexp_status", i)); /* Return the register interface MR for our caller to map behind the PPC */ return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0); } static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque, const char *name, hwaddr size, const int *irqs) { /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */ PL080State *dma = opaque; int i = dma - &mms->dma[0]; SysBusDevice *s; char *mscname = g_strdup_printf("%s-msc", name); TZMSC *msc = &mms->msc[i]; DeviceState *iotkitdev = DEVICE(&mms->iotkit); MemoryRegion *msc_upstream; MemoryRegion *msc_downstream; /* * Each DMA device is a PL081 whose transaction master interface * is guarded by a Master Security Controller. The downstream end of * the MSC connects to the IoTKit AHB Slave Expansion port, so the * DMA devices can see all devices and memory that the CPU does. */ object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC); msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0); object_property_set_link(OBJECT(msc), "downstream", OBJECT(msc_downstream), &error_fatal); object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal); sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal); qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0, qdev_get_gpio_in_named(iotkitdev, "mscexp_status", i)); qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i, qdev_get_gpio_in_named(DEVICE(msc), "irq_clear", 0)); qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i, qdev_get_gpio_in_named(DEVICE(msc), "cfg_nonsec", 0)); qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter), ARRAY_SIZE(mms->ppc) + i, qdev_get_gpio_in_named(DEVICE(msc), "cfg_sec_resp", 0)); msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0); object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081); object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream), &error_fatal); sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal); s = SYS_BUS_DEVICE(dma); /* Wire up DMACINTR, DMACINTERR, DMACINTTC */ sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0])); sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1])); sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2])); g_free(mscname); return sysbus_mmio_get_region(s, 0); } static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque, const char *name, hwaddr size, const int *irqs) { /* * The AN505 has five PL022 SPI controllers. * One of these should have the LCD controller behind it; the others * are connected only to the FPGA's "general purpose SPI connector" * or "shield" expansion connectors. * Note that if we do implement devices behind SPI, the chip select * lines are set via the "MISC" register in the MPS2 FPGAIO device. */ PL022State *spi = opaque; SysBusDevice *s; object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022); sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal); s = SYS_BUS_DEVICE(spi); sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0])); return sysbus_mmio_get_region(s, 0); } static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque, const char *name, hwaddr size, const int *irqs) { ArmSbconI2CState *i2c = opaque; SysBusDevice *s; object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C); s = SYS_BUS_DEVICE(i2c); sysbus_realize(s, &error_fatal); return sysbus_mmio_get_region(s, 0); } static void create_non_mpc_ram(MPS2TZMachineState *mms) { /* * Handle the RAMs which are either not behind MPCs or which are * aliases to another MPC. */ const RAMInfo *p; MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); for (p = mmc->raminfo; p->name; p++) { if (p->flags & IS_ALIAS) { SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]); MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1); make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base); } else if (p->mpc == -1) { /* RAM not behind an MPC */ MemoryRegion *mr = mr_for_raminfo(mms, p); memory_region_add_subregion(get_system_memory(), p->base, mr); } } } static void mps2tz_common_init(MachineState *machine) { MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine); MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); MachineClass *mc = MACHINE_GET_CLASS(machine); MemoryRegion *system_memory = get_system_memory(); DeviceState *iotkitdev; DeviceState *dev_splitter; const PPCInfo *ppcs; int num_ppcs; int i; if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) { error_report("This board can only be used with CPU %s", mc->default_cpu_type); exit(1); } if (machine->ram_size != mc->default_ram_size) { char *sz = size_to_str(mc->default_ram_size); error_report("Invalid RAM size, should be %s", sz); g_free(sz); exit(EXIT_FAILURE); } /* These clocks don't need migration because they are fixed-frequency */ mms->sysclk = clock_new(OBJECT(machine), "SYSCLK"); clock_set_hz(mms->sysclk, mmc->sysclk_frq); mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK"); clock_set_hz(mms->s32kclk, S32KCLK_FRQ); object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit, mmc->armsse_type); iotkitdev = DEVICE(&mms->iotkit); object_property_set_link(OBJECT(&mms->iotkit), "memory", OBJECT(system_memory), &error_abort); qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq); qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk); qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk); sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal); /* * If this board has more than one CPU, then we need to create splitters * to feed the IRQ inputs for each CPU in the SSE from each device in the * board. If there is only one CPU, we can just wire the device IRQ * directly to the SSE's IRQ input. */ assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX); if (mc->max_cpus > 1) { for (i = 0; i < mmc->numirq; i++) { char *name = g_strdup_printf("mps2-irq-splitter%d", i); SplitIRQ *splitter = &mms->cpu_irq_splitter[i]; object_initialize_child_with_props(OBJECT(machine), name, splitter, sizeof(*splitter), TYPE_SPLIT_IRQ, &error_fatal, NULL); g_free(name); object_property_set_int(OBJECT(splitter), "num-lines", 2, &error_fatal); qdev_realize(DEVICE(splitter), NULL, &error_fatal); qdev_connect_gpio_out(DEVICE(splitter), 0, qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", i)); qdev_connect_gpio_out(DEVICE(splitter), 1, qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_CPU1_IRQ", i)); } } /* The sec_resp_cfg output from the IoTKit must be split into multiple * lines, one for each of the PPCs we create here, plus one per MSC. */ object_initialize_child(OBJECT(machine), "sec-resp-splitter", &mms->sec_resp_splitter, TYPE_SPLIT_IRQ); object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines", ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc), &error_fatal); qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal); dev_splitter = DEVICE(&mms->sec_resp_splitter); qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0, qdev_get_gpio_in(dev_splitter, 0)); /* * The IoTKit sets up much of the memory layout, including * the aliases between secure and non-secure regions in the * address space, and also most of the devices in the system. * The FPGA itself contains various RAMs and some additional devices. * The FPGA images have an odd combination of different RAMs, * because in hardware they are different implementations and * connected to different buses, giving varying performance/size * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily * call the largest lump our "system memory". */ /* * The overflow IRQs for all UARTs are ORed together. * Tx, Rx and "combined" IRQs are sent to the NVIC separately. * Create the OR gate for this: it has one input for the TX overflow * and one for the RX overflow for each UART we might have. * (If the board has fewer than the maximum possible number of UARTs * those inputs are never wired up and are treated as always-zero.) */ object_initialize_child(OBJECT(mms), "uart-irq-orgate", &mms->uart_irq_orgate, TYPE_OR_IRQ); object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines", 2 * ARRAY_SIZE(mms->uart), &error_fatal); qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal); qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0, get_sse_irq_in(mms, 47)); /* Most of the devices in the FPGA are behind Peripheral Protection * Controllers. The required order for initializing things is: * + initialize the PPC * + initialize, configure and realize downstream devices * + connect downstream device MemoryRegions to the PPC * + realize the PPC * + map the PPC's MemoryRegions to the places in the address map * where the downstream devices should appear * + wire up the PPC's control lines to the IoTKit object */ const PPCInfo an505_ppcs[] = { { .name = "apb_ppcexp0", .ports = { { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 }, { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 }, { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 }, }, }, { .name = "apb_ppcexp1", .ports = { { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } }, { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } }, { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } }, { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } }, { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } }, { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } }, { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } }, { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } }, { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } }, { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } }, { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 }, { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 }, { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 }, { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 }, }, }, { .name = "apb_ppcexp2", .ports = { { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 }, { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x40301000, 0x1000 }, { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 }, }, }, { .name = "ahb_ppcexp0", .ports = { { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 }, { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 }, { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 }, { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 }, { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 }, { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } }, }, }, { .name = "ahb_ppcexp1", .ports = { { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } }, { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } }, { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } }, { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } }, }, }, }; switch (mmc->fpga_type) { case FPGA_AN505: case FPGA_AN521: ppcs = an505_ppcs; num_ppcs = ARRAY_SIZE(an505_ppcs); break; default: g_assert_not_reached(); } for (i = 0; i < num_ppcs; i++) { const PPCInfo *ppcinfo = &ppcs[i]; TZPPC *ppc = &mms->ppc[i]; DeviceState *ppcdev; int port; char *gpioname; object_initialize_child(OBJECT(machine), ppcinfo->name, ppc, TYPE_TZ_PPC); ppcdev = DEVICE(ppc); for (port = 0; port < TZ_NUM_PORTS; port++) { const PPCPortInfo *pinfo = &ppcinfo->ports[port]; MemoryRegion *mr; char *portname; if (!pinfo->devfn) { continue; } mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size, pinfo->irqs); portname = g_strdup_printf("port[%d]", port); object_property_set_link(OBJECT(ppc), portname, OBJECT(mr), &error_fatal); g_free(portname); } sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal); for (port = 0; port < TZ_NUM_PORTS; port++) { const PPCPortInfo *pinfo = &ppcinfo->ports[port]; if (!pinfo->devfn) { continue; } sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr); gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name); qdev_connect_gpio_out_named(iotkitdev, gpioname, port, qdev_get_gpio_in_named(ppcdev, "cfg_nonsec", port)); g_free(gpioname); gpioname = g_strdup_printf("%s_ap", ppcinfo->name); qdev_connect_gpio_out_named(iotkitdev, gpioname, port, qdev_get_gpio_in_named(ppcdev, "cfg_ap", port)); g_free(gpioname); } gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name); qdev_connect_gpio_out_named(iotkitdev, gpioname, 0, qdev_get_gpio_in_named(ppcdev, "irq_enable", 0)); g_free(gpioname); gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name); qdev_connect_gpio_out_named(iotkitdev, gpioname, 0, qdev_get_gpio_in_named(ppcdev, "irq_clear", 0)); g_free(gpioname); gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name); qdev_connect_gpio_out_named(ppcdev, "irq", 0, qdev_get_gpio_in_named(iotkitdev, gpioname, 0)); g_free(gpioname); qdev_connect_gpio_out(dev_splitter, i, qdev_get_gpio_in_named(ppcdev, "cfg_sec_resp", 0)); } create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000); create_non_mpc_ram(mms); armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000); } static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address, int *iregion, bool *exempt, bool *ns, bool *nsc) { /* * The MPS2 TZ FPGA images have IDAUs in them which are connected to * the Master Security Controllers. Thes have the same logic as * is used by the IoTKit for the IDAU connected to the CPU, except * that MSCs don't care about the NSC attribute. */ int region = extract32(address, 28, 4); *ns = !(region & 1); *nsc = false; /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ *exempt = (address & 0xeff00000) == 0xe0000000; *iregion = region; } static void mps2tz_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc); mc->init = mps2tz_common_init; iic->check = mps2_tz_idau_check; mc->default_ram_size = 16 * MiB; mc->default_ram_id = "mps.ram"; } static void mps2tz_an505_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc); mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33"; mc->default_cpus = 1; mc->min_cpus = mc->default_cpus; mc->max_cpus = mc->default_cpus; mmc->fpga_type = FPGA_AN505; mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"); mmc->scc_id = 0x41045050; mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */ mmc->oscclk = an505_oscclk; mmc->len_oscclk = ARRAY_SIZE(an505_oscclk); mmc->fpgaio_num_leds = 2; mmc->fpgaio_has_switches = false; mmc->numirq = 92; mmc->raminfo = an505_raminfo; mmc->armsse_type = TYPE_IOTKIT; } static void mps2tz_an521_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc); mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33"; mc->default_cpus = 2; mc->min_cpus = mc->default_cpus; mc->max_cpus = mc->default_cpus; mmc->fpga_type = FPGA_AN521; mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"); mmc->scc_id = 0x41045210; mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */ mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */ mmc->len_oscclk = ARRAY_SIZE(an505_oscclk); mmc->fpgaio_num_leds = 2; mmc->fpgaio_has_switches = false; mmc->numirq = 92; mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */ mmc->armsse_type = TYPE_SSE200; } static const TypeInfo mps2tz_info = { .name = TYPE_MPS2TZ_MACHINE, .parent = TYPE_MACHINE, .abstract = true, .instance_size = sizeof(MPS2TZMachineState), .class_size = sizeof(MPS2TZMachineClass), .class_init = mps2tz_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_IDAU_INTERFACE }, { } }, }; static const TypeInfo mps2tz_an505_info = { .name = TYPE_MPS2TZ_AN505_MACHINE, .parent = TYPE_MPS2TZ_MACHINE, .class_init = mps2tz_an505_class_init, }; static const TypeInfo mps2tz_an521_info = { .name = TYPE_MPS2TZ_AN521_MACHINE, .parent = TYPE_MPS2TZ_MACHINE, .class_init = mps2tz_an521_class_init, }; static void mps2tz_machine_init(void) { type_register_static(&mps2tz_info); type_register_static(&mps2tz_an505_info); type_register_static(&mps2tz_an521_info); } type_init(mps2tz_machine_init);