/* * ARM kernel loader. * * Copyright (c) 2006-2007 CodeSourcery. * Written by Paul Brook * * This code is licensed under the GPL. */ #include "config.h" #include "hw/hw.h" #include "hw/arm/arm.h" #include "sysemu/sysemu.h" #include "hw/boards.h" #include "hw/loader.h" #include "elf.h" #include "sysemu/device_tree.h" #include "qemu/config-file.h" #define KERNEL_ARGS_ADDR 0x100 #define KERNEL_LOAD_ADDR 0x00010000 /* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */ static uint32_t bootloader[] = { 0xe3a00000, /* mov r0, #0 */ 0xe59f1004, /* ldr r1, [pc, #4] */ 0xe59f2004, /* ldr r2, [pc, #4] */ 0xe59ff004, /* ldr pc, [pc, #4] */ 0, /* Board ID */ 0, /* Address of kernel args. Set by integratorcp_init. */ 0 /* Kernel entry point. Set by integratorcp_init. */ }; /* Handling for secondary CPU boot in a multicore system. * Unlike the uniprocessor/primary CPU boot, this is platform * dependent. The default code here is based on the secondary * CPU boot protocol used on realview/vexpress boards, with * some parameterisation to increase its flexibility. * QEMU platform models for which this code is not appropriate * should override write_secondary_boot and secondary_cpu_reset_hook * instead. * * This code enables the interrupt controllers for the secondary * CPUs and then puts all the secondary CPUs into a loop waiting * for an interprocessor interrupt and polling a configurable * location for the kernel secondary CPU entry point. */ #define DSB_INSN 0xf57ff04f #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ static uint32_t smpboot[] = { 0xe59f2028, /* ldr r2, gic_cpu_if */ 0xe59f0028, /* ldr r0, startaddr */ 0xe3a01001, /* mov r1, #1 */ 0xe5821000, /* str r1, [r2] - set GICC_CTLR.Enable */ 0xe3a010ff, /* mov r1, #0xff */ 0xe5821004, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ DSB_INSN, /* dsb */ 0xe320f003, /* wfi */ 0xe5901000, /* ldr r1, [r0] */ 0xe1110001, /* tst r1, r1 */ 0x0afffffb, /* beq */ 0xe12fff11, /* bx r1 */ 0, /* gic_cpu_if: base address of GIC CPU interface */ 0 /* bootreg: Boot register address is held here */ }; static void default_write_secondary(ARMCPU *cpu, const struct arm_boot_info *info) { int n; smpboot[ARRAY_SIZE(smpboot) - 1] = info->smp_bootreg_addr; smpboot[ARRAY_SIZE(smpboot) - 2] = info->gic_cpu_if_addr; for (n = 0; n < ARRAY_SIZE(smpboot); n++) { /* Replace DSB with the pre-v7 DSB if necessary. */ if (!arm_feature(&cpu->env, ARM_FEATURE_V7) && smpboot[n] == DSB_INSN) { smpboot[n] = CP15_DSB_INSN; } smpboot[n] = tswap32(smpboot[n]); } rom_add_blob_fixed("smpboot", smpboot, sizeof(smpboot), info->smp_loader_start); } static void default_reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info) { CPUARMState *env = &cpu->env; stl_phys_notdirty(info->smp_bootreg_addr, 0); env->regs[15] = info->smp_loader_start; } #define WRITE_WORD(p, value) do { \ stl_phys_notdirty(p, value); \ p += 4; \ } while (0) static void set_kernel_args(const struct arm_boot_info *info) { int initrd_size = info->initrd_size; hwaddr base = info->loader_start; hwaddr p; p = base + KERNEL_ARGS_ADDR; /* ATAG_CORE */ WRITE_WORD(p, 5); WRITE_WORD(p, 0x54410001); WRITE_WORD(p, 1); WRITE_WORD(p, 0x1000); WRITE_WORD(p, 0); /* ATAG_MEM */ /* TODO: handle multiple chips on one ATAG list */ WRITE_WORD(p, 4); WRITE_WORD(p, 0x54410002); WRITE_WORD(p, info->ram_size); WRITE_WORD(p, info->loader_start); if (initrd_size) { /* ATAG_INITRD2 */ WRITE_WORD(p, 4); WRITE_WORD(p, 0x54420005); WRITE_WORD(p, info->initrd_start); WRITE_WORD(p, initrd_size); } if (info->kernel_cmdline && *info->kernel_cmdline) { /* ATAG_CMDLINE */ int cmdline_size; cmdline_size = strlen(info->kernel_cmdline); cpu_physical_memory_write(p + 8, info->kernel_cmdline, cmdline_size + 1); cmdline_size = (cmdline_size >> 2) + 1; WRITE_WORD(p, cmdline_size + 2); WRITE_WORD(p, 0x54410009); p += cmdline_size * 4; } if (info->atag_board) { /* ATAG_BOARD */ int atag_board_len; uint8_t atag_board_buf[0x1000]; atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; WRITE_WORD(p, (atag_board_len + 8) >> 2); WRITE_WORD(p, 0x414f4d50); cpu_physical_memory_write(p, atag_board_buf, atag_board_len); p += atag_board_len; } /* ATAG_END */ WRITE_WORD(p, 0); WRITE_WORD(p, 0); } static void set_kernel_args_old(const struct arm_boot_info *info) { hwaddr p; const char *s; int initrd_size = info->initrd_size; hwaddr base = info->loader_start; /* see linux/include/asm-arm/setup.h */ p = base + KERNEL_ARGS_ADDR; /* page_size */ WRITE_WORD(p, 4096); /* nr_pages */ WRITE_WORD(p, info->ram_size / 4096); /* ramdisk_size */ WRITE_WORD(p, 0); #define FLAG_READONLY 1 #define FLAG_RDLOAD 4 #define FLAG_RDPROMPT 8 /* flags */ WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); /* rootdev */ WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ /* video_num_cols */ WRITE_WORD(p, 0); /* video_num_rows */ WRITE_WORD(p, 0); /* video_x */ WRITE_WORD(p, 0); /* video_y */ WRITE_WORD(p, 0); /* memc_control_reg */ WRITE_WORD(p, 0); /* unsigned char sounddefault */ /* unsigned char adfsdrives */ /* unsigned char bytes_per_char_h */ /* unsigned char bytes_per_char_v */ WRITE_WORD(p, 0); /* pages_in_bank[4] */ WRITE_WORD(p, 0); WRITE_WORD(p, 0); WRITE_WORD(p, 0); WRITE_WORD(p, 0); /* pages_in_vram */ WRITE_WORD(p, 0); /* initrd_start */ if (initrd_size) { WRITE_WORD(p, info->initrd_start); } else { WRITE_WORD(p, 0); } /* initrd_size */ WRITE_WORD(p, initrd_size); /* rd_start */ WRITE_WORD(p, 0); /* system_rev */ WRITE_WORD(p, 0); /* system_serial_low */ WRITE_WORD(p, 0); /* system_serial_high */ WRITE_WORD(p, 0); /* mem_fclk_21285 */ WRITE_WORD(p, 0); /* zero unused fields */ while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { WRITE_WORD(p, 0); } s = info->kernel_cmdline; if (s) { cpu_physical_memory_write(p, s, strlen(s) + 1); } else { WRITE_WORD(p, 0); } } static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo) { uint32_t *mem_reg_property; uint32_t mem_reg_propsize; void *fdt = NULL; char *filename; int size, rc; uint32_t acells, scells, hival; filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); if (!filename) { fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); return -1; } fdt = load_device_tree(filename, &size); if (!fdt) { fprintf(stderr, "Couldn't open dtb file %s\n", filename); g_free(filename); return -1; } g_free(filename); acells = qemu_devtree_getprop_cell(fdt, "/", "#address-cells"); scells = qemu_devtree_getprop_cell(fdt, "/", "#size-cells"); if (acells == 0 || scells == 0) { fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); return -1; } mem_reg_propsize = acells + scells; mem_reg_property = g_new0(uint32_t, mem_reg_propsize); mem_reg_property[acells - 1] = cpu_to_be32(binfo->loader_start); hival = cpu_to_be32(binfo->loader_start >> 32); if (acells > 1) { mem_reg_property[acells - 2] = hival; } else if (hival != 0) { fprintf(stderr, "qemu: dtb file not compatible with " "RAM start address > 4GB\n"); exit(1); } mem_reg_property[acells + scells - 1] = cpu_to_be32(binfo->ram_size); hival = cpu_to_be32(binfo->ram_size >> 32); if (scells > 1) { mem_reg_property[acells + scells - 2] = hival; } else if (hival != 0) { fprintf(stderr, "qemu: dtb file not compatible with " "RAM size > 4GB\n"); exit(1); } rc = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property, mem_reg_propsize * sizeof(uint32_t)); if (rc < 0) { fprintf(stderr, "couldn't set /memory/reg\n"); } if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { rc = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs", binfo->kernel_cmdline); if (rc < 0) { fprintf(stderr, "couldn't set /chosen/bootargs\n"); } } if (binfo->initrd_size) { rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start", binfo->initrd_start); if (rc < 0) { fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); } rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end", binfo->initrd_start + binfo->initrd_size); if (rc < 0) { fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); } } qemu_devtree_dumpdtb(fdt, size); cpu_physical_memory_write(addr, fdt, size); return 0; } static void do_cpu_reset(void *opaque) { ARMCPU *cpu = opaque; CPUARMState *env = &cpu->env; const struct arm_boot_info *info = env->boot_info; cpu_reset(CPU(cpu)); if (info) { if (!info->is_linux) { /* Jump to the entry point. */ env->regs[15] = info->entry & 0xfffffffe; env->thumb = info->entry & 1; } else { if (env == first_cpu) { env->regs[15] = info->loader_start; if (!info->dtb_filename) { if (old_param) { set_kernel_args_old(info); } else { set_kernel_args(info); } } } else { info->secondary_cpu_reset_hook(cpu, info); } } } } void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info) { CPUARMState *env = &cpu->env; int kernel_size; int initrd_size; int n; int is_linux = 0; uint64_t elf_entry; hwaddr entry; int big_endian; QemuOpts *machine_opts; /* Load the kernel. */ if (!info->kernel_filename) { fprintf(stderr, "Kernel image must be specified\n"); exit(1); } machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0); if (machine_opts) { info->dtb_filename = qemu_opt_get(machine_opts, "dtb"); } else { info->dtb_filename = NULL; } if (!info->secondary_cpu_reset_hook) { info->secondary_cpu_reset_hook = default_reset_secondary; } if (!info->write_secondary_boot) { info->write_secondary_boot = default_write_secondary; } if (info->nb_cpus == 0) info->nb_cpus = 1; #ifdef TARGET_WORDS_BIGENDIAN big_endian = 1; #else big_endian = 0; #endif /* We want to put the initrd far enough into RAM that when the * kernel is uncompressed it will not clobber the initrd. However * on boards without much RAM we must ensure that we still leave * enough room for a decent sized initrd, and on boards with large * amounts of RAM we must avoid the initrd being so far up in RAM * that it is outside lowmem and inaccessible to the kernel. * So for boards with less than 256MB of RAM we put the initrd * halfway into RAM, and for boards with 256MB of RAM or more we put * the initrd at 128MB. */ info->initrd_start = info->loader_start + MIN(info->ram_size / 2, 128 * 1024 * 1024); /* Assume that raw images are linux kernels, and ELF images are not. */ kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry, NULL, NULL, big_endian, ELF_MACHINE, 1); entry = elf_entry; if (kernel_size < 0) { kernel_size = load_uimage(info->kernel_filename, &entry, NULL, &is_linux); } if (kernel_size < 0) { entry = info->loader_start + KERNEL_LOAD_ADDR; kernel_size = load_image_targphys(info->kernel_filename, entry, info->ram_size - KERNEL_LOAD_ADDR); is_linux = 1; } if (kernel_size < 0) { fprintf(stderr, "qemu: could not load kernel '%s'\n", info->kernel_filename); exit(1); } info->entry = entry; if (is_linux) { if (info->initrd_filename) { initrd_size = load_image_targphys(info->initrd_filename, info->initrd_start, info->ram_size - info->initrd_start); if (initrd_size < 0) { fprintf(stderr, "qemu: could not load initrd '%s'\n", info->initrd_filename); exit(1); } } else { initrd_size = 0; } info->initrd_size = initrd_size; bootloader[4] = info->board_id; /* for device tree boot, we pass the DTB directly in r2. Otherwise * we point to the kernel args. */ if (info->dtb_filename) { /* Place the DTB after the initrd in memory. Note that some * kernels will trash anything in the 4K page the initrd * ends in, so make sure the DTB isn't caught up in that. */ hwaddr dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, 4096); if (load_dtb(dtb_start, info)) { exit(1); } bootloader[5] = dtb_start; } else { bootloader[5] = info->loader_start + KERNEL_ARGS_ADDR; if (info->ram_size >= (1ULL << 32)) { fprintf(stderr, "qemu: RAM size must be less than 4GB to boot" " Linux kernel using ATAGS (try passing a device tree" " using -dtb)\n"); exit(1); } } bootloader[6] = entry; for (n = 0; n < sizeof(bootloader) / 4; n++) { bootloader[n] = tswap32(bootloader[n]); } rom_add_blob_fixed("bootloader", bootloader, sizeof(bootloader), info->loader_start); if (info->nb_cpus > 1) { info->write_secondary_boot(cpu, info); } } info->is_linux = is_linux; for (; env; env = env->next_cpu) { cpu = arm_env_get_cpu(env); env->boot_info = info; qemu_register_reset(do_cpu_reset, cpu); } }