/* * Virtual page mapping * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qapi/error.h" #ifndef _WIN32 #endif #include "qemu/cutils.h" #include "cpu.h" #include "exec/exec-all.h" #include "tcg.h" #include "hw/qdev-core.h" #if !defined(CONFIG_USER_ONLY) #include "hw/boards.h" #include "hw/xen/xen.h" #endif #include "sysemu/kvm.h" #include "sysemu/sysemu.h" #include "qemu/timer.h" #include "qemu/config-file.h" #include "qemu/error-report.h" #if defined(CONFIG_USER_ONLY) #include "qemu.h" #else /* !CONFIG_USER_ONLY */ #include "hw/hw.h" #include "exec/memory.h" #include "exec/ioport.h" #include "sysemu/dma.h" #include "exec/address-spaces.h" #include "sysemu/xen-mapcache.h" #include "trace.h" #endif #include "exec/cpu-all.h" #include "qemu/rcu_queue.h" #include "qemu/main-loop.h" #include "translate-all.h" #include "sysemu/replay.h" #include "exec/memory-internal.h" #include "exec/ram_addr.h" #include "exec/log.h" #include "migration/vmstate.h" #include "qemu/range.h" #ifndef _WIN32 #include "qemu/mmap-alloc.h" #endif //#define DEBUG_SUBPAGE #if !defined(CONFIG_USER_ONLY) /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes * are protected by the ramlist lock. */ RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; static MemoryRegion *system_memory; static MemoryRegion *system_io; AddressSpace address_space_io; AddressSpace address_space_memory; MemoryRegion io_mem_rom, io_mem_notdirty; static MemoryRegion io_mem_unassigned; /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ #define RAM_PREALLOC (1 << 0) /* RAM is mmap-ed with MAP_SHARED */ #define RAM_SHARED (1 << 1) /* Only a portion of RAM (used_length) is actually used, and migrated. * This used_length size can change across reboots. */ #define RAM_RESIZEABLE (1 << 2) #endif #ifdef TARGET_PAGE_BITS_VARY int target_page_bits; bool target_page_bits_decided; #endif struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); /* current CPU in the current thread. It is only valid inside cpu_exec() */ __thread CPUState *current_cpu; /* 0 = Do not count executed instructions. 1 = Precise instruction counting. 2 = Adaptive rate instruction counting. */ int use_icount; bool set_preferred_target_page_bits(int bits) { /* The target page size is the lowest common denominator for all * the CPUs in the system, so we can only make it smaller, never * larger. And we can't make it smaller once we've committed to * a particular size. */ #ifdef TARGET_PAGE_BITS_VARY assert(bits >= TARGET_PAGE_BITS_MIN); if (target_page_bits == 0 || target_page_bits > bits) { if (target_page_bits_decided) { return false; } target_page_bits = bits; } #endif return true; } #if !defined(CONFIG_USER_ONLY) static void finalize_target_page_bits(void) { #ifdef TARGET_PAGE_BITS_VARY if (target_page_bits == 0) { target_page_bits = TARGET_PAGE_BITS_MIN; } target_page_bits_decided = true; #endif } typedef struct PhysPageEntry PhysPageEntry; struct PhysPageEntry { /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ uint32_t skip : 6; /* index into phys_sections (!skip) or phys_map_nodes (skip) */ uint32_t ptr : 26; }; #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) /* Size of the L2 (and L3, etc) page tables. */ #define ADDR_SPACE_BITS 64 #define P_L2_BITS 9 #define P_L2_SIZE (1 << P_L2_BITS) #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) typedef PhysPageEntry Node[P_L2_SIZE]; typedef struct PhysPageMap { struct rcu_head rcu; unsigned sections_nb; unsigned sections_nb_alloc; unsigned nodes_nb; unsigned nodes_nb_alloc; Node *nodes; MemoryRegionSection *sections; } PhysPageMap; struct AddressSpaceDispatch { struct rcu_head rcu; MemoryRegionSection *mru_section; /* This is a multi-level map on the physical address space. * The bottom level has pointers to MemoryRegionSections. */ PhysPageEntry phys_map; PhysPageMap map; AddressSpace *as; }; #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) typedef struct subpage_t { MemoryRegion iomem; AddressSpace *as; hwaddr base; uint16_t sub_section[]; } subpage_t; #define PHYS_SECTION_UNASSIGNED 0 #define PHYS_SECTION_NOTDIRTY 1 #define PHYS_SECTION_ROM 2 #define PHYS_SECTION_WATCH 3 static void io_mem_init(void); static void memory_map_init(void); static void tcg_commit(MemoryListener *listener); static MemoryRegion io_mem_watch; /** * CPUAddressSpace: all the information a CPU needs about an AddressSpace * @cpu: the CPU whose AddressSpace this is * @as: the AddressSpace itself * @memory_dispatch: its dispatch pointer (cached, RCU protected) * @tcg_as_listener: listener for tracking changes to the AddressSpace */ struct CPUAddressSpace { CPUState *cpu; AddressSpace *as; struct AddressSpaceDispatch *memory_dispatch; MemoryListener tcg_as_listener; }; #endif #if !defined(CONFIG_USER_ONLY) static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) { static unsigned alloc_hint = 16; if (map->nodes_nb + nodes > map->nodes_nb_alloc) { map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint); map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); alloc_hint = map->nodes_nb_alloc; } } static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) { unsigned i; uint32_t ret; PhysPageEntry e; PhysPageEntry *p; ret = map->nodes_nb++; p = map->nodes[ret]; assert(ret != PHYS_MAP_NODE_NIL); assert(ret != map->nodes_nb_alloc); e.skip = leaf ? 0 : 1; e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; for (i = 0; i < P_L2_SIZE; ++i) { memcpy(&p[i], &e, sizeof(e)); } return ret; } static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, hwaddr *index, hwaddr *nb, uint16_t leaf, int level) { PhysPageEntry *p; hwaddr step = (hwaddr)1 << (level * P_L2_BITS); if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { lp->ptr = phys_map_node_alloc(map, level == 0); } p = map->nodes[lp->ptr]; lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; while (*nb && lp < &p[P_L2_SIZE]) { if ((*index & (step - 1)) == 0 && *nb >= step) { lp->skip = 0; lp->ptr = leaf; *index += step; *nb -= step; } else { phys_page_set_level(map, lp, index, nb, leaf, level - 1); } ++lp; } } static void phys_page_set(AddressSpaceDispatch *d, hwaddr index, hwaddr nb, uint16_t leaf) { /* Wildly overreserve - it doesn't matter much. */ phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); } /* Compact a non leaf page entry. Simply detect that the entry has a single child, * and update our entry so we can skip it and go directly to the destination. */ static void phys_page_compact(PhysPageEntry *lp, Node *nodes) { unsigned valid_ptr = P_L2_SIZE; int valid = 0; PhysPageEntry *p; int i; if (lp->ptr == PHYS_MAP_NODE_NIL) { return; } p = nodes[lp->ptr]; for (i = 0; i < P_L2_SIZE; i++) { if (p[i].ptr == PHYS_MAP_NODE_NIL) { continue; } valid_ptr = i; valid++; if (p[i].skip) { phys_page_compact(&p[i], nodes); } } /* We can only compress if there's only one child. */ if (valid != 1) { return; } assert(valid_ptr < P_L2_SIZE); /* Don't compress if it won't fit in the # of bits we have. */ if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { return; } lp->ptr = p[valid_ptr].ptr; if (!p[valid_ptr].skip) { /* If our only child is a leaf, make this a leaf. */ /* By design, we should have made this node a leaf to begin with so we * should never reach here. * But since it's so simple to handle this, let's do it just in case we * change this rule. */ lp->skip = 0; } else { lp->skip += p[valid_ptr].skip; } } static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) { if (d->phys_map.skip) { phys_page_compact(&d->phys_map, d->map.nodes); } } static inline bool section_covers_addr(const MemoryRegionSection *section, hwaddr addr) { /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means * the section must cover the entire address space. */ return int128_gethi(section->size) || range_covers_byte(section->offset_within_address_space, int128_getlo(section->size), addr); } static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, Node *nodes, MemoryRegionSection *sections) { PhysPageEntry *p; hwaddr index = addr >> TARGET_PAGE_BITS; int i; for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { if (lp.ptr == PHYS_MAP_NODE_NIL) { return §ions[PHYS_SECTION_UNASSIGNED]; } p = nodes[lp.ptr]; lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; } if (section_covers_addr(§ions[lp.ptr], addr)) { return §ions[lp.ptr]; } else { return §ions[PHYS_SECTION_UNASSIGNED]; } } bool memory_region_is_unassigned(MemoryRegion *mr) { return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device && mr != &io_mem_watch; } /* Called from RCU critical section */ static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, hwaddr addr, bool resolve_subpage) { MemoryRegionSection *section = atomic_read(&d->mru_section); subpage_t *subpage; bool update; if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] && section_covers_addr(section, addr)) { update = false; } else { section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections); update = true; } if (resolve_subpage && section->mr->subpage) { subpage = container_of(section->mr, subpage_t, iomem); section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; } if (update) { atomic_set(&d->mru_section, section); } return section; } /* Called from RCU critical section */ static MemoryRegionSection * address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, hwaddr *plen, bool resolve_subpage) { MemoryRegionSection *section; MemoryRegion *mr; Int128 diff; section = address_space_lookup_region(d, addr, resolve_subpage); /* Compute offset within MemoryRegionSection */ addr -= section->offset_within_address_space; /* Compute offset within MemoryRegion */ *xlat = addr + section->offset_within_region; mr = section->mr; /* MMIO registers can be expected to perform full-width accesses based only * on their address, without considering adjacent registers that could * decode to completely different MemoryRegions. When such registers * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO * regions overlap wildly. For this reason we cannot clamp the accesses * here. * * If the length is small (as is the case for address_space_ldl/stl), * everything works fine. If the incoming length is large, however, * the caller really has to do the clamping through memory_access_size. */ if (memory_region_is_ram(mr)) { diff = int128_sub(section->size, int128_make64(addr)); *plen = int128_get64(int128_min(diff, int128_make64(*plen))); } return section; } /* Called from RCU critical section */ IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, bool is_write) { IOMMUTLBEntry iotlb = {0}; MemoryRegionSection *section; MemoryRegion *mr; for (;;) { AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); section = address_space_lookup_region(d, addr, false); addr = addr - section->offset_within_address_space + section->offset_within_region; mr = section->mr; if (!mr->iommu_ops) { break; } iotlb = mr->iommu_ops->translate(mr, addr, is_write); if (!(iotlb.perm & (1 << is_write))) { iotlb.target_as = NULL; break; } addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | (addr & iotlb.addr_mask)); as = iotlb.target_as; } return iotlb; } /* Called from RCU critical section */ MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, hwaddr *xlat, hwaddr *plen, bool is_write) { IOMMUTLBEntry iotlb; MemoryRegionSection *section; MemoryRegion *mr; for (;;) { AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); section = address_space_translate_internal(d, addr, &addr, plen, true); mr = section->mr; if (!mr->iommu_ops) { break; } iotlb = mr->iommu_ops->translate(mr, addr, is_write); addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | (addr & iotlb.addr_mask)); *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); if (!(iotlb.perm & (1 << is_write))) { mr = &io_mem_unassigned; break; } as = iotlb.target_as; } if (xen_enabled() && memory_access_is_direct(mr, is_write)) { hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; *plen = MIN(page, *plen); } *xlat = addr; return mr; } /* Called from RCU critical section */ MemoryRegionSection * address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, hwaddr *xlat, hwaddr *plen) { MemoryRegionSection *section; AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); section = address_space_translate_internal(d, addr, xlat, plen, false); assert(!section->mr->iommu_ops); return section; } #endif #if !defined(CONFIG_USER_ONLY) static int cpu_common_post_load(void *opaque, int version_id) { CPUState *cpu = opaque; /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the version_id is increased. */ cpu->interrupt_request &= ~0x01; tlb_flush(cpu); return 0; } static int cpu_common_pre_load(void *opaque) { CPUState *cpu = opaque; cpu->exception_index = -1; return 0; } static bool cpu_common_exception_index_needed(void *opaque) { CPUState *cpu = opaque; return tcg_enabled() && cpu->exception_index != -1; } static const VMStateDescription vmstate_cpu_common_exception_index = { .name = "cpu_common/exception_index", .version_id = 1, .minimum_version_id = 1, .needed = cpu_common_exception_index_needed, .fields = (VMStateField[]) { VMSTATE_INT32(exception_index, CPUState), VMSTATE_END_OF_LIST() } }; static bool cpu_common_crash_occurred_needed(void *opaque) { CPUState *cpu = opaque; return cpu->crash_occurred; } static const VMStateDescription vmstate_cpu_common_crash_occurred = { .name = "cpu_common/crash_occurred", .version_id = 1, .minimum_version_id = 1, .needed = cpu_common_crash_occurred_needed, .fields = (VMStateField[]) { VMSTATE_BOOL(crash_occurred, CPUState), VMSTATE_END_OF_LIST() } }; const VMStateDescription vmstate_cpu_common = { .name = "cpu_common", .version_id = 1, .minimum_version_id = 1, .pre_load = cpu_common_pre_load, .post_load = cpu_common_post_load, .fields = (VMStateField[]) { VMSTATE_UINT32(halted, CPUState), VMSTATE_UINT32(interrupt_request, CPUState), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_cpu_common_exception_index, &vmstate_cpu_common_crash_occurred, NULL } }; #endif CPUState *qemu_get_cpu(int index) { CPUState *cpu; CPU_FOREACH(cpu) { if (cpu->cpu_index == index) { return cpu; } } return NULL; } #if !defined(CONFIG_USER_ONLY) void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) { CPUAddressSpace *newas; /* Target code should have set num_ases before calling us */ assert(asidx < cpu->num_ases); if (asidx == 0) { /* address space 0 gets the convenience alias */ cpu->as = as; } /* KVM cannot currently support multiple address spaces. */ assert(asidx == 0 || !kvm_enabled()); if (!cpu->cpu_ases) { cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); } newas = &cpu->cpu_ases[asidx]; newas->cpu = cpu; newas->as = as; if (tcg_enabled()) { newas->tcg_as_listener.commit = tcg_commit; memory_listener_register(&newas->tcg_as_listener, as); } } AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) { /* Return the AddressSpace corresponding to the specified index */ return cpu->cpu_ases[asidx].as; } #endif void cpu_exec_unrealizefn(CPUState *cpu) { CPUClass *cc = CPU_GET_CLASS(cpu); cpu_list_remove(cpu); if (cc->vmsd != NULL) { vmstate_unregister(NULL, cc->vmsd, cpu); } if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { vmstate_unregister(NULL, &vmstate_cpu_common, cpu); } } void cpu_exec_initfn(CPUState *cpu) { cpu->as = NULL; cpu->num_ases = 0; #ifndef CONFIG_USER_ONLY cpu->thread_id = qemu_get_thread_id(); /* This is a softmmu CPU object, so create a property for it * so users can wire up its memory. (This can't go in qom/cpu.c * because that file is compiled only once for both user-mode * and system builds.) The default if no link is set up is to use * the system address space. */ object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION, (Object **)&cpu->memory, qdev_prop_allow_set_link_before_realize, OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort); cpu->memory = system_memory; object_ref(OBJECT(cpu->memory)); #endif } void cpu_exec_realizefn(CPUState *cpu, Error **errp) { CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu); cpu_list_add(cpu); #ifndef CONFIG_USER_ONLY if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); } if (cc->vmsd != NULL) { vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); } #endif } static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) { /* Flush the whole TB as this will not have race conditions * even if we don't have proper locking yet. * Ideally we would just invalidate the TBs for the * specified PC. */ tb_flush(cpu); } #if defined(CONFIG_USER_ONLY) void cpu_watchpoint_remove_all(CPUState *cpu, int mask) { } int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, int flags) { return -ENOSYS; } void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) { } int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, int flags, CPUWatchpoint **watchpoint) { return -ENOSYS; } #else /* Add a watchpoint. */ int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, int flags, CPUWatchpoint **watchpoint) { CPUWatchpoint *wp; /* forbid ranges which are empty or run off the end of the address space */ if (len == 0 || (addr + len - 1) < addr) { error_report("tried to set invalid watchpoint at %" VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); return -EINVAL; } wp = g_malloc(sizeof(*wp)); wp->vaddr = addr; wp->len = len; wp->flags = flags; /* keep all GDB-injected watchpoints in front */ if (flags & BP_GDB) { QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); } else { QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); } tlb_flush_page(cpu, addr); if (watchpoint) *watchpoint = wp; return 0; } /* Remove a specific watchpoint. */ int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, int flags) { CPUWatchpoint *wp; QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { if (addr == wp->vaddr && len == wp->len && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { cpu_watchpoint_remove_by_ref(cpu, wp); return 0; } } return -ENOENT; } /* Remove a specific watchpoint by reference. */ void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) { QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); tlb_flush_page(cpu, watchpoint->vaddr); g_free(watchpoint); } /* Remove all matching watchpoints. */ void cpu_watchpoint_remove_all(CPUState *cpu, int mask) { CPUWatchpoint *wp, *next; QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { if (wp->flags & mask) { cpu_watchpoint_remove_by_ref(cpu, wp); } } } /* Return true if this watchpoint address matches the specified * access (ie the address range covered by the watchpoint overlaps * partially or completely with the address range covered by the * access). */ static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, vaddr addr, vaddr len) { /* We know the lengths are non-zero, but a little caution is * required to avoid errors in the case where the range ends * exactly at the top of the address space and so addr + len * wraps round to zero. */ vaddr wpend = wp->vaddr + wp->len - 1; vaddr addrend = addr + len - 1; return !(addr > wpend || wp->vaddr > addrend); } #endif /* Add a breakpoint. */ int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, CPUBreakpoint **breakpoint) { CPUBreakpoint *bp; bp = g_malloc(sizeof(*bp)); bp->pc = pc; bp->flags = flags; /* keep all GDB-injected breakpoints in front */ if (flags & BP_GDB) { QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); } else { QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); } breakpoint_invalidate(cpu, pc); if (breakpoint) { *breakpoint = bp; } return 0; } /* Remove a specific breakpoint. */ int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) { CPUBreakpoint *bp; QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { if (bp->pc == pc && bp->flags == flags) { cpu_breakpoint_remove_by_ref(cpu, bp); return 0; } } return -ENOENT; } /* Remove a specific breakpoint by reference. */ void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) { QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); breakpoint_invalidate(cpu, breakpoint->pc); g_free(breakpoint); } /* Remove all matching breakpoints. */ void cpu_breakpoint_remove_all(CPUState *cpu, int mask) { CPUBreakpoint *bp, *next; QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { if (bp->flags & mask) { cpu_breakpoint_remove_by_ref(cpu, bp); } } } /* enable or disable single step mode. EXCP_DEBUG is returned by the CPU loop after each instruction */ void cpu_single_step(CPUState *cpu, int enabled) { if (cpu->singlestep_enabled != enabled) { cpu->singlestep_enabled = enabled; if (kvm_enabled()) { kvm_update_guest_debug(cpu, 0); } else { /* must flush all the translated code to avoid inconsistencies */ /* XXX: only flush what is necessary */ tb_flush(cpu); } } } void cpu_abort(CPUState *cpu, const char *fmt, ...) { va_list ap; va_list ap2; va_start(ap, fmt); va_copy(ap2, ap); fprintf(stderr, "qemu: fatal: "); vfprintf(stderr, fmt, ap); fprintf(stderr, "\n"); cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); if (qemu_log_separate()) { qemu_log_lock(); qemu_log("qemu: fatal: "); qemu_log_vprintf(fmt, ap2); qemu_log("\n"); log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); qemu_log_flush(); qemu_log_unlock(); qemu_log_close(); } va_end(ap2); va_end(ap); replay_finish(); #if defined(CONFIG_USER_ONLY) { struct sigaction act; sigfillset(&act.sa_mask); act.sa_handler = SIG_DFL; sigaction(SIGABRT, &act, NULL); } #endif abort(); } #if !defined(CONFIG_USER_ONLY) /* Called from RCU critical section */ static RAMBlock *qemu_get_ram_block(ram_addr_t addr) { RAMBlock *block; block = atomic_rcu_read(&ram_list.mru_block); if (block && addr - block->offset < block->max_length) { return block; } QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { if (addr - block->offset < block->max_length) { goto found; } } fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); abort(); found: /* It is safe to write mru_block outside the iothread lock. This * is what happens: * * mru_block = xxx * rcu_read_unlock() * xxx removed from list * rcu_read_lock() * read mru_block * mru_block = NULL; * call_rcu(reclaim_ramblock, xxx); * rcu_read_unlock() * * atomic_rcu_set is not needed here. The block was already published * when it was placed into the list. Here we're just making an extra * copy of the pointer. */ ram_list.mru_block = block; return block; } static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) { CPUState *cpu; ram_addr_t start1; RAMBlock *block; ram_addr_t end; end = TARGET_PAGE_ALIGN(start + length); start &= TARGET_PAGE_MASK; rcu_read_lock(); block = qemu_get_ram_block(start); assert(block == qemu_get_ram_block(end - 1)); start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); CPU_FOREACH(cpu) { tlb_reset_dirty(cpu, start1, length); } rcu_read_unlock(); } /* Note: start and end must be within the same ram block. */ bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, ram_addr_t length, unsigned client) { DirtyMemoryBlocks *blocks; unsigned long end, page; bool dirty = false; if (length == 0) { return false; } end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; page = start >> TARGET_PAGE_BITS; rcu_read_lock(); blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); while (page < end) { unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], offset, num); page += num; } rcu_read_unlock(); if (dirty && tcg_enabled()) { tlb_reset_dirty_range_all(start, length); } return dirty; } /* Called from RCU critical section */ hwaddr memory_region_section_get_iotlb(CPUState *cpu, MemoryRegionSection *section, target_ulong vaddr, hwaddr paddr, hwaddr xlat, int prot, target_ulong *address) { hwaddr iotlb; CPUWatchpoint *wp; if (memory_region_is_ram(section->mr)) { /* Normal RAM. */ iotlb = memory_region_get_ram_addr(section->mr) + xlat; if (!section->readonly) { iotlb |= PHYS_SECTION_NOTDIRTY; } else { iotlb |= PHYS_SECTION_ROM; } } else { AddressSpaceDispatch *d; d = atomic_rcu_read(§ion->address_space->dispatch); iotlb = section - d->map.sections; iotlb += xlat; } /* Make accesses to pages with watchpoints go via the watchpoint trap routines. */ QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { /* Avoid trapping reads of pages with a write breakpoint. */ if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { iotlb = PHYS_SECTION_WATCH + paddr; *address |= TLB_MMIO; break; } } } return iotlb; } #endif /* defined(CONFIG_USER_ONLY) */ #if !defined(CONFIG_USER_ONLY) static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, uint16_t section); static subpage_t *subpage_init(AddressSpace *as, hwaddr base); static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = qemu_anon_ram_alloc; /* * Set a custom physical guest memory alloator. * Accelerators with unusual needs may need this. Hopefully, we can * get rid of it eventually. */ void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) { phys_mem_alloc = alloc; } static uint16_t phys_section_add(PhysPageMap *map, MemoryRegionSection *section) { /* The physical section number is ORed with a page-aligned * pointer to produce the iotlb entries. Thus it should * never overflow into the page-aligned value. */ assert(map->sections_nb < TARGET_PAGE_SIZE); if (map->sections_nb == map->sections_nb_alloc) { map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); map->sections = g_renew(MemoryRegionSection, map->sections, map->sections_nb_alloc); } map->sections[map->sections_nb] = *section; memory_region_ref(section->mr); return map->sections_nb++; } static void phys_section_destroy(MemoryRegion *mr) { bool have_sub_page = mr->subpage; memory_region_unref(mr); if (have_sub_page) { subpage_t *subpage = container_of(mr, subpage_t, iomem); object_unref(OBJECT(&subpage->iomem)); g_free(subpage); } } static void phys_sections_free(PhysPageMap *map) { while (map->sections_nb > 0) { MemoryRegionSection *section = &map->sections[--map->sections_nb]; phys_section_destroy(section->mr); } g_free(map->sections); g_free(map->nodes); } static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) { subpage_t *subpage; hwaddr base = section->offset_within_address_space & TARGET_PAGE_MASK; MemoryRegionSection *existing = phys_page_find(d->phys_map, base, d->map.nodes, d->map.sections); MemoryRegionSection subsection = { .offset_within_address_space = base, .size = int128_make64(TARGET_PAGE_SIZE), }; hwaddr start, end; assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); if (!(existing->mr->subpage)) { subpage = subpage_init(d->as, base); subsection.address_space = d->as; subsection.mr = &subpage->iomem; phys_page_set(d, base >> TARGET_PAGE_BITS, 1, phys_section_add(&d->map, &subsection)); } else { subpage = container_of(existing->mr, subpage_t, iomem); } start = section->offset_within_address_space & ~TARGET_PAGE_MASK; end = start + int128_get64(section->size) - 1; subpage_register(subpage, start, end, phys_section_add(&d->map, section)); } static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section) { hwaddr start_addr = section->offset_within_address_space; uint16_t section_index = phys_section_add(&d->map, section); uint64_t num_pages = int128_get64(int128_rshift(section->size, TARGET_PAGE_BITS)); assert(num_pages); phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); } static void mem_add(MemoryListener *listener, MemoryRegionSection *section) { AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); AddressSpaceDispatch *d = as->next_dispatch; MemoryRegionSection now = *section, remain = *section; Int128 page_size = int128_make64(TARGET_PAGE_SIZE); if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) - now.offset_within_address_space; now.size = int128_min(int128_make64(left), now.size); register_subpage(d, &now); } else { now.size = int128_zero(); } while (int128_ne(remain.size, now.size)) { remain.size = int128_sub(remain.size, now.size); remain.offset_within_address_space += int128_get64(now.size); remain.offset_within_region += int128_get64(now.size); now = remain; if (int128_lt(remain.size, page_size)) { register_subpage(d, &now); } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { now.size = page_size; register_subpage(d, &now); } else { now.size = int128_and(now.size, int128_neg(page_size)); register_multipage(d, &now); } } } void qemu_flush_coalesced_mmio_buffer(void) { if (kvm_enabled()) kvm_flush_coalesced_mmio_buffer(); } void qemu_mutex_lock_ramlist(void) { qemu_mutex_lock(&ram_list.mutex); } void qemu_mutex_unlock_ramlist(void) { qemu_mutex_unlock(&ram_list.mutex); } #ifdef __linux__ static int64_t get_file_size(int fd) { int64_t size = lseek(fd, 0, SEEK_END); if (size < 0) { return -errno; } return size; } static void *file_ram_alloc(RAMBlock *block, ram_addr_t memory, const char *path, Error **errp) { bool unlink_on_error = false; char *filename; char *sanitized_name; char *c; void *area = MAP_FAILED; int fd = -1; int64_t file_size; if (kvm_enabled() && !kvm_has_sync_mmu()) { error_setg(errp, "host lacks kvm mmu notifiers, -mem-path unsupported"); return NULL; } for (;;) { fd = open(path, O_RDWR); if (fd >= 0) { /* @path names an existing file, use it */ break; } if (errno == ENOENT) { /* @path names a file that doesn't exist, create it */ fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); if (fd >= 0) { unlink_on_error = true; break; } } else if (errno == EISDIR) { /* @path names a directory, create a file there */ /* Make name safe to use with mkstemp by replacing '/' with '_'. */ sanitized_name = g_strdup(memory_region_name(block->mr)); for (c = sanitized_name; *c != '\0'; c++) { if (*c == '/') { *c = '_'; } } filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, sanitized_name); g_free(sanitized_name); fd = mkstemp(filename); if (fd >= 0) { unlink(filename); g_free(filename); break; } g_free(filename); } if (errno != EEXIST && errno != EINTR) { error_setg_errno(errp, errno, "can't open backing store %s for guest RAM", path); goto error; } /* * Try again on EINTR and EEXIST. The latter happens when * something else creates the file between our two open(). */ } block->page_size = qemu_fd_getpagesize(fd); block->mr->align = block->page_size; #if defined(__s390x__) if (kvm_enabled()) { block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); } #endif file_size = get_file_size(fd); if (memory < block->page_size) { error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " "or larger than page size 0x%zx", memory, block->page_size); goto error; } if (file_size > 0 && file_size < memory) { error_setg(errp, "backing store %s size 0x%" PRIx64 " does not match 'size' option 0x" RAM_ADDR_FMT, path, file_size, memory); goto error; } memory = ROUND_UP(memory, block->page_size); /* * ftruncate is not supported by hugetlbfs in older * hosts, so don't bother bailing out on errors. * If anything goes wrong with it under other filesystems, * mmap will fail. * * Do not truncate the non-empty backend file to avoid corrupting * the existing data in the file. Disabling shrinking is not * enough. For example, the current vNVDIMM implementation stores * the guest NVDIMM labels at the end of the backend file. If the * backend file is later extended, QEMU will not be able to find * those labels. Therefore, extending the non-empty backend file * is disabled as well. */ if (!file_size && ftruncate(fd, memory)) { perror("ftruncate"); } area = qemu_ram_mmap(fd, memory, block->mr->align, block->flags & RAM_SHARED); if (area == MAP_FAILED) { error_setg_errno(errp, errno, "unable to map backing store for guest RAM"); goto error; } if (mem_prealloc) { os_mem_prealloc(fd, area, memory, errp); if (errp && *errp) { goto error; } } block->fd = fd; return area; error: if (area != MAP_FAILED) { qemu_ram_munmap(area, memory); } if (unlink_on_error) { unlink(path); } if (fd != -1) { close(fd); } return NULL; } #endif /* Called with the ramlist lock held. */ static ram_addr_t find_ram_offset(ram_addr_t size) { RAMBlock *block, *next_block; ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; assert(size != 0); /* it would hand out same offset multiple times */ if (QLIST_EMPTY_RCU(&ram_list.blocks)) { return 0; } QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { ram_addr_t end, next = RAM_ADDR_MAX; end = block->offset + block->max_length; QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { if (next_block->offset >= end) { next = MIN(next, next_block->offset); } } if (next - end >= size && next - end < mingap) { offset = end; mingap = next - end; } } if (offset == RAM_ADDR_MAX) { fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", (uint64_t)size); abort(); } return offset; } ram_addr_t last_ram_offset(void) { RAMBlock *block; ram_addr_t last = 0; rcu_read_lock(); QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { last = MAX(last, block->offset + block->max_length); } rcu_read_unlock(); return last; } static void qemu_ram_setup_dump(void *addr, ram_addr_t size) { int ret; /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ if (!machine_dump_guest_core(current_machine)) { ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); if (ret) { perror("qemu_madvise"); fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " "but dump_guest_core=off specified\n"); } } } const char *qemu_ram_get_idstr(RAMBlock *rb) { return rb->idstr; } /* Called with iothread lock held. */ void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) { RAMBlock *block; assert(new_block); assert(!new_block->idstr[0]); if (dev) { char *id = qdev_get_dev_path(dev); if (id) { snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); g_free(id); } } pstrcat(new_block->idstr, sizeof(new_block->idstr), name); rcu_read_lock(); QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", new_block->idstr); abort(); } } rcu_read_unlock(); } /* Called with iothread lock held. */ void qemu_ram_unset_idstr(RAMBlock *block) { /* FIXME: arch_init.c assumes that this is not called throughout * migration. Ignore the problem since hot-unplug during migration * does not work anyway. */ if (block) { memset(block->idstr, 0, sizeof(block->idstr)); } } size_t qemu_ram_pagesize(RAMBlock *rb) { return rb->page_size; } static int memory_try_enable_merging(void *addr, size_t len) { if (!machine_mem_merge(current_machine)) { /* disabled by the user */ return 0; } return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); } /* Only legal before guest might have detected the memory size: e.g. on * incoming migration, or right after reset. * * As memory core doesn't know how is memory accessed, it is up to * resize callback to update device state and/or add assertions to detect * misuse, if necessary. */ int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) { assert(block); newsize = HOST_PAGE_ALIGN(newsize); if (block->used_length == newsize) { return 0; } if (!(block->flags & RAM_RESIZEABLE)) { error_setg_errno(errp, EINVAL, "Length mismatch: %s: 0x" RAM_ADDR_FMT " in != 0x" RAM_ADDR_FMT, block->idstr, newsize, block->used_length); return -EINVAL; } if (block->max_length < newsize) { error_setg_errno(errp, EINVAL, "Length too large: %s: 0x" RAM_ADDR_FMT " > 0x" RAM_ADDR_FMT, block->idstr, newsize, block->max_length); return -EINVAL; } cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); block->used_length = newsize; cpu_physical_memory_set_dirty_range(block->offset, block->used_length, DIRTY_CLIENTS_ALL); memory_region_set_size(block->mr, newsize); if (block->resized) { block->resized(block->idstr, newsize, block->host); } return 0; } /* Called with ram_list.mutex held */ static void dirty_memory_extend(ram_addr_t old_ram_size, ram_addr_t new_ram_size) { ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, DIRTY_MEMORY_BLOCK_SIZE); ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, DIRTY_MEMORY_BLOCK_SIZE); int i; /* Only need to extend if block count increased */ if (new_num_blocks <= old_num_blocks) { return; } for (i = 0; i < DIRTY_MEMORY_NUM; i++) { DirtyMemoryBlocks *old_blocks; DirtyMemoryBlocks *new_blocks; int j; old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); new_blocks = g_malloc(sizeof(*new_blocks) + sizeof(new_blocks->blocks[0]) * new_num_blocks); if (old_num_blocks) { memcpy(new_blocks->blocks, old_blocks->blocks, old_num_blocks * sizeof(old_blocks->blocks[0])); } for (j = old_num_blocks; j < new_num_blocks; j++) { new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); } atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); if (old_blocks) { g_free_rcu(old_blocks, rcu); } } } static void ram_block_add(RAMBlock *new_block, Error **errp) { RAMBlock *block; RAMBlock *last_block = NULL; ram_addr_t old_ram_size, new_ram_size; Error *err = NULL; old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; qemu_mutex_lock_ramlist(); new_block->offset = find_ram_offset(new_block->max_length); if (!new_block->host) { if (xen_enabled()) { xen_ram_alloc(new_block->offset, new_block->max_length, new_block->mr, &err); if (err) { error_propagate(errp, err); qemu_mutex_unlock_ramlist(); return; } } else { new_block->host = phys_mem_alloc(new_block->max_length, &new_block->mr->align); if (!new_block->host) { error_setg_errno(errp, errno, "cannot set up guest memory '%s'", memory_region_name(new_block->mr)); qemu_mutex_unlock_ramlist(); return; } memory_try_enable_merging(new_block->host, new_block->max_length); } } new_ram_size = MAX(old_ram_size, (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); if (new_ram_size > old_ram_size) { migration_bitmap_extend(old_ram_size, new_ram_size); dirty_memory_extend(old_ram_size, new_ram_size); } /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, * QLIST (which has an RCU-friendly variant) does not have insertion at * tail, so save the last element in last_block. */ QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { last_block = block; if (block->max_length < new_block->max_length) { break; } } if (block) { QLIST_INSERT_BEFORE_RCU(block, new_block, next); } else if (last_block) { QLIST_INSERT_AFTER_RCU(last_block, new_block, next); } else { /* list is empty */ QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); } ram_list.mru_block = NULL; /* Write list before version */ smp_wmb(); ram_list.version++; qemu_mutex_unlock_ramlist(); cpu_physical_memory_set_dirty_range(new_block->offset, new_block->used_length, DIRTY_CLIENTS_ALL); if (new_block->host) { qemu_ram_setup_dump(new_block->host, new_block->max_length); qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */ qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); ram_block_notify_add(new_block->host, new_block->max_length); } } #ifdef __linux__ RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, bool share, const char *mem_path, Error **errp) { RAMBlock *new_block; Error *local_err = NULL; if (xen_enabled()) { error_setg(errp, "-mem-path not supported with Xen"); return NULL; } if (phys_mem_alloc != qemu_anon_ram_alloc) { /* * file_ram_alloc() needs to allocate just like * phys_mem_alloc, but we haven't bothered to provide * a hook there. */ error_setg(errp, "-mem-path not supported with this accelerator"); return NULL; } size = HOST_PAGE_ALIGN(size); new_block = g_malloc0(sizeof(*new_block)); new_block->mr = mr; new_block->used_length = size; new_block->max_length = size; new_block->flags = share ? RAM_SHARED : 0; new_block->host = file_ram_alloc(new_block, size, mem_path, errp); if (!new_block->host) { g_free(new_block); return NULL; } ram_block_add(new_block, &local_err); if (local_err) { g_free(new_block); error_propagate(errp, local_err); return NULL; } return new_block; } #endif static RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, void (*resized)(const char*, uint64_t length, void *host), void *host, bool resizeable, MemoryRegion *mr, Error **errp) { RAMBlock *new_block; Error *local_err = NULL; size = HOST_PAGE_ALIGN(size); max_size = HOST_PAGE_ALIGN(max_size); new_block = g_malloc0(sizeof(*new_block)); new_block->mr = mr; new_block->resized = resized; new_block->used_length = size; new_block->max_length = max_size; assert(max_size >= size); new_block->fd = -1; new_block->page_size = getpagesize(); new_block->host = host; if (host) { new_block->flags |= RAM_PREALLOC; } if (resizeable) { new_block->flags |= RAM_RESIZEABLE; } ram_block_add(new_block, &local_err); if (local_err) { g_free(new_block); error_propagate(errp, local_err); return NULL; } return new_block; } RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, MemoryRegion *mr, Error **errp) { return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); } RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) { return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); } RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, void (*resized)(const char*, uint64_t length, void *host), MemoryRegion *mr, Error **errp) { return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); } static void reclaim_ramblock(RAMBlock *block) { if (block->flags & RAM_PREALLOC) { ; } else if (xen_enabled()) { xen_invalidate_map_cache_entry(block->host); #ifndef _WIN32 } else if (block->fd >= 0) { qemu_ram_munmap(block->host, block->max_length); close(block->fd); #endif } else { qemu_anon_ram_free(block->host, block->max_length); } g_free(block); } void qemu_ram_free(RAMBlock *block) { if (!block) { return; } if (block->host) { ram_block_notify_remove(block->host, block->max_length); } qemu_mutex_lock_ramlist(); QLIST_REMOVE_RCU(block, next); ram_list.mru_block = NULL; /* Write list before version */ smp_wmb(); ram_list.version++; call_rcu(block, reclaim_ramblock, rcu); qemu_mutex_unlock_ramlist(); } #ifndef _WIN32 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) { RAMBlock *block; ram_addr_t offset; int flags; void *area, *vaddr; QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { offset = addr - block->offset; if (offset < block->max_length) { vaddr = ramblock_ptr(block, offset); if (block->flags & RAM_PREALLOC) { ; } else if (xen_enabled()) { abort(); } else { flags = MAP_FIXED; if (block->fd >= 0) { flags |= (block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE); area = mmap(vaddr, length, PROT_READ | PROT_WRITE, flags, block->fd, offset); } else { /* * Remap needs to match alloc. Accelerators that * set phys_mem_alloc never remap. If they did, * we'd need a remap hook here. */ assert(phys_mem_alloc == qemu_anon_ram_alloc); flags |= MAP_PRIVATE | MAP_ANONYMOUS; area = mmap(vaddr, length, PROT_READ | PROT_WRITE, flags, -1, 0); } if (area != vaddr) { fprintf(stderr, "Could not remap addr: " RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", length, addr); exit(1); } memory_try_enable_merging(vaddr, length); qemu_ram_setup_dump(vaddr, length); } } } } #endif /* !_WIN32 */ /* Return a host pointer to ram allocated with qemu_ram_alloc. * This should not be used for general purpose DMA. Use address_space_map * or address_space_rw instead. For local memory (e.g. video ram) that the * device owns, use memory_region_get_ram_ptr. * * Called within RCU critical section. */ void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) { RAMBlock *block = ram_block; if (block == NULL) { block = qemu_get_ram_block(addr); addr -= block->offset; } if (xen_enabled() && block->host == NULL) { /* We need to check if the requested address is in the RAM * because we don't want to map the entire memory in QEMU. * In that case just map until the end of the page. */ if (block->offset == 0) { return xen_map_cache(addr, 0, 0); } block->host = xen_map_cache(block->offset, block->max_length, 1); } return ramblock_ptr(block, addr); } /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr * but takes a size argument. * * Called within RCU critical section. */ static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, hwaddr *size) { RAMBlock *block = ram_block; if (*size == 0) { return NULL; } if (block == NULL) { block = qemu_get_ram_block(addr); addr -= block->offset; } *size = MIN(*size, block->max_length - addr); if (xen_enabled() && block->host == NULL) { /* We need to check if the requested address is in the RAM * because we don't want to map the entire memory in QEMU. * In that case just map the requested area. */ if (block->offset == 0) { return xen_map_cache(addr, *size, 1); } block->host = xen_map_cache(block->offset, block->max_length, 1); } return ramblock_ptr(block, addr); } /* * Translates a host ptr back to a RAMBlock, a ram_addr and an offset * in that RAMBlock. * * ptr: Host pointer to look up * round_offset: If true round the result offset down to a page boundary * *ram_addr: set to result ram_addr * *offset: set to result offset within the RAMBlock * * Returns: RAMBlock (or NULL if not found) * * By the time this function returns, the returned pointer is not protected * by RCU anymore. If the caller is not within an RCU critical section and * does not hold the iothread lock, it must have other means of protecting the * pointer, such as a reference to the region that includes the incoming * ram_addr_t. */ RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, ram_addr_t *offset) { RAMBlock *block; uint8_t *host = ptr; if (xen_enabled()) { ram_addr_t ram_addr; rcu_read_lock(); ram_addr = xen_ram_addr_from_mapcache(ptr); block = qemu_get_ram_block(ram_addr); if (block) { *offset = ram_addr - block->offset; } rcu_read_unlock(); return block; } rcu_read_lock(); block = atomic_rcu_read(&ram_list.mru_block); if (block && block->host && host - block->host < block->max_length) { goto found; } QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { /* This case append when the block is not mapped. */ if (block->host == NULL) { continue; } if (host - block->host < block->max_length) { goto found; } } rcu_read_unlock(); return NULL; found: *offset = (host - block->host); if (round_offset) { *offset &= TARGET_PAGE_MASK; } rcu_read_unlock(); return block; } /* * Finds the named RAMBlock * * name: The name of RAMBlock to find * * Returns: RAMBlock (or NULL if not found) */ RAMBlock *qemu_ram_block_by_name(const char *name) { RAMBlock *block; QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { if (!strcmp(name, block->idstr)) { return block; } } return NULL; } /* Some of the softmmu routines need to translate from a host pointer (typically a TLB entry) back to a ram offset. */ ram_addr_t qemu_ram_addr_from_host(void *ptr) { RAMBlock *block; ram_addr_t offset; block = qemu_ram_block_from_host(ptr, false, &offset); if (!block) { return RAM_ADDR_INVALID; } return block->offset + offset; } /* Called within RCU critical section. */ static void notdirty_mem_write(void *opaque, hwaddr ram_addr, uint64_t val, unsigned size) { bool locked = false; if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { locked = true; tb_lock(); tb_invalidate_phys_page_fast(ram_addr, size); } switch (size) { case 1: stb_p(qemu_map_ram_ptr(NULL, ram_addr), val); break; case 2: stw_p(qemu_map_ram_ptr(NULL, ram_addr), val); break; case 4: stl_p(qemu_map_ram_ptr(NULL, ram_addr), val); break; default: abort(); } if (locked) { tb_unlock(); } /* Set both VGA and migration bits for simplicity and to remove * the notdirty callback faster. */ cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); /* we remove the notdirty callback only if the code has been flushed */ if (!cpu_physical_memory_is_clean(ram_addr)) { tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); } } static bool notdirty_mem_accepts(void *opaque, hwaddr addr, unsigned size, bool is_write) { return is_write; } static const MemoryRegionOps notdirty_mem_ops = { .write = notdirty_mem_write, .valid.accepts = notdirty_mem_accepts, .endianness = DEVICE_NATIVE_ENDIAN, }; /* Generate a debug exception if a watchpoint has been hit. */ static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) { CPUState *cpu = current_cpu; CPUClass *cc = CPU_GET_CLASS(cpu); CPUArchState *env = cpu->env_ptr; target_ulong pc, cs_base; target_ulong vaddr; CPUWatchpoint *wp; uint32_t cpu_flags; if (cpu->watchpoint_hit) { /* We re-entered the check after replacing the TB. Now raise * the debug interrupt so that is will trigger after the * current instruction. */ cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); return; } vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { if (cpu_watchpoint_address_matches(wp, vaddr, len) && (wp->flags & flags)) { if (flags == BP_MEM_READ) { wp->flags |= BP_WATCHPOINT_HIT_READ; } else { wp->flags |= BP_WATCHPOINT_HIT_WRITE; } wp->hitaddr = vaddr; wp->hitattrs = attrs; if (!cpu->watchpoint_hit) { if (wp->flags & BP_CPU && !cc->debug_check_watchpoint(cpu, wp)) { wp->flags &= ~BP_WATCHPOINT_HIT; continue; } cpu->watchpoint_hit = wp; /* The tb_lock will be reset when cpu_loop_exit or * cpu_loop_exit_noexc longjmp back into the cpu_exec * main loop. */ tb_lock(); tb_check_watchpoint(cpu); if (wp->flags & BP_STOP_BEFORE_ACCESS) { cpu->exception_index = EXCP_DEBUG; cpu_loop_exit(cpu); } else { cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); cpu_loop_exit_noexc(cpu); } } } else { wp->flags &= ~BP_WATCHPOINT_HIT; } } } /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, so these check for a hit then pass through to the normal out-of-line phys routines. */ static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, unsigned size, MemTxAttrs attrs) { MemTxResult res; uint64_t data; int asidx = cpu_asidx_from_attrs(current_cpu, attrs); AddressSpace *as = current_cpu->cpu_ases[asidx].as; check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); switch (size) { case 1: data = address_space_ldub(as, addr, attrs, &res); break; case 2: data = address_space_lduw(as, addr, attrs, &res); break; case 4: data = address_space_ldl(as, addr, attrs, &res); break; default: abort(); } *pdata = data; return res; } static MemTxResult watch_mem_write(void *opaque, hwaddr addr, uint64_t val, unsigned size, MemTxAttrs attrs) { MemTxResult res; int asidx = cpu_asidx_from_attrs(current_cpu, attrs); AddressSpace *as = current_cpu->cpu_ases[asidx].as; check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); switch (size) { case 1: address_space_stb(as, addr, val, attrs, &res); break; case 2: address_space_stw(as, addr, val, attrs, &res); break; case 4: address_space_stl(as, addr, val, attrs, &res); break; default: abort(); } return res; } static const MemoryRegionOps watch_mem_ops = { .read_with_attrs = watch_mem_read, .write_with_attrs = watch_mem_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, unsigned len, MemTxAttrs attrs) { subpage_t *subpage = opaque; uint8_t buf[8]; MemTxResult res; #if defined(DEBUG_SUBPAGE) printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, subpage, len, addr); #endif res = address_space_read(subpage->as, addr + subpage->base, attrs, buf, len); if (res) { return res; } switch (len) { case 1: *data = ldub_p(buf); return MEMTX_OK; case 2: *data = lduw_p(buf); return MEMTX_OK; case 4: *data = ldl_p(buf); return MEMTX_OK; case 8: *data = ldq_p(buf); return MEMTX_OK; default: abort(); } } static MemTxResult subpage_write(void *opaque, hwaddr addr, uint64_t value, unsigned len, MemTxAttrs attrs) { subpage_t *subpage = opaque; uint8_t buf[8]; #if defined(DEBUG_SUBPAGE) printf("%s: subpage %p len %u addr " TARGET_FMT_plx " value %"PRIx64"\n", __func__, subpage, len, addr, value); #endif switch (len) { case 1: stb_p(buf, value); break; case 2: stw_p(buf, value); break; case 4: stl_p(buf, value); break; case 8: stq_p(buf, value); break; default: abort(); } return address_space_write(subpage->as, addr + subpage->base, attrs, buf, len); } static bool subpage_accepts(void *opaque, hwaddr addr, unsigned len, bool is_write) { subpage_t *subpage = opaque; #if defined(DEBUG_SUBPAGE) printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", __func__, subpage, is_write ? 'w' : 'r', len, addr); #endif return address_space_access_valid(subpage->as, addr + subpage->base, len, is_write); } static const MemoryRegionOps subpage_ops = { .read_with_attrs = subpage_read, .write_with_attrs = subpage_write, .impl.min_access_size = 1, .impl.max_access_size = 8, .valid.min_access_size = 1, .valid.max_access_size = 8, .valid.accepts = subpage_accepts, .endianness = DEVICE_NATIVE_ENDIAN, }; static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, uint16_t section) { int idx, eidx; if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) return -1; idx = SUBPAGE_IDX(start); eidx = SUBPAGE_IDX(end); #if defined(DEBUG_SUBPAGE) printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", __func__, mmio, start, end, idx, eidx, section); #endif for (; idx <= eidx; idx++) { mmio->sub_section[idx] = section; } return 0; } static subpage_t *subpage_init(AddressSpace *as, hwaddr base) { subpage_t *mmio; mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); mmio->as = as; mmio->base = base; memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, NULL, TARGET_PAGE_SIZE); mmio->iomem.subpage = true; #if defined(DEBUG_SUBPAGE) printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, mmio, base, TARGET_PAGE_SIZE); #endif subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); return mmio; } static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, MemoryRegion *mr) { assert(as); MemoryRegionSection section = { .address_space = as, .mr = mr, .offset_within_address_space = 0, .offset_within_region = 0, .size = int128_2_64(), }; return phys_section_add(map, §ion); } MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) { int asidx = cpu_asidx_from_attrs(cpu, attrs); CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); MemoryRegionSection *sections = d->map.sections; return sections[index & ~TARGET_PAGE_MASK].mr; } static void io_mem_init(void) { memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, NULL, UINT64_MAX); memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, NULL, UINT64_MAX); } static void mem_begin(MemoryListener *listener) { AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); uint16_t n; n = dummy_section(&d->map, as, &io_mem_unassigned); assert(n == PHYS_SECTION_UNASSIGNED); n = dummy_section(&d->map, as, &io_mem_notdirty); assert(n == PHYS_SECTION_NOTDIRTY); n = dummy_section(&d->map, as, &io_mem_rom); assert(n == PHYS_SECTION_ROM); n = dummy_section(&d->map, as, &io_mem_watch); assert(n == PHYS_SECTION_WATCH); d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; d->as = as; as->next_dispatch = d; } static void address_space_dispatch_free(AddressSpaceDispatch *d) { phys_sections_free(&d->map); g_free(d); } static void mem_commit(MemoryListener *listener) { AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); AddressSpaceDispatch *cur = as->dispatch; AddressSpaceDispatch *next = as->next_dispatch; phys_page_compact_all(next, next->map.nodes_nb); atomic_rcu_set(&as->dispatch, next); if (cur) { call_rcu(cur, address_space_dispatch_free, rcu); } } static void tcg_commit(MemoryListener *listener) { CPUAddressSpace *cpuas; AddressSpaceDispatch *d; /* since each CPU stores ram addresses in its TLB cache, we must reset the modified entries */ cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); cpu_reloading_memory_map(); /* The CPU and TLB are protected by the iothread lock. * We reload the dispatch pointer now because cpu_reloading_memory_map() * may have split the RCU critical section. */ d = atomic_rcu_read(&cpuas->as->dispatch); atomic_rcu_set(&cpuas->memory_dispatch, d); tlb_flush(cpuas->cpu); } void address_space_init_dispatch(AddressSpace *as) { as->dispatch = NULL; as->dispatch_listener = (MemoryListener) { .begin = mem_begin, .commit = mem_commit, .region_add = mem_add, .region_nop = mem_add, .priority = 0, }; memory_listener_register(&as->dispatch_listener, as); } void address_space_unregister(AddressSpace *as) { memory_listener_unregister(&as->dispatch_listener); } void address_space_destroy_dispatch(AddressSpace *as) { AddressSpaceDispatch *d = as->dispatch; atomic_rcu_set(&as->dispatch, NULL); if (d) { call_rcu(d, address_space_dispatch_free, rcu); } } static void memory_map_init(void) { system_memory = g_malloc(sizeof(*system_memory)); memory_region_init(system_memory, NULL, "system", UINT64_MAX); address_space_init(&address_space_memory, system_memory, "memory"); system_io = g_malloc(sizeof(*system_io)); memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 65536); address_space_init(&address_space_io, system_io, "I/O"); } MemoryRegion *get_system_memory(void) { return system_memory; } MemoryRegion *get_system_io(void) { return system_io; } #endif /* !defined(CONFIG_USER_ONLY) */ /* physical memory access (slow version, mainly for debug) */ #if defined(CONFIG_USER_ONLY) int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, uint8_t *buf, int len, int is_write) { int l, flags; target_ulong page; void * p; while (len > 0) { page = addr & TARGET_PAGE_MASK; l = (page + TARGET_PAGE_SIZE) - addr; if (l > len) l = len; flags = page_get_flags(page); if (!(flags & PAGE_VALID)) return -1; if (is_write) { if (!(flags & PAGE_WRITE)) return -1; /* XXX: this code should not depend on lock_user */ if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) return -1; memcpy(p, buf, l); unlock_user(p, addr, l); } else { if (!(flags & PAGE_READ)) return -1; /* XXX: this code should not depend on lock_user */ if (!(p = lock_user(VERIFY_READ, addr, l, 1))) return -1; memcpy(buf, p, l); unlock_user(p, addr, 0); } len -= l; buf += l; addr += l; } return 0; } #else static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, hwaddr length) { uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); addr += memory_region_get_ram_addr(mr); /* No early return if dirty_log_mask is or becomes 0, because * cpu_physical_memory_set_dirty_range will still call * xen_modified_memory. */ if (dirty_log_mask) { dirty_log_mask = cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); } if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { tb_lock(); tb_invalidate_phys_range(addr, addr + length); tb_unlock(); dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); } cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); } static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) { unsigned access_size_max = mr->ops->valid.max_access_size; /* Regions are assumed to support 1-4 byte accesses unless otherwise specified. */ if (access_size_max == 0) { access_size_max = 4; } /* Bound the maximum access by the alignment of the address. */ if (!mr->ops->impl.unaligned) { unsigned align_size_max = addr & -addr; if (align_size_max != 0 && align_size_max < access_size_max) { access_size_max = align_size_max; } } /* Don't attempt accesses larger than the maximum. */ if (l > access_size_max) { l = access_size_max; } l = pow2floor(l); return l; } static bool prepare_mmio_access(MemoryRegion *mr) { bool unlocked = !qemu_mutex_iothread_locked(); bool release_lock = false; if (unlocked && mr->global_locking) { qemu_mutex_lock_iothread(); unlocked = false; release_lock = true; } if (mr->flush_coalesced_mmio) { if (unlocked) { qemu_mutex_lock_iothread(); } qemu_flush_coalesced_mmio_buffer(); if (unlocked) { qemu_mutex_unlock_iothread(); } } return release_lock; } /* Called within RCU critical section. */ static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, const uint8_t *buf, int len, hwaddr addr1, hwaddr l, MemoryRegion *mr) { uint8_t *ptr; uint64_t val; MemTxResult result = MEMTX_OK; bool release_lock = false; for (;;) { if (!memory_access_is_direct(mr, true)) { release_lock |= prepare_mmio_access(mr); l = memory_access_size(mr, l, addr1); /* XXX: could force current_cpu to NULL to avoid potential bugs */ switch (l) { case 8: /* 64 bit write access */ val = ldq_p(buf); result |= memory_region_dispatch_write(mr, addr1, val, 8, attrs); break; case 4: /* 32 bit write access */ val = ldl_p(buf); result |= memory_region_dispatch_write(mr, addr1, val, 4, attrs); break; case 2: /* 16 bit write access */ val = lduw_p(buf); result |= memory_region_dispatch_write(mr, addr1, val, 2, attrs); break; case 1: /* 8 bit write access */ val = ldub_p(buf); result |= memory_region_dispatch_write(mr, addr1, val, 1, attrs); break; default: abort(); } } else { /* RAM case */ ptr = qemu_map_ram_ptr(mr->ram_block, addr1); memcpy(ptr, buf, l); invalidate_and_set_dirty(mr, addr1, l); } if (release_lock) { qemu_mutex_unlock_iothread(); release_lock = false; } len -= l; buf += l; addr += l; if (!len) { break; } l = len; mr = address_space_translate(as, addr, &addr1, &l, true); } return result; } MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, const uint8_t *buf, int len) { hwaddr l; hwaddr addr1; MemoryRegion *mr; MemTxResult result = MEMTX_OK; if (len > 0) { rcu_read_lock(); l = len; mr = address_space_translate(as, addr, &addr1, &l, true); result = address_space_write_continue(as, addr, attrs, buf, len, addr1, l, mr); rcu_read_unlock(); } return result; } /* Called within RCU critical section. */ MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, uint8_t *buf, int len, hwaddr addr1, hwaddr l, MemoryRegion *mr) { uint8_t *ptr; uint64_t val; MemTxResult result = MEMTX_OK; bool release_lock = false; for (;;) { if (!memory_access_is_direct(mr, false)) { /* I/O case */ release_lock |= prepare_mmio_access(mr); l = memory_access_size(mr, l, addr1); switch (l) { case 8: /* 64 bit read access */ result |= memory_region_dispatch_read(mr, addr1, &val, 8, attrs); stq_p(buf, val); break; case 4: /* 32 bit read access */ result |= memory_region_dispatch_read(mr, addr1, &val, 4, attrs); stl_p(buf, val); break; case 2: /* 16 bit read access */ result |= memory_region_dispatch_read(mr, addr1, &val, 2, attrs); stw_p(buf, val); break; case 1: /* 8 bit read access */ result |= memory_region_dispatch_read(mr, addr1, &val, 1, attrs); stb_p(buf, val); break; default: abort(); } } else { /* RAM case */ ptr = qemu_map_ram_ptr(mr->ram_block, addr1); memcpy(buf, ptr, l); } if (release_lock) { qemu_mutex_unlock_iothread(); release_lock = false; } len -= l; buf += l; addr += l; if (!len) { break; } l = len; mr = address_space_translate(as, addr, &addr1, &l, false); } return result; } MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, uint8_t *buf, int len) { hwaddr l; hwaddr addr1; MemoryRegion *mr; MemTxResult result = MEMTX_OK; if (len > 0) { rcu_read_lock(); l = len; mr = address_space_translate(as, addr, &addr1, &l, false); result = address_space_read_continue(as, addr, attrs, buf, len, addr1, l, mr); rcu_read_unlock(); } return result; } MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, uint8_t *buf, int len, bool is_write) { if (is_write) { return address_space_write(as, addr, attrs, (uint8_t *)buf, len); } else { return address_space_read(as, addr, attrs, (uint8_t *)buf, len); } } void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, int len, int is_write) { address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, buf, len, is_write); } enum write_rom_type { WRITE_DATA, FLUSH_CACHE, }; static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) { hwaddr l; uint8_t *ptr; hwaddr addr1; MemoryRegion *mr; rcu_read_lock(); while (len > 0) { l = len; mr = address_space_translate(as, addr, &addr1, &l, true); if (!(memory_region_is_ram(mr) || memory_region_is_romd(mr))) { l = memory_access_size(mr, l, addr1); } else { /* ROM/RAM case */ ptr = qemu_map_ram_ptr(mr->ram_block, addr1); switch (type) { case WRITE_DATA: memcpy(ptr, buf, l); invalidate_and_set_dirty(mr, addr1, l); break; case FLUSH_CACHE: flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); break; } } len -= l; buf += l; addr += l; } rcu_read_unlock(); } /* used for ROM loading : can write in RAM and ROM */ void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, const uint8_t *buf, int len) { cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); } void cpu_flush_icache_range(hwaddr start, int len) { /* * This function should do the same thing as an icache flush that was * triggered from within the guest. For TCG we are always cache coherent, * so there is no need to flush anything. For KVM / Xen we need to flush * the host's instruction cache at least. */ if (tcg_enabled()) { return; } cpu_physical_memory_write_rom_internal(&address_space_memory, start, NULL, len, FLUSH_CACHE); } typedef struct { MemoryRegion *mr; void *buffer; hwaddr addr; hwaddr len; bool in_use; } BounceBuffer; static BounceBuffer bounce; typedef struct MapClient { QEMUBH *bh; QLIST_ENTRY(MapClient) link; } MapClient; QemuMutex map_client_list_lock; static QLIST_HEAD(map_client_list, MapClient) map_client_list = QLIST_HEAD_INITIALIZER(map_client_list); static void cpu_unregister_map_client_do(MapClient *client) { QLIST_REMOVE(client, link); g_free(client); } static void cpu_notify_map_clients_locked(void) { MapClient *client; while (!QLIST_EMPTY(&map_client_list)) { client = QLIST_FIRST(&map_client_list); qemu_bh_schedule(client->bh); cpu_unregister_map_client_do(client); } } void cpu_register_map_client(QEMUBH *bh) { MapClient *client = g_malloc(sizeof(*client)); qemu_mutex_lock(&map_client_list_lock); client->bh = bh; QLIST_INSERT_HEAD(&map_client_list, client, link); if (!atomic_read(&bounce.in_use)) { cpu_notify_map_clients_locked(); } qemu_mutex_unlock(&map_client_list_lock); } void cpu_exec_init_all(void) { qemu_mutex_init(&ram_list.mutex); /* The data structures we set up here depend on knowing the page size, * so no more changes can be made after this point. * In an ideal world, nothing we did before we had finished the * machine setup would care about the target page size, and we could * do this much later, rather than requiring board models to state * up front what their requirements are. */ finalize_target_page_bits(); io_mem_init(); memory_map_init(); qemu_mutex_init(&map_client_list_lock); } void cpu_unregister_map_client(QEMUBH *bh) { MapClient *client; qemu_mutex_lock(&map_client_list_lock); QLIST_FOREACH(client, &map_client_list, link) { if (client->bh == bh) { cpu_unregister_map_client_do(client); break; } } qemu_mutex_unlock(&map_client_list_lock); } static void cpu_notify_map_clients(void) { qemu_mutex_lock(&map_client_list_lock); cpu_notify_map_clients_locked(); qemu_mutex_unlock(&map_client_list_lock); } bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) { MemoryRegion *mr; hwaddr l, xlat; rcu_read_lock(); while (len > 0) { l = len; mr = address_space_translate(as, addr, &xlat, &l, is_write); if (!memory_access_is_direct(mr, is_write)) { l = memory_access_size(mr, l, addr); if (!memory_region_access_valid(mr, xlat, l, is_write)) { rcu_read_unlock(); return false; } } len -= l; addr += l; } rcu_read_unlock(); return true; } static hwaddr address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len, MemoryRegion *mr, hwaddr base, hwaddr len, bool is_write) { hwaddr done = 0; hwaddr xlat; MemoryRegion *this_mr; for (;;) { target_len -= len; addr += len; done += len; if (target_len == 0) { return done; } len = target_len; this_mr = address_space_translate(as, addr, &xlat, &len, is_write); if (this_mr != mr || xlat != base + done) { return done; } } } /* Map a physical memory region into a host virtual address. * May map a subset of the requested range, given by and returned in *plen. * May return NULL if resources needed to perform the mapping are exhausted. * Use only for reads OR writes - not for read-modify-write operations. * Use cpu_register_map_client() to know when retrying the map operation is * likely to succeed. */ void *address_space_map(AddressSpace *as, hwaddr addr, hwaddr *plen, bool is_write) { hwaddr len = *plen; hwaddr l, xlat; MemoryRegion *mr; void *ptr; if (len == 0) { return NULL; } l = len; rcu_read_lock(); mr = address_space_translate(as, addr, &xlat, &l, is_write); if (!memory_access_is_direct(mr, is_write)) { if (atomic_xchg(&bounce.in_use, true)) { rcu_read_unlock(); return NULL; } /* Avoid unbounded allocations */ l = MIN(l, TARGET_PAGE_SIZE); bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); bounce.addr = addr; bounce.len = l; memory_region_ref(mr); bounce.mr = mr; if (!is_write) { address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, bounce.buffer, l); } rcu_read_unlock(); *plen = l; return bounce.buffer; } memory_region_ref(mr); *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write); ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen); rcu_read_unlock(); return ptr; } /* Unmaps a memory region previously mapped by address_space_map(). * Will also mark the memory as dirty if is_write == 1. access_len gives * the amount of memory that was actually read or written by the caller. */ void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, int is_write, hwaddr access_len) { if (buffer != bounce.buffer) { MemoryRegion *mr; ram_addr_t addr1; mr = memory_region_from_host(buffer, &addr1); assert(mr != NULL); if (is_write) { invalidate_and_set_dirty(mr, addr1, access_len); } if (xen_enabled()) { xen_invalidate_map_cache_entry(buffer); } memory_region_unref(mr); return; } if (is_write) { address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, bounce.buffer, access_len); } qemu_vfree(bounce.buffer); bounce.buffer = NULL; memory_region_unref(bounce.mr); atomic_mb_set(&bounce.in_use, false); cpu_notify_map_clients(); } void *cpu_physical_memory_map(hwaddr addr, hwaddr *plen, int is_write) { return address_space_map(&address_space_memory, addr, plen, is_write); } void cpu_physical_memory_unmap(void *buffer, hwaddr len, int is_write, hwaddr access_len) { return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); } #define ARG1_DECL AddressSpace *as #define ARG1 as #define SUFFIX #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write) #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs) #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len) #define RCU_READ_LOCK(...) rcu_read_lock() #define RCU_READ_UNLOCK(...) rcu_read_unlock() #include "memory_ldst.inc.c" int64_t address_space_cache_init(MemoryRegionCache *cache, AddressSpace *as, hwaddr addr, hwaddr len, bool is_write) { hwaddr l, xlat; MemoryRegion *mr; void *ptr; assert(len > 0); l = len; mr = address_space_translate(as, addr, &xlat, &l, is_write); if (!memory_access_is_direct(mr, is_write)) { return -EINVAL; } l = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write); ptr = qemu_ram_ptr_length(mr->ram_block, xlat, &l); cache->xlat = xlat; cache->is_write = is_write; cache->mr = mr; cache->ptr = ptr; cache->len = l; memory_region_ref(cache->mr); return l; } void address_space_cache_invalidate(MemoryRegionCache *cache, hwaddr addr, hwaddr access_len) { assert(cache->is_write); invalidate_and_set_dirty(cache->mr, addr + cache->xlat, access_len); } void address_space_cache_destroy(MemoryRegionCache *cache) { if (!cache->mr) { return; } if (xen_enabled()) { xen_invalidate_map_cache_entry(cache->ptr); } memory_region_unref(cache->mr); } /* Called from RCU critical section. This function has the same * semantics as address_space_translate, but it only works on a * predefined range of a MemoryRegion that was mapped with * address_space_cache_init. */ static inline MemoryRegion *address_space_translate_cached( MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, hwaddr *plen, bool is_write) { assert(addr < cache->len && *plen <= cache->len - addr); *xlat = addr + cache->xlat; return cache->mr; } #define ARG1_DECL MemoryRegionCache *cache #define ARG1 cache #define SUFFIX _cached #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) #define IS_DIRECT(mr, is_write) true #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat)) #define INVALIDATE(mr, ofs, len) ((void)0) #define RCU_READ_LOCK() ((void)0) #define RCU_READ_UNLOCK() ((void)0) #include "memory_ldst.inc.c" /* virtual memory access for debug (includes writing to ROM) */ int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, uint8_t *buf, int len, int is_write) { int l; hwaddr phys_addr; target_ulong page; while (len > 0) { int asidx; MemTxAttrs attrs; page = addr & TARGET_PAGE_MASK; phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); asidx = cpu_asidx_from_attrs(cpu, attrs); /* if no physical page mapped, return an error */ if (phys_addr == -1) return -1; l = (page + TARGET_PAGE_SIZE) - addr; if (l > len) l = len; phys_addr += (addr & ~TARGET_PAGE_MASK); if (is_write) { cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, phys_addr, buf, l); } else { address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, MEMTXATTRS_UNSPECIFIED, buf, l, 0); } len -= l; buf += l; addr += l; } return 0; } /* * Allows code that needs to deal with migration bitmaps etc to still be built * target independent. */ size_t qemu_target_page_bits(void) { return TARGET_PAGE_BITS; } #endif /* * A helper function for the _utterly broken_ virtio device model to find out if * it's running on a big endian machine. Don't do this at home kids! */ bool target_words_bigendian(void); bool target_words_bigendian(void) { #if defined(TARGET_WORDS_BIGENDIAN) return true; #else return false; #endif } #ifndef CONFIG_USER_ONLY bool cpu_physical_memory_is_io(hwaddr phys_addr) { MemoryRegion*mr; hwaddr l = 1; bool res; rcu_read_lock(); mr = address_space_translate(&address_space_memory, phys_addr, &phys_addr, &l, false); res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); rcu_read_unlock(); return res; } int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) { RAMBlock *block; int ret = 0; rcu_read_lock(); QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { ret = func(block->idstr, block->host, block->offset, block->used_length, opaque); if (ret) { break; } } rcu_read_unlock(); return ret; } #endif