// Copyright 2015, ARM Limited // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of ARM Limited nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef VIXL_UTILS_H #define VIXL_UTILS_H #include #include #include "vixl/globals.h" #include "vixl/compiler-intrinsics.h" namespace vixl { // Macros for compile-time format checking. #if GCC_VERSION_OR_NEWER(4, 4, 0) #define PRINTF_CHECK(format_index, varargs_index) \ __attribute__((format(gnu_printf, format_index, varargs_index))) #else #define PRINTF_CHECK(format_index, varargs_index) #endif // Check number width. inline bool is_intn(unsigned n, int64_t x) { VIXL_ASSERT((0 < n) && (n < 64)); int64_t limit = INT64_C(1) << (n - 1); return (-limit <= x) && (x < limit); } inline bool is_uintn(unsigned n, int64_t x) { VIXL_ASSERT((0 < n) && (n < 64)); return !(x >> n); } inline uint32_t truncate_to_intn(unsigned n, int64_t x) { VIXL_ASSERT((0 < n) && (n < 64)); return static_cast(x & ((INT64_C(1) << n) - 1)); } #define INT_1_TO_63_LIST(V) \ V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) \ V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16) \ V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24) \ V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32) \ V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \ V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) \ V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56) \ V(57) V(58) V(59) V(60) V(61) V(62) V(63) #define DECLARE_IS_INT_N(N) \ inline bool is_int##N(int64_t x) { return is_intn(N, x); } #define DECLARE_IS_UINT_N(N) \ inline bool is_uint##N(int64_t x) { return is_uintn(N, x); } #define DECLARE_TRUNCATE_TO_INT_N(N) \ inline uint32_t truncate_to_int##N(int x) { return truncate_to_intn(N, x); } INT_1_TO_63_LIST(DECLARE_IS_INT_N) INT_1_TO_63_LIST(DECLARE_IS_UINT_N) INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N) #undef DECLARE_IS_INT_N #undef DECLARE_IS_UINT_N #undef DECLARE_TRUNCATE_TO_INT_N // Bit field extraction. inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) { return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1); } inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) { return (x >> lsb) & ((static_cast(1) << (1 + msb - lsb)) - 1); } inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) { return (x << (31 - msb)) >> (lsb + 31 - msb); } inline int64_t signed_bitextract_64(int msb, int lsb, int64_t x) { return (x << (63 - msb)) >> (lsb + 63 - msb); } // Floating point representation. uint32_t float_to_rawbits(float value); uint64_t double_to_rawbits(double value); float rawbits_to_float(uint32_t bits); double rawbits_to_double(uint64_t bits); uint32_t float_sign(float val); uint32_t float_exp(float val); uint32_t float_mantissa(float val); uint32_t double_sign(double val); uint32_t double_exp(double val); uint64_t double_mantissa(double val); float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa); double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa); // An fpclassify() function for 16-bit half-precision floats. int float16classify(float16 value); // NaN tests. inline bool IsSignallingNaN(double num) { const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000); uint64_t raw = double_to_rawbits(num); if (std::isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) { return true; } return false; } inline bool IsSignallingNaN(float num) { const uint32_t kFP32QuietNaNMask = 0x00400000; uint32_t raw = float_to_rawbits(num); if (std::isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) { return true; } return false; } inline bool IsSignallingNaN(float16 num) { const uint16_t kFP16QuietNaNMask = 0x0200; return (float16classify(num) == FP_NAN) && ((num & kFP16QuietNaNMask) == 0); } template inline bool IsQuietNaN(T num) { return std::isnan(num) && !IsSignallingNaN(num); } // Convert the NaN in 'num' to a quiet NaN. inline double ToQuietNaN(double num) { const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000); VIXL_ASSERT(std::isnan(num)); return rawbits_to_double(double_to_rawbits(num) | kFP64QuietNaNMask); } inline float ToQuietNaN(float num) { const uint32_t kFP32QuietNaNMask = 0x00400000; VIXL_ASSERT(std::isnan(num)); return rawbits_to_float(float_to_rawbits(num) | kFP32QuietNaNMask); } // Fused multiply-add. inline double FusedMultiplyAdd(double op1, double op2, double a) { return fma(op1, op2, a); } inline float FusedMultiplyAdd(float op1, float op2, float a) { return fmaf(op1, op2, a); } inline uint64_t LowestSetBit(uint64_t value) { return value & -value; } template inline int HighestSetBitPosition(T value) { VIXL_ASSERT(value != 0); return (sizeof(value) * 8 - 1) - CountLeadingZeros(value); } template inline int WhichPowerOf2(V value) { VIXL_ASSERT(IsPowerOf2(value)); return CountTrailingZeros(value); } unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size); template T ReverseBits(T value) { VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) || (sizeof(value) == 4) || (sizeof(value) == 8)); T result = 0; for (unsigned i = 0; i < (sizeof(value) * 8); i++) { result = (result << 1) | (value & 1); value >>= 1; } return result; } template T ReverseBytes(T value, int block_bytes_log2) { VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8)); VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value)); // Split the 64-bit value into an 8-bit array, where b[0] is the least // significant byte, and b[7] is the most significant. uint8_t bytes[8]; uint64_t mask = UINT64_C(0xff00000000000000); for (int i = 7; i >= 0; i--) { bytes[i] = (static_cast(value) & mask) >> (i * 8); mask >>= 8; } // Permutation tables for REV instructions. // permute_table[0] is used by REV16_x, REV16_w // permute_table[1] is used by REV32_x, REV_w // permute_table[2] is used by REV_x VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4)); static const uint8_t permute_table[3][8] = { {6, 7, 4, 5, 2, 3, 0, 1}, {4, 5, 6, 7, 0, 1, 2, 3}, {0, 1, 2, 3, 4, 5, 6, 7} }; T result = 0; for (int i = 0; i < 8; i++) { result <<= 8; result |= bytes[permute_table[block_bytes_log2 - 1][i]]; } return result; } // Pointer alignment // TODO: rename/refactor to make it specific to instructions. template bool IsWordAligned(T pointer) { VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t)); // NOLINT(runtime/sizeof) return ((intptr_t)(pointer) & 3) == 0; } // Increment a pointer (up to 64 bits) until it has the specified alignment. template T AlignUp(T pointer, size_t alignment) { // Use C-style casts to get static_cast behaviour for integral types (T), and // reinterpret_cast behaviour for other types. uint64_t pointer_raw = (uint64_t)pointer; VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw)); size_t align_step = (alignment - pointer_raw) % alignment; VIXL_ASSERT((pointer_raw + align_step) % alignment == 0); return (T)(pointer_raw + align_step); } // Decrement a pointer (up to 64 bits) until it has the specified alignment. template T AlignDown(T pointer, size_t alignment) { // Use C-style casts to get static_cast behaviour for integral types (T), and // reinterpret_cast behaviour for other types. uint64_t pointer_raw = (uint64_t)pointer; VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw)); size_t align_step = pointer_raw % alignment; VIXL_ASSERT((pointer_raw - align_step) % alignment == 0); return (T)(pointer_raw - align_step); } } // namespace vixl #endif // VIXL_UTILS_H