#ifndef CPU_COMMON_H #define CPU_COMMON_H 1 /* CPU interfaces that are target independent. */ #include "targphys.h" #ifndef NEED_CPU_H #include "poison.h" #endif #include "bswap.h" #include "qemu-queue.h" #if !defined(CONFIG_USER_ONLY) enum device_endian { DEVICE_NATIVE_ENDIAN, DEVICE_BIG_ENDIAN, DEVICE_LITTLE_ENDIAN, }; /* address in the RAM (different from a physical address) */ #if defined(CONFIG_XEN_BACKEND) typedef uint64_t ram_addr_t; # define RAM_ADDR_MAX UINT64_MAX # define RAM_ADDR_FMT "%" PRIx64 #else typedef uintptr_t ram_addr_t; # define RAM_ADDR_MAX UINTPTR_MAX # define RAM_ADDR_FMT "%" PRIxPTR #endif /* memory API */ typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value); typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr); void qemu_ram_remap(ram_addr_t addr, ram_addr_t length); /* This should only be used for ram local to a device. */ void *qemu_get_ram_ptr(ram_addr_t addr); void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size); /* Same but slower, to use for migration, where the order of * RAMBlocks must not change. */ void *qemu_safe_ram_ptr(ram_addr_t addr); void qemu_put_ram_ptr(void *addr); /* This should not be used by devices. */ int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr); ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr); void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev); void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, int len, int is_write); static inline void cpu_physical_memory_read(target_phys_addr_t addr, void *buf, int len) { cpu_physical_memory_rw(addr, buf, len, 0); } static inline void cpu_physical_memory_write(target_phys_addr_t addr, const void *buf, int len) { cpu_physical_memory_rw(addr, (void *)buf, len, 1); } void *cpu_physical_memory_map(target_phys_addr_t addr, target_phys_addr_t *plen, int is_write); void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len, int is_write, target_phys_addr_t access_len); void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)); void cpu_unregister_map_client(void *cookie); bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr); /* Coalesced MMIO regions are areas where write operations can be reordered. * This usually implies that write operations are side-effect free. This allows * batching which can make a major impact on performance when using * virtualization. */ void qemu_flush_coalesced_mmio_buffer(void); uint32_t ldub_phys(target_phys_addr_t addr); uint32_t lduw_le_phys(target_phys_addr_t addr); uint32_t lduw_be_phys(target_phys_addr_t addr); uint32_t ldl_le_phys(target_phys_addr_t addr); uint32_t ldl_be_phys(target_phys_addr_t addr); uint64_t ldq_le_phys(target_phys_addr_t addr); uint64_t ldq_be_phys(target_phys_addr_t addr); void stb_phys(target_phys_addr_t addr, uint32_t val); void stw_le_phys(target_phys_addr_t addr, uint32_t val); void stw_be_phys(target_phys_addr_t addr, uint32_t val); void stl_le_phys(target_phys_addr_t addr, uint32_t val); void stl_be_phys(target_phys_addr_t addr, uint32_t val); void stq_le_phys(target_phys_addr_t addr, uint64_t val); void stq_be_phys(target_phys_addr_t addr, uint64_t val); #ifdef NEED_CPU_H uint32_t lduw_phys(target_phys_addr_t addr); uint32_t ldl_phys(target_phys_addr_t addr); uint64_t ldq_phys(target_phys_addr_t addr); void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val); void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val); void stw_phys(target_phys_addr_t addr, uint32_t val); void stl_phys(target_phys_addr_t addr, uint32_t val); void stq_phys(target_phys_addr_t addr, uint64_t val); #endif void cpu_physical_memory_write_rom(target_phys_addr_t addr, const uint8_t *buf, int len); extern struct MemoryRegion io_mem_ram; extern struct MemoryRegion io_mem_rom; extern struct MemoryRegion io_mem_unassigned; extern struct MemoryRegion io_mem_notdirty; #endif #endif /* !CPU_COMMON_H */