/* * Bitmap Module * * Stolen from linux/src/lib/bitmap.c * * Copyright (C) 2010 Corentin Chary * * This source code is licensed under the GNU General Public License, * Version 2. */ #include "bitops.h" #include "bitmap.h" /* * bitmaps provide an array of bits, implemented using an an * array of unsigned longs. The number of valid bits in a * given bitmap does _not_ need to be an exact multiple of * BITS_PER_LONG. * * The possible unused bits in the last, partially used word * of a bitmap are 'don't care'. The implementation makes * no particular effort to keep them zero. It ensures that * their value will not affect the results of any operation. * The bitmap operations that return Boolean (bitmap_empty, * for example) or scalar (bitmap_weight, for example) results * carefully filter out these unused bits from impacting their * results. * * These operations actually hold to a slightly stronger rule: * if you don't input any bitmaps to these ops that have some * unused bits set, then they won't output any set unused bits * in output bitmaps. * * The byte ordering of bitmaps is more natural on little * endian architectures. */ int slow_bitmap_empty(const unsigned long *bitmap, int bits) { int k, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; ++k) { if (bitmap[k]) { return 0; } } if (bits % BITS_PER_LONG) { if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) { return 0; } } return 1; } int slow_bitmap_full(const unsigned long *bitmap, int bits) { int k, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; ++k) { if (~bitmap[k]) { return 0; } } if (bits % BITS_PER_LONG) { if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) { return 0; } } return 1; } int slow_bitmap_equal(const unsigned long *bitmap1, const unsigned long *bitmap2, int bits) { int k, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; ++k) { if (bitmap1[k] != bitmap2[k]) { return 0; } } if (bits % BITS_PER_LONG) { if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) { return 0; } } return 1; } void slow_bitmap_complement(unsigned long *dst, const unsigned long *src, int bits) { int k, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; ++k) { dst[k] = ~src[k]; } if (bits % BITS_PER_LONG) { dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits); } } int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, int bits) { int k; int nr = BITS_TO_LONGS(bits); unsigned long result = 0; for (k = 0; k < nr; k++) { result |= (dst[k] = bitmap1[k] & bitmap2[k]); } return result != 0; } void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, int bits) { int k; int nr = BITS_TO_LONGS(bits); for (k = 0; k < nr; k++) { dst[k] = bitmap1[k] | bitmap2[k]; } } void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, int bits) { int k; int nr = BITS_TO_LONGS(bits); for (k = 0; k < nr; k++) { dst[k] = bitmap1[k] ^ bitmap2[k]; } } int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, int bits) { int k; int nr = BITS_TO_LONGS(bits); unsigned long result = 0; for (k = 0; k < nr; k++) { result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); } return result != 0; } #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG)) void bitmap_set(unsigned long *map, int start, int nr) { unsigned long *p = map + BIT_WORD(start); const int size = start + nr; int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); while (nr - bits_to_set >= 0) { *p |= mask_to_set; nr -= bits_to_set; bits_to_set = BITS_PER_LONG; mask_to_set = ~0UL; p++; } if (nr) { mask_to_set &= BITMAP_LAST_WORD_MASK(size); *p |= mask_to_set; } } void bitmap_clear(unsigned long *map, int start, int nr) { unsigned long *p = map + BIT_WORD(start); const int size = start + nr; int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); while (nr - bits_to_clear >= 0) { *p &= ~mask_to_clear; nr -= bits_to_clear; bits_to_clear = BITS_PER_LONG; mask_to_clear = ~0UL; p++; } if (nr) { mask_to_clear &= BITMAP_LAST_WORD_MASK(size); *p &= ~mask_to_clear; } } #define ALIGN_MASK(x,mask) (((x)+(mask))&~(mask)) /** * bitmap_find_next_zero_area - find a contiguous aligned zero area * @map: The address to base the search on * @size: The bitmap size in bits * @start: The bitnumber to start searching at * @nr: The number of zeroed bits we're looking for * @align_mask: Alignment mask for zero area * * The @align_mask should be one less than a power of 2; the effect is that * the bit offset of all zero areas this function finds is multiples of that * power of 2. A @align_mask of 0 means no alignment is required. */ unsigned long bitmap_find_next_zero_area(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, unsigned long align_mask) { unsigned long index, end, i; again: index = find_next_zero_bit(map, size, start); /* Align allocation */ index = ALIGN_MASK(index, align_mask); end = index + nr; if (end > size) { return end; } i = find_next_bit(map, end, index); if (i < end) { start = i + 1; goto again; } return index; } int slow_bitmap_intersects(const unsigned long *bitmap1, const unsigned long *bitmap2, int bits) { int k, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; ++k) { if (bitmap1[k] & bitmap2[k]) { return 1; } } if (bits % BITS_PER_LONG) { if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) { return 1; } } return 0; }