aboutsummaryrefslogtreecommitdiff
path: root/tests/qemu-iotests/108
diff options
context:
space:
mode:
Diffstat (limited to 'tests/qemu-iotests/108')
-rwxr-xr-xtests/qemu-iotests/108282
1 files changed, 273 insertions, 9 deletions
diff --git a/tests/qemu-iotests/108 b/tests/qemu-iotests/108
index 2355d98c1d..54e935acf2 100755
--- a/tests/qemu-iotests/108
+++ b/tests/qemu-iotests/108
@@ -1,4 +1,5 @@
-#!/bin/bash
+#!/usr/bin/env bash
+# group: rw auto quick
#
# Test case for repairing qcow2 images which cannot be repaired using
# the on-disk refcount structures
@@ -20,30 +21,59 @@
#
# creator
-owner=mreitz@redhat.com
+owner=hreitz@redhat.com
seq="$(basename $0)"
echo "QA output created by $seq"
-here="$PWD"
status=1 # failure is the default!
_cleanup()
{
- _cleanup_test_img
+ _cleanup_test_img
+ if [ -f "$TEST_DIR/qsd.pid" ]; then
+ qsd_pid=$(cat "$TEST_DIR/qsd.pid")
+ kill -KILL "$qsd_pid"
+ fusermount -u "$TEST_DIR/fuse-export" &>/dev/null
+ fi
+ rm -f "$TEST_DIR/fuse-export"
}
trap "_cleanup; exit \$status" 0 1 2 3 15
# get standard environment, filters and checks
. ./common.rc
. ./common.filter
+. ./common.qemu
-# This tests qocw2-specific low-level functionality
+# This tests qcow2-specific low-level functionality
_supported_fmt qcow2
-_supported_proto file
+_supported_proto file fuse
_supported_os Linux
-# This test directly modifies a refblock so it relies on refcount_bits being 16
-_unsupported_imgopts 'refcount_bits=\([^1]\|.\([^6]\|$\)\)'
+# This test directly modifies a refblock so it relies on refcount_bits being 16;
+# and the low-level modification it performs are not tuned for external data
+# files
+_unsupported_imgopts 'refcount_bits=\([^1]\|.\([^6]\|$\)\)' data_file
+
+# This test either needs sudo -n losetup or FUSE exports to work
+if sudo -n losetup &>/dev/null; then
+ loopdev=true
+else
+ loopdev=false
+
+ # Check for usable FUSE in the host environment:
+ if test ! -c "/dev/fuse"; then
+ _notrun 'No passwordless sudo nor usable /dev/fuse'
+ fi
+
+ # QSD --export fuse will either yield "Parameter 'id' is missing"
+ # or "Invalid parameter 'fuse'", depending on whether there is
+ # FUSE support or not.
+ error=$($QSD --export fuse 2>&1)
+ if [[ $error = *"'fuse'"* ]]; then
+ _notrun 'Passwordless sudo for losetup or FUSE support required, but' \
+ 'neither is available'
+ fi
+fi
echo
echo '=== Repairing an image without any refcount table ==='
@@ -66,7 +96,7 @@ echo
echo '=== Repairing unreferenced data cluster in new refblock area ==='
echo
-IMGOPTS='cluster_size=512' _make_test_img 64M
+_make_test_img -o 'cluster_size=512' 64M
# Allocate the first 128 kB in the image (first refblock)
$QEMU_IO -c 'write 0 0x1b200' "$TEST_IMG" | _filter_qemu_io
# should be 131072 == 0x20000
@@ -136,6 +166,240 @@ _make_test_img 64M
poke_file "$TEST_IMG" $((0x10008)) "\xff\xff\xff\xff\xff\xff\x00\x00"
_check_test_img -r all
+echo
+echo '=== Check rebuilt reftable location ==='
+
+# In an earlier version of the refcount rebuild algorithm, the
+# reftable was generally placed at the image end (unless something was
+# allocated in the area covered by the refblock right before the image
+# file end, then we would try to place the reftable in that refblock).
+# This was later changed so the reftable would be placed in the
+# earliest possible location. Test this.
+
+echo
+echo '--- Does the image size increase? ---'
+echo
+
+# First test: Just create some image, write some data to it, and
+# resize it so there is free space at the end of the image (enough
+# that it spans at least one full refblock, which for cluster_size=512
+# images, spans 128k). With the old algorithm, the reftable would
+# have then been placed at the end of the image file, but with the new
+# one, it will be put in that free space.
+# We want to check whether the size of the image file increases due to
+# rebuilding the refcount structures (it should not).
+
+_make_test_img -o 'cluster_size=512' 1M
+# Write something
+$QEMU_IO -c 'write 0 64k' "$TEST_IMG" | _filter_qemu_io
+
+# Add free space
+file_len=$(stat -c '%s' "$TEST_IMG")
+truncate -s $((file_len + 256 * 1024)) "$TEST_IMG"
+
+# Corrupt the image by saying the image header was not allocated
+rt_offset=$(peek_file_be "$TEST_IMG" 48 8)
+rb_offset=$(peek_file_be "$TEST_IMG" $rt_offset 8)
+poke_file "$TEST_IMG" $rb_offset "\x00\x00"
+
+# Check whether rebuilding the refcount structures increases the image
+# file size
+file_len=$(stat -c '%s' "$TEST_IMG")
+echo
+# The only leaks there can be are the old refcount structures that are
+# leaked during rebuilding, no need to clutter the output with them
+_check_test_img -r all | grep -v '^Repairing cluster.*refcount=1 reference=0'
+echo
+post_repair_file_len=$(stat -c '%s' "$TEST_IMG")
+
+if [[ $file_len -eq $post_repair_file_len ]]; then
+ echo 'OK: Image size did not change'
+else
+ echo 'ERROR: Image size differs' \
+ "($file_len before, $post_repair_file_len after)"
+fi
+
+echo
+echo '--- Will the reftable occupy a hole specifically left for it? ---'
+echo
+
+# Note: With cluster_size=512, every refblock covers 128k.
+# The reftable covers 8M per reftable cluster.
+
+# Create an image that requires two reftable clusters (just because
+# this is more interesting than a single-clustered reftable).
+_make_test_img -o 'cluster_size=512' 9M
+$QEMU_IO -c 'write 0 8M' "$TEST_IMG" | _filter_qemu_io
+
+# Writing 8M will have resized the reftable. Unfortunately, doing so
+# will leave holes in the file, so we need to fill them up so we can
+# be sure the whole file is allocated. Do that by writing
+# consecutively smaller chunks starting from 8 MB, until the file
+# length increases even with a chunk size of 512. Then we must have
+# filled all holes.
+ofs=$((8 * 1024 * 1024))
+block_len=$((16 * 1024))
+while [[ $block_len -ge 512 ]]; do
+ file_len=$(stat -c '%s' "$TEST_IMG")
+ while [[ $(stat -c '%s' "$TEST_IMG") -eq $file_len ]]; do
+ # Do not include this in the reference output, it does not
+ # really matter which qemu-io calls we do here exactly
+ $QEMU_IO -c "write $ofs $block_len" "$TEST_IMG" >/dev/null
+ ofs=$((ofs + block_len))
+ done
+ block_len=$((block_len / 2))
+done
+
+# Fill up to 9M (do not include this in the reference output either,
+# $ofs is random for all we know)
+$QEMU_IO -c "write $ofs $((9 * 1024 * 1024 - ofs))" "$TEST_IMG" >/dev/null
+
+# Make space as follows:
+# - For the first refblock: Right at the beginning of the image (this
+# refblock is placed in the first place possible),
+# - For the reftable somewhere soon afterwards, still near the
+# beginning of the image (i.e. covered by the first refblock); the
+# reftable too is placed in the first place possible, but only after
+# all refblocks have been placed)
+# No space is needed for the other refblocks, because no refblock is
+# put before the space it covers. In this test case, we do not mind
+# if they are placed at the image file's end.
+
+# Before we make that space, we have to find out the host offset of
+# the area that belonged to the two data clusters at guest offset 4k,
+# because we expect the reftable to be placed there, and we will have
+# to verify that it is.
+
+l1_offset=$(peek_file_be "$TEST_IMG" 40 8)
+l2_offset=$(peek_file_be "$TEST_IMG" $l1_offset 8)
+l2_offset=$((l2_offset & 0x00fffffffffffe00))
+data_4k_offset=$(peek_file_be "$TEST_IMG" \
+ $((l2_offset + 4096 / 512 * 8)) 8)
+data_4k_offset=$((data_4k_offset & 0x00fffffffffffe00))
+
+$QEMU_IO -c "discard 0 512" -c "discard 4k 1k" "$TEST_IMG" | _filter_qemu_io
+
+# Corrupt the image by saying the image header was not allocated
+rt_offset=$(peek_file_be "$TEST_IMG" 48 8)
+rb_offset=$(peek_file_be "$TEST_IMG" $rt_offset 8)
+poke_file "$TEST_IMG" $rb_offset "\x00\x00"
+
+echo
+# The only leaks there can be are the old refcount structures that are
+# leaked during rebuilding, no need to clutter the output with them
+_check_test_img -r all | grep -v '^Repairing cluster.*refcount=1 reference=0'
+echo
+
+# Check whether the reftable was put where we expected
+rt_offset=$(peek_file_be "$TEST_IMG" 48 8)
+if [[ $rt_offset -eq $data_4k_offset ]]; then
+ echo 'OK: Reftable is where we expect it'
+else
+ echo "ERROR: Reftable is at $rt_offset, but was expected at $data_4k_offset"
+fi
+
+echo
+echo '--- Rebuilding refcount structures on block devices ---'
+echo
+
+# A block device cannot really grow, at least not during qemu-img
+# check. As mentioned in the above cases, rebuilding the refcount
+# structure may lead to new refcount structures being written after
+# the end of the image, and in the past that happened even if there
+# was more than sufficient space in the image. Such post-EOF writes
+# will not work on block devices, so test that the new algorithm
+# avoids it.
+
+# If we have passwordless sudo and losetup, we can use those to create
+# a block device. Otherwise, we can resort to qemu's FUSE export to
+# create a file that isn't growable, which effectively tests the same
+# thing.
+
+_cleanup_test_img
+truncate -s $((64 * 1024 * 1024)) "$TEST_IMG"
+
+if $loopdev; then
+ export_mp=$(sudo -n losetup --show -f "$TEST_IMG")
+ export_mp_driver=host_device
+ sudo -n chmod go+rw "$export_mp"
+else
+ # Create non-growable FUSE export that is a bit like an empty
+ # block device
+ export_mp="$TEST_DIR/fuse-export"
+ export_mp_driver=file
+ touch "$export_mp"
+
+ $QSD \
+ --blockdev file,node-name=export-node,filename="$TEST_IMG" \
+ --export fuse,id=fuse-export,node-name=export-node,mountpoint="$export_mp",writable=on,growable=off,allow-other=off \
+ --pidfile "$TEST_DIR/qsd.pid" \
+ --daemonize
+fi
+
+# Now create a qcow2 image on the device -- unfortunately, qemu-img
+# create force-creates the file, so we have to resort to the
+# blockdev-create job.
+_launch_qemu \
+ --blockdev $export_mp_driver,node-name=file,filename="$export_mp"
+
+_send_qemu_cmd \
+ $QEMU_HANDLE \
+ '{ "execute": "qmp_capabilities" }' \
+ 'return'
+
+# Small cluster size again, so the image needs multiple refblocks
+_send_qemu_cmd \
+ $QEMU_HANDLE \
+ '{ "execute": "blockdev-create",
+ "arguments": {
+ "job-id": "create",
+ "options": {
+ "driver": "qcow2",
+ "file": "file",
+ "size": '$((64 * 1024 * 1024))',
+ "cluster-size": 512
+ } } }' \
+ '"concluded"'
+
+_send_qemu_cmd \
+ $QEMU_HANDLE \
+ '{ "execute": "job-dismiss", "arguments": { "id": "create" } }' \
+ 'return'
+
+_send_qemu_cmd \
+ $QEMU_HANDLE \
+ '{ "execute": "quit" }' \
+ 'return'
+
+wait=y _cleanup_qemu
+echo
+
+# Write some data
+$QEMU_IO -c 'write 0 64k' "$export_mp" | _filter_qemu_io
+
+# Corrupt the image by saying the image header was not allocated
+rt_offset=$(peek_file_be "$export_mp" 48 8)
+rb_offset=$(peek_file_be "$export_mp" $rt_offset 8)
+poke_file "$export_mp" $rb_offset "\x00\x00"
+
+# Repairing such a simple case should just work
+# (We used to put the reftable at the end of the image file, which can
+# never work for non-growable devices.)
+echo
+TEST_IMG="$export_mp" _check_test_img -r all \
+ | grep -v '^Repairing cluster.*refcount=1 reference=0'
+
+if $loopdev; then
+ sudo -n losetup -d "$export_mp"
+else
+ qsd_pid=$(cat "$TEST_DIR/qsd.pid")
+ kill -TERM "$qsd_pid"
+ # Wait for process to exit (cannot `wait` because the QSD is daemonized)
+ while [ -f "$TEST_DIR/qsd.pid" ]; do
+ true
+ done
+fi
+
# success, all done
echo '*** done'
rm -f $seq.full