aboutsummaryrefslogtreecommitdiff
path: root/target/arm/kvm64.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm/kvm64.c')
-rw-r--r--target/arm/kvm64.c980
1 files changed, 0 insertions, 980 deletions
diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c
deleted file mode 100644
index e0b8246283..0000000000
--- a/target/arm/kvm64.c
+++ /dev/null
@@ -1,980 +0,0 @@
-/*
- * ARM implementation of KVM hooks, 64 bit specific code
- *
- * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
- * Copyright Alex Bennée 2014, Linaro
- *
- * This work is licensed under the terms of the GNU GPL, version 2 or later.
- * See the COPYING file in the top-level directory.
- *
- */
-
-#include "qemu/osdep.h"
-#include <sys/ioctl.h>
-#include <sys/ptrace.h>
-
-#include <linux/elf.h>
-#include <linux/kvm.h>
-
-#include "qemu-common.h"
-#include "cpu.h"
-#include "qemu/timer.h"
-#include "qemu/error-report.h"
-#include "qemu/host-utils.h"
-#include "exec/gdbstub.h"
-#include "sysemu/sysemu.h"
-#include "sysemu/kvm.h"
-#include "kvm_arm.h"
-#include "internals.h"
-#include "hw/arm/arm.h"
-
-static bool have_guest_debug;
-
-/*
- * Although the ARM implementation of hardware assisted debugging
- * allows for different breakpoints per-core, the current GDB
- * interface treats them as a global pool of registers (which seems to
- * be the case for x86, ppc and s390). As a result we store one copy
- * of registers which is used for all active cores.
- *
- * Write access is serialised by virtue of the GDB protocol which
- * updates things. Read access (i.e. when the values are copied to the
- * vCPU) is also gated by GDB's run control.
- *
- * This is not unreasonable as most of the time debugging kernels you
- * never know which core will eventually execute your function.
- */
-
-typedef struct {
- uint64_t bcr;
- uint64_t bvr;
-} HWBreakpoint;
-
-/* The watchpoint registers can cover more area than the requested
- * watchpoint so we need to store the additional information
- * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
- * when the watchpoint is hit.
- */
-typedef struct {
- uint64_t wcr;
- uint64_t wvr;
- CPUWatchpoint details;
-} HWWatchpoint;
-
-/* Maximum and current break/watch point counts */
-int max_hw_bps, max_hw_wps;
-GArray *hw_breakpoints, *hw_watchpoints;
-
-#define cur_hw_wps (hw_watchpoints->len)
-#define cur_hw_bps (hw_breakpoints->len)
-#define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
-#define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
-
-/**
- * kvm_arm_init_debug() - check for guest debug capabilities
- * @cs: CPUState
- *
- * kvm_check_extension returns the number of debug registers we have
- * or 0 if we have none.
- *
- */
-static void kvm_arm_init_debug(CPUState *cs)
-{
- have_guest_debug = kvm_check_extension(cs->kvm_state,
- KVM_CAP_SET_GUEST_DEBUG);
-
- max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
- hw_watchpoints = g_array_sized_new(true, true,
- sizeof(HWWatchpoint), max_hw_wps);
-
- max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
- hw_breakpoints = g_array_sized_new(true, true,
- sizeof(HWBreakpoint), max_hw_bps);
- return;
-}
-
-/**
- * insert_hw_breakpoint()
- * @addr: address of breakpoint
- *
- * See ARM ARM D2.9.1 for details but here we are only going to create
- * simple un-linked breakpoints (i.e. we don't chain breakpoints
- * together to match address and context or vmid). The hardware is
- * capable of fancier matching but that will require exposing that
- * fanciness to GDB's interface
- *
- * D7.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers
- *
- * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
- * +------+------+-------+-----+----+------+-----+------+-----+---+
- * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
- * +------+------+-------+-----+----+------+-----+------+-----+---+
- *
- * BT: Breakpoint type (0 = unlinked address match)
- * LBN: Linked BP number (0 = unused)
- * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
- * BAS: Byte Address Select (RES1 for AArch64)
- * E: Enable bit
- */
-static int insert_hw_breakpoint(target_ulong addr)
-{
- HWBreakpoint brk = {
- .bcr = 0x1, /* BCR E=1, enable */
- .bvr = addr
- };
-
- if (cur_hw_bps >= max_hw_bps) {
- return -ENOBUFS;
- }
-
- brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */
- brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */
-
- g_array_append_val(hw_breakpoints, brk);
-
- return 0;
-}
-
-/**
- * delete_hw_breakpoint()
- * @pc: address of breakpoint
- *
- * Delete a breakpoint and shuffle any above down
- */
-
-static int delete_hw_breakpoint(target_ulong pc)
-{
- int i;
- for (i = 0; i < hw_breakpoints->len; i++) {
- HWBreakpoint *brk = get_hw_bp(i);
- if (brk->bvr == pc) {
- g_array_remove_index(hw_breakpoints, i);
- return 0;
- }
- }
- return -ENOENT;
-}
-
-/**
- * insert_hw_watchpoint()
- * @addr: address of watch point
- * @len: size of area
- * @type: type of watch point
- *
- * See ARM ARM D2.10. As with the breakpoints we can do some advanced
- * stuff if we want to. The watch points can be linked with the break
- * points above to make them context aware. However for simplicity
- * currently we only deal with simple read/write watch points.
- *
- * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
- *
- * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
- * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
- * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
- * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
- *
- * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
- * WT: 0 - unlinked, 1 - linked (not currently used)
- * LBN: Linked BP number (not currently used)
- * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
- * BAS: Byte Address Select
- * LSC: Load/Store control (01: load, 10: store, 11: both)
- * E: Enable
- *
- * The bottom 2 bits of the value register are masked. Therefore to
- * break on any sizes smaller than an unaligned word you need to set
- * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
- * need to ensure you mask the address as required and set BAS=0xff
- */
-
-static int insert_hw_watchpoint(target_ulong addr,
- target_ulong len, int type)
-{
- HWWatchpoint wp = {
- .wcr = 1, /* E=1, enable */
- .wvr = addr & (~0x7ULL),
- .details = { .vaddr = addr, .len = len }
- };
-
- if (cur_hw_wps >= max_hw_wps) {
- return -ENOBUFS;
- }
-
- /*
- * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
- * valid whether EL3 is implemented or not
- */
- wp.wcr = deposit32(wp.wcr, 1, 2, 3);
-
- switch (type) {
- case GDB_WATCHPOINT_READ:
- wp.wcr = deposit32(wp.wcr, 3, 2, 1);
- wp.details.flags = BP_MEM_READ;
- break;
- case GDB_WATCHPOINT_WRITE:
- wp.wcr = deposit32(wp.wcr, 3, 2, 2);
- wp.details.flags = BP_MEM_WRITE;
- break;
- case GDB_WATCHPOINT_ACCESS:
- wp.wcr = deposit32(wp.wcr, 3, 2, 3);
- wp.details.flags = BP_MEM_ACCESS;
- break;
- default:
- g_assert_not_reached();
- break;
- }
- if (len <= 8) {
- /* we align the address and set the bits in BAS */
- int off = addr & 0x7;
- int bas = (1 << len) - 1;
-
- wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
- } else {
- /* For ranges above 8 bytes we need to be a power of 2 */
- if (is_power_of_2(len)) {
- int bits = ctz64(len);
-
- wp.wvr &= ~((1 << bits) - 1);
- wp.wcr = deposit32(wp.wcr, 24, 4, bits);
- wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
- } else {
- return -ENOBUFS;
- }
- }
-
- g_array_append_val(hw_watchpoints, wp);
- return 0;
-}
-
-
-static bool check_watchpoint_in_range(int i, target_ulong addr)
-{
- HWWatchpoint *wp = get_hw_wp(i);
- uint64_t addr_top, addr_bottom = wp->wvr;
- int bas = extract32(wp->wcr, 5, 8);
- int mask = extract32(wp->wcr, 24, 4);
-
- if (mask) {
- addr_top = addr_bottom + (1 << mask);
- } else {
- /* BAS must be contiguous but can offset against the base
- * address in DBGWVR */
- addr_bottom = addr_bottom + ctz32(bas);
- addr_top = addr_bottom + clo32(bas);
- }
-
- if (addr >= addr_bottom && addr <= addr_top) {
- return true;
- }
-
- return false;
-}
-
-/**
- * delete_hw_watchpoint()
- * @addr: address of breakpoint
- *
- * Delete a breakpoint and shuffle any above down
- */
-
-static int delete_hw_watchpoint(target_ulong addr,
- target_ulong len, int type)
-{
- int i;
- for (i = 0; i < cur_hw_wps; i++) {
- if (check_watchpoint_in_range(i, addr)) {
- g_array_remove_index(hw_watchpoints, i);
- return 0;
- }
- }
- return -ENOENT;
-}
-
-
-int kvm_arch_insert_hw_breakpoint(target_ulong addr,
- target_ulong len, int type)
-{
- switch (type) {
- case GDB_BREAKPOINT_HW:
- return insert_hw_breakpoint(addr);
- break;
- case GDB_WATCHPOINT_READ:
- case GDB_WATCHPOINT_WRITE:
- case GDB_WATCHPOINT_ACCESS:
- return insert_hw_watchpoint(addr, len, type);
- default:
- return -ENOSYS;
- }
-}
-
-int kvm_arch_remove_hw_breakpoint(target_ulong addr,
- target_ulong len, int type)
-{
- switch (type) {
- case GDB_BREAKPOINT_HW:
- return delete_hw_breakpoint(addr);
- break;
- case GDB_WATCHPOINT_READ:
- case GDB_WATCHPOINT_WRITE:
- case GDB_WATCHPOINT_ACCESS:
- return delete_hw_watchpoint(addr, len, type);
- default:
- return -ENOSYS;
- }
-}
-
-
-void kvm_arch_remove_all_hw_breakpoints(void)
-{
- if (cur_hw_wps > 0) {
- g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
- }
- if (cur_hw_bps > 0) {
- g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
- }
-}
-
-void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
-{
- int i;
- memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
-
- for (i = 0; i < max_hw_wps; i++) {
- HWWatchpoint *wp = get_hw_wp(i);
- ptr->dbg_wcr[i] = wp->wcr;
- ptr->dbg_wvr[i] = wp->wvr;
- }
- for (i = 0; i < max_hw_bps; i++) {
- HWBreakpoint *bp = get_hw_bp(i);
- ptr->dbg_bcr[i] = bp->bcr;
- ptr->dbg_bvr[i] = bp->bvr;
- }
-}
-
-bool kvm_arm_hw_debug_active(CPUState *cs)
-{
- return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
-}
-
-static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
-{
- int i;
-
- for (i = 0; i < cur_hw_bps; i++) {
- HWBreakpoint *bp = get_hw_bp(i);
- if (bp->bvr == pc) {
- return true;
- }
- }
- return false;
-}
-
-static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
-{
- int i;
-
- for (i = 0; i < cur_hw_wps; i++) {
- if (check_watchpoint_in_range(i, addr)) {
- return &get_hw_wp(i)->details;
- }
- }
- return NULL;
-}
-
-static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr)
-{
- int err;
-
- err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
- if (err != 0) {
- error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err));
- return false;
- }
-
- err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
- if (err != 0) {
- error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err));
- return false;
- }
-
- return true;
-}
-
-void kvm_arm_pmu_init(CPUState *cs)
-{
- struct kvm_device_attr attr = {
- .group = KVM_ARM_VCPU_PMU_V3_CTRL,
- .attr = KVM_ARM_VCPU_PMU_V3_INIT,
- };
-
- if (!ARM_CPU(cs)->has_pmu) {
- return;
- }
- if (!kvm_arm_pmu_set_attr(cs, &attr)) {
- error_report("failed to init PMU");
- abort();
- }
-}
-
-void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
-{
- struct kvm_device_attr attr = {
- .group = KVM_ARM_VCPU_PMU_V3_CTRL,
- .addr = (intptr_t)&irq,
- .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
- };
-
- if (!ARM_CPU(cs)->has_pmu) {
- return;
- }
- if (!kvm_arm_pmu_set_attr(cs, &attr)) {
- error_report("failed to set irq for PMU");
- abort();
- }
-}
-
-static inline void set_feature(uint64_t *features, int feature)
-{
- *features |= 1ULL << feature;
-}
-
-static inline void unset_feature(uint64_t *features, int feature)
-{
- *features &= ~(1ULL << feature);
-}
-
-bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
-{
- /* Identify the feature bits corresponding to the host CPU, and
- * fill out the ARMHostCPUClass fields accordingly. To do this
- * we have to create a scratch VM, create a single CPU inside it,
- * and then query that CPU for the relevant ID registers.
- * For AArch64 we currently don't care about ID registers at
- * all; we just want to know the CPU type.
- */
- int fdarray[3];
- uint64_t features = 0;
- /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
- * we know these will only support creating one kind of guest CPU,
- * which is its preferred CPU type. Fortunately these old kernels
- * support only a very limited number of CPUs.
- */
- static const uint32_t cpus_to_try[] = {
- KVM_ARM_TARGET_AEM_V8,
- KVM_ARM_TARGET_FOUNDATION_V8,
- KVM_ARM_TARGET_CORTEX_A57,
- QEMU_KVM_ARM_TARGET_NONE
- };
- struct kvm_vcpu_init init;
-
- if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
- return false;
- }
-
- ahcf->target = init.target;
- ahcf->dtb_compatible = "arm,arm-v8";
-
- kvm_arm_destroy_scratch_host_vcpu(fdarray);
-
- /* We can assume any KVM supporting CPU is at least a v8
- * with VFPv4+Neon; this in turn implies most of the other
- * feature bits.
- */
- set_feature(&features, ARM_FEATURE_V8);
- set_feature(&features, ARM_FEATURE_VFP4);
- set_feature(&features, ARM_FEATURE_NEON);
- set_feature(&features, ARM_FEATURE_AARCH64);
- set_feature(&features, ARM_FEATURE_PMU);
-
- ahcf->features = features;
-
- return true;
-}
-
-#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
-
-int kvm_arch_init_vcpu(CPUState *cs)
-{
- int ret;
- uint64_t mpidr;
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
-
- if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
- !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
- fprintf(stderr, "KVM is not supported for this guest CPU type\n");
- return -EINVAL;
- }
-
- /* Determine init features for this CPU */
- memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
- if (cpu->start_powered_off) {
- cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
- }
- if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
- cpu->psci_version = 2;
- cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
- }
- if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
- cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
- }
- if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
- cpu->has_pmu = false;
- }
- if (cpu->has_pmu) {
- cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
- } else {
- unset_feature(&env->features, ARM_FEATURE_PMU);
- }
-
- /* Do KVM_ARM_VCPU_INIT ioctl */
- ret = kvm_arm_vcpu_init(cs);
- if (ret) {
- return ret;
- }
-
- /*
- * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
- * Currently KVM has its own idea about MPIDR assignment, so we
- * override our defaults with what we get from KVM.
- */
- ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
- if (ret) {
- return ret;
- }
- cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
-
- kvm_arm_init_debug(cs);
-
- return kvm_arm_init_cpreg_list(cpu);
-}
-
-bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
-{
- /* Return true if the regidx is a register we should synchronize
- * via the cpreg_tuples array (ie is not a core reg we sync by
- * hand in kvm_arch_get/put_registers())
- */
- switch (regidx & KVM_REG_ARM_COPROC_MASK) {
- case KVM_REG_ARM_CORE:
- return false;
- default:
- return true;
- }
-}
-
-typedef struct CPRegStateLevel {
- uint64_t regidx;
- int level;
-} CPRegStateLevel;
-
-/* All system registers not listed in the following table are assumed to be
- * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
- * often, you must add it to this table with a state of either
- * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
- */
-static const CPRegStateLevel non_runtime_cpregs[] = {
- { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
-};
-
-int kvm_arm_cpreg_level(uint64_t regidx)
-{
- int i;
-
- for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
- const CPRegStateLevel *l = &non_runtime_cpregs[i];
- if (l->regidx == regidx) {
- return l->level;
- }
- }
-
- return KVM_PUT_RUNTIME_STATE;
-}
-
-#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
- KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
-
-#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
- KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
-
-#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
- KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
-
-int kvm_arch_put_registers(CPUState *cs, int level)
-{
- struct kvm_one_reg reg;
- uint32_t fpr;
- uint64_t val;
- int i;
- int ret;
- unsigned int el;
-
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
-
- /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
- * AArch64 registers before pushing them out to 64-bit KVM.
- */
- if (!is_a64(env)) {
- aarch64_sync_32_to_64(env);
- }
-
- for (i = 0; i < 31; i++) {
- reg.id = AARCH64_CORE_REG(regs.regs[i]);
- reg.addr = (uintptr_t) &env->xregs[i];
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
- }
-
- /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
- * QEMU side we keep the current SP in xregs[31] as well.
- */
- aarch64_save_sp(env, 1);
-
- reg.id = AARCH64_CORE_REG(regs.sp);
- reg.addr = (uintptr_t) &env->sp_el[0];
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
-
- reg.id = AARCH64_CORE_REG(sp_el1);
- reg.addr = (uintptr_t) &env->sp_el[1];
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
-
- /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
- if (is_a64(env)) {
- val = pstate_read(env);
- } else {
- val = cpsr_read(env);
- }
- reg.id = AARCH64_CORE_REG(regs.pstate);
- reg.addr = (uintptr_t) &val;
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
-
- reg.id = AARCH64_CORE_REG(regs.pc);
- reg.addr = (uintptr_t) &env->pc;
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
-
- reg.id = AARCH64_CORE_REG(elr_el1);
- reg.addr = (uintptr_t) &env->elr_el[1];
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
-
- /* Saved Program State Registers
- *
- * Before we restore from the banked_spsr[] array we need to
- * ensure that any modifications to env->spsr are correctly
- * reflected in the banks.
- */
- el = arm_current_el(env);
- if (el > 0 && !is_a64(env)) {
- i = bank_number(env->uncached_cpsr & CPSR_M);
- env->banked_spsr[i] = env->spsr;
- }
-
- /* KVM 0-4 map to QEMU banks 1-5 */
- for (i = 0; i < KVM_NR_SPSR; i++) {
- reg.id = AARCH64_CORE_REG(spsr[i]);
- reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
- }
-
- /* Advanced SIMD and FP registers. */
- for (i = 0; i < 32; i++) {
- uint64_t *q = aa64_vfp_qreg(env, i);
-#ifdef HOST_WORDS_BIGENDIAN
- uint64_t fp_val[2] = { q[1], q[0] };
- reg.addr = (uintptr_t)fp_val;
-#else
- reg.addr = (uintptr_t)q;
-#endif
- reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
- }
-
- reg.addr = (uintptr_t)(&fpr);
- fpr = vfp_get_fpsr(env);
- reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
-
- fpr = vfp_get_fpcr(env);
- reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
-
- if (!write_list_to_kvmstate(cpu, level)) {
- return EINVAL;
- }
-
- kvm_arm_sync_mpstate_to_kvm(cpu);
-
- return ret;
-}
-
-int kvm_arch_get_registers(CPUState *cs)
-{
- struct kvm_one_reg reg;
- uint64_t val;
- uint32_t fpr;
- unsigned int el;
- int i;
- int ret;
-
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
-
- for (i = 0; i < 31; i++) {
- reg.id = AARCH64_CORE_REG(regs.regs[i]);
- reg.addr = (uintptr_t) &env->xregs[i];
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
- }
-
- reg.id = AARCH64_CORE_REG(regs.sp);
- reg.addr = (uintptr_t) &env->sp_el[0];
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
-
- reg.id = AARCH64_CORE_REG(sp_el1);
- reg.addr = (uintptr_t) &env->sp_el[1];
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
-
- reg.id = AARCH64_CORE_REG(regs.pstate);
- reg.addr = (uintptr_t) &val;
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
-
- env->aarch64 = ((val & PSTATE_nRW) == 0);
- if (is_a64(env)) {
- pstate_write(env, val);
- } else {
- cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
- }
-
- /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
- * QEMU side we keep the current SP in xregs[31] as well.
- */
- aarch64_restore_sp(env, 1);
-
- reg.id = AARCH64_CORE_REG(regs.pc);
- reg.addr = (uintptr_t) &env->pc;
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
-
- /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
- * incoming AArch64 regs received from 64-bit KVM.
- * We must perform this after all of the registers have been acquired from
- * the kernel.
- */
- if (!is_a64(env)) {
- aarch64_sync_64_to_32(env);
- }
-
- reg.id = AARCH64_CORE_REG(elr_el1);
- reg.addr = (uintptr_t) &env->elr_el[1];
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
-
- /* Fetch the SPSR registers
- *
- * KVM SPSRs 0-4 map to QEMU banks 1-5
- */
- for (i = 0; i < KVM_NR_SPSR; i++) {
- reg.id = AARCH64_CORE_REG(spsr[i]);
- reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
- }
-
- el = arm_current_el(env);
- if (el > 0 && !is_a64(env)) {
- i = bank_number(env->uncached_cpsr & CPSR_M);
- env->spsr = env->banked_spsr[i];
- }
-
- /* Advanced SIMD and FP registers */
- for (i = 0; i < 32; i++) {
- uint64_t *q = aa64_vfp_qreg(env, i);
- reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
- reg.addr = (uintptr_t)q;
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
- if (ret) {
- return ret;
- } else {
-#ifdef HOST_WORDS_BIGENDIAN
- uint64_t t;
- t = q[0], q[0] = q[1], q[1] = t;
-#endif
- }
- }
-
- reg.addr = (uintptr_t)(&fpr);
- reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
- vfp_set_fpsr(env, fpr);
-
- reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
- if (ret) {
- return ret;
- }
- vfp_set_fpcr(env, fpr);
-
- if (!write_kvmstate_to_list(cpu)) {
- return EINVAL;
- }
- /* Note that it's OK to have registers which aren't in CPUState,
- * so we can ignore a failure return here.
- */
- write_list_to_cpustate(cpu);
-
- kvm_arm_sync_mpstate_to_qemu(cpu);
-
- /* TODO: other registers */
- return ret;
-}
-
-/* C6.6.29 BRK instruction */
-static const uint32_t brk_insn = 0xd4200000;
-
-int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
-{
- if (have_guest_debug) {
- if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
- cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
- return -EINVAL;
- }
- return 0;
- } else {
- error_report("guest debug not supported on this kernel");
- return -EINVAL;
- }
-}
-
-int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
-{
- static uint32_t brk;
-
- if (have_guest_debug) {
- if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
- brk != brk_insn ||
- cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
- return -EINVAL;
- }
- return 0;
- } else {
- error_report("guest debug not supported on this kernel");
- return -EINVAL;
- }
-}
-
-/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
- *
- * To minimise translating between kernel and user-space the kernel
- * ABI just provides user-space with the full exception syndrome
- * register value to be decoded in QEMU.
- */
-
-bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
-{
- int hsr_ec = debug_exit->hsr >> ARM_EL_EC_SHIFT;
- ARMCPU *cpu = ARM_CPU(cs);
- CPUClass *cc = CPU_GET_CLASS(cs);
- CPUARMState *env = &cpu->env;
-
- /* Ensure PC is synchronised */
- kvm_cpu_synchronize_state(cs);
-
- switch (hsr_ec) {
- case EC_SOFTWARESTEP:
- if (cs->singlestep_enabled) {
- return true;
- } else {
- /*
- * The kernel should have suppressed the guest's ability to
- * single step at this point so something has gone wrong.
- */
- error_report("%s: guest single-step while debugging unsupported"
- " (%"PRIx64", %"PRIx32")",
- __func__, env->pc, debug_exit->hsr);
- return false;
- }
- break;
- case EC_AA64_BKPT:
- if (kvm_find_sw_breakpoint(cs, env->pc)) {
- return true;
- }
- break;
- case EC_BREAKPOINT:
- if (find_hw_breakpoint(cs, env->pc)) {
- return true;
- }
- break;
- case EC_WATCHPOINT:
- {
- CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
- if (wp) {
- cs->watchpoint_hit = wp;
- return true;
- }
- break;
- }
- default:
- error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
- __func__, debug_exit->hsr, env->pc);
- }
-
- /* If we are not handling the debug exception it must belong to
- * the guest. Let's re-use the existing TCG interrupt code to set
- * everything up properly.
- */
- cs->exception_index = EXCP_BKPT;
- env->exception.syndrome = debug_exit->hsr;
- env->exception.vaddress = debug_exit->far;
- cc->do_interrupt(cs);
-
- return false;
-}