aboutsummaryrefslogtreecommitdiff
path: root/target/arm/kvm.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm/kvm.c')
-rw-r--r--target/arm/kvm.c1523
1 files changed, 1446 insertions, 77 deletions
diff --git a/target/arm/kvm.c b/target/arm/kvm.c
index 94b970bbf9..ab85d628a8 100644
--- a/target/arm/kvm.c
+++ b/target/arm/kvm.c
@@ -2,6 +2,8 @@
* ARM implementation of KVM hooks
*
* Copyright Christoffer Dall 2009-2010
+ * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
+ * Copyright Alex Bennée 2014, Linaro
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
@@ -13,13 +15,13 @@
#include <linux/kvm.h>
-#include "qemu-common.h"
#include "qemu/timer.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "qom/object.h"
#include "qapi/error.h"
#include "sysemu/sysemu.h"
+#include "sysemu/runstate.h"
#include "sysemu/kvm.h"
#include "sysemu/kvm_int.h"
#include "kvm_arm.h"
@@ -29,9 +31,14 @@
#include "hw/pci/pci.h"
#include "exec/memattrs.h"
#include "exec/address-spaces.h"
+#include "exec/gdbstub.h"
#include "hw/boards.h"
#include "hw/irq.h"
+#include "qapi/visitor.h"
#include "qemu/log.h"
+#include "hw/acpi/acpi.h"
+#include "hw/acpi/ghes.h"
+#include "target/arm/gtimer.h"
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
@@ -41,28 +48,54 @@ static bool cap_has_mp_state;
static bool cap_has_inject_serror_esr;
static bool cap_has_inject_ext_dabt;
+/**
+ * ARMHostCPUFeatures: information about the host CPU (identified
+ * by asking the host kernel)
+ */
+typedef struct ARMHostCPUFeatures {
+ ARMISARegisters isar;
+ uint64_t features;
+ uint32_t target;
+ const char *dtb_compatible;
+} ARMHostCPUFeatures;
+
static ARMHostCPUFeatures arm_host_cpu_features;
-int kvm_arm_vcpu_init(CPUState *cs)
+/**
+ * kvm_arm_vcpu_init:
+ * @cpu: ARMCPU
+ *
+ * Initialize (or reinitialize) the VCPU by invoking the
+ * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
+ * bitmask specified in the CPUState.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_arm_vcpu_init(ARMCPU *cpu)
{
- ARMCPU *cpu = ARM_CPU(cs);
struct kvm_vcpu_init init;
init.target = cpu->kvm_target;
memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
- return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
}
-int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
-{
- return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
-}
-
-void kvm_arm_init_serror_injection(CPUState *cs)
+/**
+ * kvm_arm_vcpu_finalize:
+ * @cpu: ARMCPU
+ * @feature: feature to finalize
+ *
+ * Finalizes the configuration of the specified VCPU feature by
+ * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
+ * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
+ * KVM's API documentation.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
{
- cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
- KVM_CAP_ARM_INJECT_SERROR_ESR);
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
}
bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
@@ -80,7 +113,9 @@ bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
if (max_vm_pa_size < 0) {
max_vm_pa_size = 0;
}
- vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
+ do {
+ vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
+ } while (vmfd == -1 && errno == EINTR);
if (vmfd < 0) {
goto err;
}
@@ -165,6 +200,260 @@ void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
}
}
+static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
+{
+ uint64_t ret;
+ struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
+ int err;
+
+ assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
+ err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
+ if (err < 0) {
+ return -1;
+ }
+ *pret = ret;
+ return 0;
+}
+
+static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
+{
+ struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
+
+ assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
+ return ioctl(fd, KVM_GET_ONE_REG, &idreg);
+}
+
+static bool kvm_arm_pauth_supported(void)
+{
+ return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
+ kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
+}
+
+static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
+{
+ /* Identify the feature bits corresponding to the host CPU, and
+ * fill out the ARMHostCPUClass fields accordingly. To do this
+ * we have to create a scratch VM, create a single CPU inside it,
+ * and then query that CPU for the relevant ID registers.
+ */
+ int fdarray[3];
+ bool sve_supported;
+ bool pmu_supported = false;
+ uint64_t features = 0;
+ int err;
+
+ /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
+ * we know these will only support creating one kind of guest CPU,
+ * which is its preferred CPU type. Fortunately these old kernels
+ * support only a very limited number of CPUs.
+ */
+ static const uint32_t cpus_to_try[] = {
+ KVM_ARM_TARGET_AEM_V8,
+ KVM_ARM_TARGET_FOUNDATION_V8,
+ KVM_ARM_TARGET_CORTEX_A57,
+ QEMU_KVM_ARM_TARGET_NONE
+ };
+ /*
+ * target = -1 informs kvm_arm_create_scratch_host_vcpu()
+ * to use the preferred target
+ */
+ struct kvm_vcpu_init init = { .target = -1, };
+
+ /*
+ * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
+ * which is otherwise RAZ.
+ */
+ sve_supported = kvm_arm_sve_supported();
+ if (sve_supported) {
+ init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
+ }
+
+ /*
+ * Ask for Pointer Authentication if supported, so that we get
+ * the unsanitized field values for AA64ISAR1_EL1.
+ */
+ if (kvm_arm_pauth_supported()) {
+ init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
+ 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
+ }
+
+ if (kvm_arm_pmu_supported()) {
+ init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
+ pmu_supported = true;
+ }
+
+ if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
+ return false;
+ }
+
+ ahcf->target = init.target;
+ ahcf->dtb_compatible = "arm,arm-v8";
+
+ err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
+ ARM64_SYS_REG(3, 0, 0, 4, 0));
+ if (unlikely(err < 0)) {
+ /*
+ * Before v4.15, the kernel only exposed a limited number of system
+ * registers, not including any of the interesting AArch64 ID regs.
+ * For the most part we could leave these fields as zero with minimal
+ * effect, since this does not affect the values seen by the guest.
+ *
+ * However, it could cause problems down the line for QEMU,
+ * so provide a minimal v8.0 default.
+ *
+ * ??? Could read MIDR and use knowledge from cpu64.c.
+ * ??? Could map a page of memory into our temp guest and
+ * run the tiniest of hand-crafted kernels to extract
+ * the values seen by the guest.
+ * ??? Either of these sounds like too much effort just
+ * to work around running a modern host kernel.
+ */
+ ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
+ err = 0;
+ } else {
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
+ ARM64_SYS_REG(3, 0, 0, 4, 1));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
+ ARM64_SYS_REG(3, 0, 0, 4, 5));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
+ ARM64_SYS_REG(3, 0, 0, 5, 0));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
+ ARM64_SYS_REG(3, 0, 0, 5, 1));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
+ ARM64_SYS_REG(3, 0, 0, 6, 0));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
+ ARM64_SYS_REG(3, 0, 0, 6, 1));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
+ ARM64_SYS_REG(3, 0, 0, 6, 2));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
+ ARM64_SYS_REG(3, 0, 0, 7, 0));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
+ ARM64_SYS_REG(3, 0, 0, 7, 1));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
+ ARM64_SYS_REG(3, 0, 0, 7, 2));
+
+ /*
+ * Note that if AArch32 support is not present in the host,
+ * the AArch32 sysregs are present to be read, but will
+ * return UNKNOWN values. This is neither better nor worse
+ * than skipping the reads and leaving 0, as we must avoid
+ * considering the values in every case.
+ */
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
+ ARM64_SYS_REG(3, 0, 0, 1, 0));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
+ ARM64_SYS_REG(3, 0, 0, 1, 1));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
+ ARM64_SYS_REG(3, 0, 0, 1, 2));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
+ ARM64_SYS_REG(3, 0, 0, 1, 4));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
+ ARM64_SYS_REG(3, 0, 0, 1, 5));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
+ ARM64_SYS_REG(3, 0, 0, 1, 6));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
+ ARM64_SYS_REG(3, 0, 0, 1, 7));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
+ ARM64_SYS_REG(3, 0, 0, 2, 0));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
+ ARM64_SYS_REG(3, 0, 0, 2, 1));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
+ ARM64_SYS_REG(3, 0, 0, 2, 2));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
+ ARM64_SYS_REG(3, 0, 0, 2, 3));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
+ ARM64_SYS_REG(3, 0, 0, 2, 4));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
+ ARM64_SYS_REG(3, 0, 0, 2, 5));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
+ ARM64_SYS_REG(3, 0, 0, 2, 6));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
+ ARM64_SYS_REG(3, 0, 0, 2, 7));
+
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
+ ARM64_SYS_REG(3, 0, 0, 3, 0));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
+ ARM64_SYS_REG(3, 0, 0, 3, 1));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
+ ARM64_SYS_REG(3, 0, 0, 3, 2));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
+ ARM64_SYS_REG(3, 0, 0, 3, 4));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
+ ARM64_SYS_REG(3, 0, 0, 3, 5));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
+ ARM64_SYS_REG(3, 0, 0, 3, 6));
+
+ /*
+ * DBGDIDR is a bit complicated because the kernel doesn't
+ * provide an accessor for it in 64-bit mode, which is what this
+ * scratch VM is in, and there's no architected "64-bit sysreg
+ * which reads the same as the 32-bit register" the way there is
+ * for other ID registers. Instead we synthesize a value from the
+ * AArch64 ID_AA64DFR0, the same way the kernel code in
+ * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
+ * We only do this if the CPU supports AArch32 at EL1.
+ */
+ if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
+ int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
+ int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
+ int ctx_cmps =
+ FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
+ int version = 6; /* ARMv8 debug architecture */
+ bool has_el3 =
+ !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
+ uint32_t dbgdidr = 0;
+
+ dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
+ dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
+ dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
+ dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
+ dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
+ dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
+ dbgdidr |= (1 << 15); /* RES1 bit */
+ ahcf->isar.dbgdidr = dbgdidr;
+ }
+
+ if (pmu_supported) {
+ /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
+ ARM64_SYS_REG(3, 3, 9, 12, 0));
+ }
+
+ if (sve_supported) {
+ /*
+ * There is a range of kernels between kernel commit 73433762fcae
+ * and f81cb2c3ad41 which have a bug where the kernel doesn't
+ * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
+ * enabled SVE support, which resulted in an error rather than RAZ.
+ * So only read the register if we set KVM_ARM_VCPU_SVE above.
+ */
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
+ ARM64_SYS_REG(3, 0, 0, 4, 4));
+ }
+ }
+
+ kvm_arm_destroy_scratch_host_vcpu(fdarray);
+
+ if (err < 0) {
+ return false;
+ }
+
+ /*
+ * We can assume any KVM supporting CPU is at least a v8
+ * with VFPv4+Neon; this in turn implies most of the other
+ * feature bits.
+ */
+ features |= 1ULL << ARM_FEATURE_V8;
+ features |= 1ULL << ARM_FEATURE_NEON;
+ features |= 1ULL << ARM_FEATURE_AARCH64;
+ features |= 1ULL << ARM_FEATURE_PMU;
+ features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
+
+ ahcf->features = features;
+
+ return true;
+}
+
void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
{
CPUARMState *env = &cpu->env;
@@ -208,10 +497,10 @@ static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
}
/* KVM VCPU properties should be prefixed with "kvm-". */
-void kvm_arm_add_vcpu_properties(Object *obj)
+void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
{
- ARMCPU *cpu = ARM_CPU(obj);
CPUARMState *env = &cpu->env;
+ Object *obj = OBJECT(cpu);
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
cpu->kvm_adjvtime = true;
@@ -246,6 +535,13 @@ int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
return ret > 0 ? ret : 40;
}
+int kvm_arch_get_default_type(MachineState *ms)
+{
+ bool fixed_ipa;
+ int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
+ return fixed_ipa ? 0 : size;
+}
+
int kvm_arch_init(MachineState *ms, KVMState *s)
{
int ret = 0;
@@ -262,6 +558,10 @@ int kvm_arch_init(MachineState *ms, KVMState *s)
cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
+ /* Check whether user space can specify guest syndrome value */
+ cap_has_inject_serror_esr =
+ kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
+
if (ms->smp.cpus > 256 &&
!kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
error_report("Using more than 256 vcpus requires a host kernel "
@@ -279,6 +579,34 @@ int kvm_arch_init(MachineState *ms, KVMState *s)
}
}
+ if (s->kvm_eager_split_size) {
+ uint32_t sizes;
+
+ sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
+ if (!sizes) {
+ s->kvm_eager_split_size = 0;
+ warn_report("Eager Page Split support not available");
+ } else if (!(s->kvm_eager_split_size & sizes)) {
+ error_report("Eager Page Split requested chunk size not valid");
+ ret = -EINVAL;
+ } else {
+ ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
+ s->kvm_eager_split_size);
+ if (ret < 0) {
+ error_report("Enabling of Eager Page Split failed: %s",
+ strerror(-ret));
+ }
+ }
+ }
+
+ max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
+ hw_watchpoints = g_array_sized_new(true, true,
+ sizeof(HWWatchpoint), max_hw_wps);
+
+ max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
+ hw_breakpoints = g_array_sized_new(true, true,
+ sizeof(HWBreakpoint), max_hw_bps);
+
return ret;
}
@@ -335,8 +663,10 @@ static void kvm_arm_devlistener_del(MemoryListener *listener,
}
static MemoryListener devlistener = {
+ .name = "kvm-arm",
.region_add = kvm_arm_devlistener_add,
.region_del = kvm_arm_devlistener_del,
+ .priority = MEMORY_LISTENER_PRIORITY_MIN,
};
static void kvm_arm_set_device_addr(KVMDevice *kd)
@@ -436,11 +766,36 @@ static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
return &cpu->cpreg_values[res - cpu->cpreg_indexes];
}
-/* Initialize the ARMCPU cpreg list according to the kernel's
+/**
+ * kvm_arm_reg_syncs_via_cpreg_list:
+ * @regidx: KVM register index
+ *
+ * Return true if this KVM register should be synchronized via the
+ * cpreg list of arbitrary system registers, false if it is synchronized
+ * by hand using code in kvm_arch_get/put_registers().
+ */
+static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
+{
+ switch (regidx & KVM_REG_ARM_COPROC_MASK) {
+ case KVM_REG_ARM_CORE:
+ case KVM_REG_ARM64_SVE:
+ return false;
+ default:
+ return true;
+ }
+}
+
+/**
+ * kvm_arm_init_cpreg_list:
+ * @cpu: ARMCPU
+ *
+ * Initialize the ARMCPU cpreg list according to the kernel's
* definition of what CPU registers it knows about (and throw away
* the previous TCG-created cpreg list).
+ *
+ * Returns: 0 if success, else < 0 error code
*/
-int kvm_arm_init_cpreg_list(ARMCPU *cpu)
+static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
{
struct kvm_reg_list rl;
struct kvm_reg_list *rlp;
@@ -513,6 +868,28 @@ out:
return ret;
}
+/**
+ * kvm_arm_cpreg_level:
+ * @regidx: KVM register index
+ *
+ * Return the level of this coprocessor/system register. Return value is
+ * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
+ */
+static int kvm_arm_cpreg_level(uint64_t regidx)
+{
+ /*
+ * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
+ * If a register should be written less often, you must add it here
+ * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
+ */
+ switch (regidx) {
+ case KVM_REG_ARM_TIMER_CNT:
+ case KVM_REG_ARM_PTIMER_CNT:
+ return KVM_PUT_FULL_STATE;
+ }
+ return KVM_PUT_RUNTIME_STATE;
+}
+
bool write_kvmstate_to_list(ARMCPU *cpu)
{
CPUState *cs = CPU(cpu);
@@ -520,27 +897,22 @@ bool write_kvmstate_to_list(ARMCPU *cpu)
bool ok = true;
for (i = 0; i < cpu->cpreg_array_len; i++) {
- struct kvm_one_reg r;
uint64_t regidx = cpu->cpreg_indexes[i];
uint32_t v32;
int ret;
- r.id = regidx;
-
switch (regidx & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U32:
- r.addr = (uintptr_t)&v32;
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
+ ret = kvm_get_one_reg(cs, regidx, &v32);
if (!ret) {
cpu->cpreg_values[i] = v32;
}
break;
case KVM_REG_SIZE_U64:
- r.addr = (uintptr_t)(cpu->cpreg_values + i);
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
+ ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
break;
default:
- abort();
+ g_assert_not_reached();
}
if (ret) {
ok = false;
@@ -556,7 +928,6 @@ bool write_list_to_kvmstate(ARMCPU *cpu, int level)
bool ok = true;
for (i = 0; i < cpu->cpreg_array_len; i++) {
- struct kvm_one_reg r;
uint64_t regidx = cpu->cpreg_indexes[i];
uint32_t v32;
int ret;
@@ -565,19 +936,17 @@ bool write_list_to_kvmstate(ARMCPU *cpu, int level)
continue;
}
- r.id = regidx;
switch (regidx & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U32:
v32 = cpu->cpreg_values[i];
- r.addr = (uintptr_t)&v32;
+ ret = kvm_set_one_reg(cs, regidx, &v32);
break;
case KVM_REG_SIZE_U64:
- r.addr = (uintptr_t)(cpu->cpreg_values + i);
+ ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
break;
default:
- abort();
+ g_assert_not_reached();
}
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
if (ret) {
/* We might fail for "unknown register" and also for
* "you tried to set a register which is constant with
@@ -613,7 +982,7 @@ void kvm_arm_reset_vcpu(ARMCPU *cpu)
/* Re-init VCPU so that all registers are set to
* their respective reset values.
*/
- ret = kvm_arm_vcpu_init(CPU(cpu));
+ ret = kvm_arm_vcpu_init(cpu);
if (ret < 0) {
fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
abort();
@@ -635,58 +1004,50 @@ void kvm_arm_reset_vcpu(ARMCPU *cpu)
/*
* Update KVM's MP_STATE based on what QEMU thinks it is
*/
-int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
+static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
{
if (cap_has_mp_state) {
struct kvm_mp_state mp_state = {
.mp_state = (cpu->power_state == PSCI_OFF) ?
KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
};
- int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
- if (ret) {
- fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
- __func__, ret, strerror(-ret));
- return -1;
- }
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
}
-
return 0;
}
/*
* Sync the KVM MP_STATE into QEMU
*/
-int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
+static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
{
if (cap_has_mp_state) {
struct kvm_mp_state mp_state;
int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
if (ret) {
- fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
- __func__, ret, strerror(-ret));
- abort();
+ return ret;
}
cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
PSCI_OFF : PSCI_ON;
}
-
return 0;
}
-void kvm_arm_get_virtual_time(CPUState *cs)
+/**
+ * kvm_arm_get_virtual_time:
+ * @cpu: ARMCPU
+ *
+ * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
+ */
+static void kvm_arm_get_virtual_time(ARMCPU *cpu)
{
- ARMCPU *cpu = ARM_CPU(cs);
- struct kvm_one_reg reg = {
- .id = KVM_REG_ARM_TIMER_CNT,
- .addr = (uintptr_t)&cpu->kvm_vtime,
- };
int ret;
if (cpu->kvm_vtime_dirty) {
return;
}
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+ ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
if (ret) {
error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
abort();
@@ -695,20 +1056,21 @@ void kvm_arm_get_virtual_time(CPUState *cs)
cpu->kvm_vtime_dirty = true;
}
-void kvm_arm_put_virtual_time(CPUState *cs)
+/**
+ * kvm_arm_put_virtual_time:
+ * @cpu: ARMCPU
+ *
+ * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
+ */
+static void kvm_arm_put_virtual_time(ARMCPU *cpu)
{
- ARMCPU *cpu = ARM_CPU(cs);
- struct kvm_one_reg reg = {
- .id = KVM_REG_ARM_TIMER_CNT,
- .addr = (uintptr_t)&cpu->kvm_vtime,
- };
int ret;
if (!cpu->kvm_vtime_dirty) {
return;
}
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+ ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
if (ret) {
error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
abort();
@@ -717,7 +1079,15 @@ void kvm_arm_put_virtual_time(CPUState *cs)
cpu->kvm_vtime_dirty = false;
}
-int kvm_put_vcpu_events(ARMCPU *cpu)
+/**
+ * kvm_put_vcpu_events:
+ * @cpu: ARMCPU
+ *
+ * Put VCPU related state to kvm.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_put_vcpu_events(ARMCPU *cpu)
{
CPUARMState *env = &cpu->env;
struct kvm_vcpu_events events;
@@ -746,7 +1116,15 @@ int kvm_put_vcpu_events(ARMCPU *cpu)
return ret;
}
-int kvm_get_vcpu_events(ARMCPU *cpu)
+/**
+ * kvm_get_vcpu_events:
+ * @cpu: ARMCPU
+ *
+ * Get VCPU related state from kvm.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_get_vcpu_events(ARMCPU *cpu)
{
CPUARMState *env = &cpu->env;
struct kvm_vcpu_events events;
@@ -770,6 +1148,63 @@ int kvm_get_vcpu_events(ARMCPU *cpu)
return 0;
}
+#define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
+#define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
+
+/*
+ * ESR_EL1
+ * ISS encoding
+ * AARCH64: DFSC, bits [5:0]
+ * AARCH32:
+ * TTBCR.EAE == 0
+ * FS[4] - DFSR[10]
+ * FS[3:0] - DFSR[3:0]
+ * TTBCR.EAE == 1
+ * FS, bits [5:0]
+ */
+#define ESR_DFSC(aarch64, lpae, v) \
+ ((aarch64 || (lpae)) ? ((v) & 0x3F) \
+ : (((v) >> 6) | ((v) & 0x1F)))
+
+#define ESR_DFSC_EXTABT(aarch64, lpae) \
+ ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
+
+/**
+ * kvm_arm_verify_ext_dabt_pending:
+ * @cpu: ARMCPU
+ *
+ * Verify the fault status code wrt the Ext DABT injection
+ *
+ * Returns: true if the fault status code is as expected, false otherwise
+ */
+static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
+{
+ CPUState *cs = CPU(cpu);
+ uint64_t dfsr_val;
+
+ if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
+ CPUARMState *env = &cpu->env;
+ int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
+ int lpae = 0;
+
+ if (!aarch64_mode) {
+ uint64_t ttbcr;
+
+ if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
+ lpae = arm_feature(env, ARM_FEATURE_LPAE)
+ && (ttbcr & TTBCR_EAE);
+ }
+ }
+ /*
+ * The verification here is based on the DFSC bits
+ * of the ESR_EL1 reg only
+ */
+ return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
+ ESR_DFSC_EXTABT(aarch64_mode, lpae));
+ }
+ return false;
+}
+
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
ARMCPU *cpu = ARM_CPU(cs);
@@ -784,7 +1219,7 @@ void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
* an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
*/
if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
- unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
+ unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
error_report("Data abort exception with no valid ISS generated by "
"guest memory access. KVM unable to emulate faulting "
@@ -816,7 +1251,7 @@ MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
if (run->s.regs.device_irq_level != cpu->device_irq_level) {
switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
- qemu_mutex_lock_iothread();
+ bql_lock();
if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
@@ -845,41 +1280,39 @@ MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
/* We also mark unknown levels as processed to not waste cycles */
cpu->device_irq_level = run->s.regs.device_irq_level;
- qemu_mutex_unlock_iothread();
+ bql_unlock();
}
return MEMTXATTRS_UNSPECIFIED;
}
-void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
+static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
{
- CPUState *cs = opaque;
- ARMCPU *cpu = ARM_CPU(cs);
+ ARMCPU *cpu = opaque;
if (running) {
if (cpu->kvm_adjvtime) {
- kvm_arm_put_virtual_time(cs);
+ kvm_arm_put_virtual_time(cpu);
}
} else {
if (cpu->kvm_adjvtime) {
- kvm_arm_get_virtual_time(cs);
+ kvm_arm_get_virtual_time(cpu);
}
}
}
/**
* kvm_arm_handle_dabt_nisv:
- * @cs: CPUState
+ * @cpu: ARMCPU
* @esr_iss: ISS encoding (limited) for the exception from Data Abort
* ISV bit set to '0b0' -> no valid instruction syndrome
* @fault_ipa: faulting address for the synchronous data abort
*
* Returns: 0 if the exception has been handled, < 0 otherwise
*/
-static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
+static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
uint64_t fault_ipa)
{
- ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/*
* Request KVM to inject the external data abort into the guest
@@ -895,7 +1328,7 @@ static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
*/
events.exception.ext_dabt_pending = 1;
/* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
- if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
+ if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
env->ext_dabt_raised = 1;
return 0;
}
@@ -908,19 +1341,97 @@ static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
return -1;
}
+/**
+ * kvm_arm_handle_debug:
+ * @cpu: ARMCPU
+ * @debug_exit: debug part of the KVM exit structure
+ *
+ * Returns: TRUE if the debug exception was handled.
+ *
+ * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
+ *
+ * To minimise translating between kernel and user-space the kernel
+ * ABI just provides user-space with the full exception syndrome
+ * register value to be decoded in QEMU.
+ */
+static bool kvm_arm_handle_debug(ARMCPU *cpu,
+ struct kvm_debug_exit_arch *debug_exit)
+{
+ int hsr_ec = syn_get_ec(debug_exit->hsr);
+ CPUState *cs = CPU(cpu);
+ CPUARMState *env = &cpu->env;
+
+ /* Ensure PC is synchronised */
+ kvm_cpu_synchronize_state(cs);
+
+ switch (hsr_ec) {
+ case EC_SOFTWARESTEP:
+ if (cs->singlestep_enabled) {
+ return true;
+ } else {
+ /*
+ * The kernel should have suppressed the guest's ability to
+ * single step at this point so something has gone wrong.
+ */
+ error_report("%s: guest single-step while debugging unsupported"
+ " (%"PRIx64", %"PRIx32")",
+ __func__, env->pc, debug_exit->hsr);
+ return false;
+ }
+ break;
+ case EC_AA64_BKPT:
+ if (kvm_find_sw_breakpoint(cs, env->pc)) {
+ return true;
+ }
+ break;
+ case EC_BREAKPOINT:
+ if (find_hw_breakpoint(cs, env->pc)) {
+ return true;
+ }
+ break;
+ case EC_WATCHPOINT:
+ {
+ CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
+ if (wp) {
+ cs->watchpoint_hit = wp;
+ return true;
+ }
+ break;
+ }
+ default:
+ error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
+ __func__, debug_exit->hsr, env->pc);
+ }
+
+ /* If we are not handling the debug exception it must belong to
+ * the guest. Let's re-use the existing TCG interrupt code to set
+ * everything up properly.
+ */
+ cs->exception_index = EXCP_BKPT;
+ env->exception.syndrome = debug_exit->hsr;
+ env->exception.vaddress = debug_exit->far;
+ env->exception.target_el = 1;
+ bql_lock();
+ arm_cpu_do_interrupt(cs);
+ bql_unlock();
+
+ return false;
+}
+
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
+ ARMCPU *cpu = ARM_CPU(cs);
int ret = 0;
switch (run->exit_reason) {
case KVM_EXIT_DEBUG:
- if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
+ if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
ret = EXCP_DEBUG;
} /* otherwise return to guest */
break;
case KVM_EXIT_ARM_NISV:
/* External DABT with no valid iss to decode */
- ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
+ ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
run->arm_nisv.fault_ipa);
break;
default:
@@ -941,12 +1452,47 @@ int kvm_arch_process_async_events(CPUState *cs)
return 0;
}
+/**
+ * kvm_arm_hw_debug_active:
+ * @cpu: ARMCPU
+ *
+ * Return: TRUE if any hardware breakpoints in use.
+ */
+static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
+{
+ return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
+}
+
+/**
+ * kvm_arm_copy_hw_debug_data:
+ * @ptr: kvm_guest_debug_arch structure
+ *
+ * Copy the architecture specific debug registers into the
+ * kvm_guest_debug ioctl structure.
+ */
+static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
+{
+ int i;
+ memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
+
+ for (i = 0; i < max_hw_wps; i++) {
+ HWWatchpoint *wp = get_hw_wp(i);
+ ptr->dbg_wcr[i] = wp->wcr;
+ ptr->dbg_wvr[i] = wp->wvr;
+ }
+ for (i = 0; i < max_hw_bps; i++) {
+ HWBreakpoint *bp = get_hw_bp(i);
+ ptr->dbg_bcr[i] = bp->bcr;
+ ptr->dbg_bvr[i] = bp->bvr;
+ }
+}
+
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
if (kvm_sw_breakpoints_active(cs)) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
}
- if (kvm_arm_hw_debug_active(cs)) {
+ if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
kvm_arm_copy_hw_debug_data(&dbg->arch);
}
@@ -959,7 +1505,7 @@ void kvm_arch_init_irq_routing(KVMState *s)
int kvm_arch_irqchip_create(KVMState *s)
{
if (kvm_kernel_irqchip_split()) {
- perror("-machine kernel_irqchip=split is not supported on ARM.");
+ error_report("-machine kernel_irqchip=split is not supported on ARM.");
exit(1);
}
@@ -1056,3 +1602,826 @@ bool kvm_arch_cpu_check_are_resettable(void)
{
return true;
}
+
+static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
+ const char *name, void *opaque,
+ Error **errp)
+{
+ KVMState *s = KVM_STATE(obj);
+ uint64_t value = s->kvm_eager_split_size;
+
+ visit_type_size(v, name, &value, errp);
+}
+
+static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
+ const char *name, void *opaque,
+ Error **errp)
+{
+ KVMState *s = KVM_STATE(obj);
+ uint64_t value;
+
+ if (s->fd != -1) {
+ error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
+ return;
+ }
+
+ if (!visit_type_size(v, name, &value, errp)) {
+ return;
+ }
+
+ if (value && !is_power_of_2(value)) {
+ error_setg(errp, "early-split-size must be a power of two");
+ return;
+ }
+
+ s->kvm_eager_split_size = value;
+}
+
+void kvm_arch_accel_class_init(ObjectClass *oc)
+{
+ object_class_property_add(oc, "eager-split-size", "size",
+ kvm_arch_get_eager_split_size,
+ kvm_arch_set_eager_split_size, NULL, NULL);
+
+ object_class_property_set_description(oc, "eager-split-size",
+ "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
+}
+
+int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
+{
+ switch (type) {
+ case GDB_BREAKPOINT_HW:
+ return insert_hw_breakpoint(addr);
+ break;
+ case GDB_WATCHPOINT_READ:
+ case GDB_WATCHPOINT_WRITE:
+ case GDB_WATCHPOINT_ACCESS:
+ return insert_hw_watchpoint(addr, len, type);
+ default:
+ return -ENOSYS;
+ }
+}
+
+int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
+{
+ switch (type) {
+ case GDB_BREAKPOINT_HW:
+ return delete_hw_breakpoint(addr);
+ case GDB_WATCHPOINT_READ:
+ case GDB_WATCHPOINT_WRITE:
+ case GDB_WATCHPOINT_ACCESS:
+ return delete_hw_watchpoint(addr, len, type);
+ default:
+ return -ENOSYS;
+ }
+}
+
+void kvm_arch_remove_all_hw_breakpoints(void)
+{
+ if (cur_hw_wps > 0) {
+ g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
+ }
+ if (cur_hw_bps > 0) {
+ g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
+ }
+}
+
+static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
+ const char *name)
+{
+ int err;
+
+ err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
+ if (err != 0) {
+ error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
+ return false;
+ }
+
+ err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
+ if (err != 0) {
+ error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
+ return false;
+ }
+
+ return true;
+}
+
+void kvm_arm_pmu_init(ARMCPU *cpu)
+{
+ struct kvm_device_attr attr = {
+ .group = KVM_ARM_VCPU_PMU_V3_CTRL,
+ .attr = KVM_ARM_VCPU_PMU_V3_INIT,
+ };
+
+ if (!cpu->has_pmu) {
+ return;
+ }
+ if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
+ error_report("failed to init PMU");
+ abort();
+ }
+}
+
+void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
+{
+ struct kvm_device_attr attr = {
+ .group = KVM_ARM_VCPU_PMU_V3_CTRL,
+ .addr = (intptr_t)&irq,
+ .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
+ };
+
+ if (!cpu->has_pmu) {
+ return;
+ }
+ if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
+ error_report("failed to set irq for PMU");
+ abort();
+ }
+}
+
+void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
+{
+ struct kvm_device_attr attr = {
+ .group = KVM_ARM_VCPU_PVTIME_CTRL,
+ .attr = KVM_ARM_VCPU_PVTIME_IPA,
+ .addr = (uint64_t)&ipa,
+ };
+
+ if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
+ return;
+ }
+ if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
+ error_report("failed to init PVTIME IPA");
+ abort();
+ }
+}
+
+void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
+{
+ bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
+
+ if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
+ if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+ cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
+ } else {
+ cpu->kvm_steal_time = ON_OFF_AUTO_ON;
+ }
+ } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
+ if (!has_steal_time) {
+ error_setg(errp, "'kvm-steal-time' cannot be enabled "
+ "on this host");
+ return;
+ } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+ /*
+ * DEN0057A chapter 2 says "This specification only covers
+ * systems in which the Execution state of the hypervisor
+ * as well as EL1 of virtual machines is AArch64.". And,
+ * to ensure that, the smc/hvc calls are only specified as
+ * smc64/hvc64.
+ */
+ error_setg(errp, "'kvm-steal-time' cannot be enabled "
+ "for AArch32 guests");
+ return;
+ }
+ }
+}
+
+bool kvm_arm_aarch32_supported(void)
+{
+ return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
+}
+
+bool kvm_arm_sve_supported(void)
+{
+ return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
+}
+
+QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
+
+uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
+{
+ /* Only call this function if kvm_arm_sve_supported() returns true. */
+ static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
+ static bool probed;
+ uint32_t vq = 0;
+ int i;
+
+ /*
+ * KVM ensures all host CPUs support the same set of vector lengths.
+ * So we only need to create the scratch VCPUs once and then cache
+ * the results.
+ */
+ if (!probed) {
+ struct kvm_vcpu_init init = {
+ .target = -1,
+ .features[0] = (1 << KVM_ARM_VCPU_SVE),
+ };
+ struct kvm_one_reg reg = {
+ .id = KVM_REG_ARM64_SVE_VLS,
+ .addr = (uint64_t)&vls[0],
+ };
+ int fdarray[3], ret;
+
+ probed = true;
+
+ if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
+ error_report("failed to create scratch VCPU with SVE enabled");
+ abort();
+ }
+ ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
+ kvm_arm_destroy_scratch_host_vcpu(fdarray);
+ if (ret) {
+ error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
+ strerror(errno));
+ abort();
+ }
+
+ for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
+ if (vls[i]) {
+ vq = 64 - clz64(vls[i]) + i * 64;
+ break;
+ }
+ }
+ if (vq > ARM_MAX_VQ) {
+ warn_report("KVM supports vector lengths larger than "
+ "QEMU can enable");
+ vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
+ }
+ }
+
+ return vls[0];
+}
+
+static int kvm_arm_sve_set_vls(ARMCPU *cpu)
+{
+ uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
+
+ assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
+
+ return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
+}
+
+#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
+
+int kvm_arch_init_vcpu(CPUState *cs)
+{
+ int ret;
+ uint64_t mpidr;
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+ uint64_t psciver;
+
+ if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
+ !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
+ error_report("KVM is not supported for this guest CPU type");
+ return -EINVAL;
+ }
+
+ qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
+
+ /* Determine init features for this CPU */
+ memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
+ if (cs->start_powered_off) {
+ cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
+ }
+ if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
+ cpu->psci_version = QEMU_PSCI_VERSION_0_2;
+ cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
+ }
+ if (!arm_feature(env, ARM_FEATURE_AARCH64)) {
+ cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
+ }
+ if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
+ cpu->has_pmu = false;
+ }
+ if (cpu->has_pmu) {
+ cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
+ } else {
+ env->features &= ~(1ULL << ARM_FEATURE_PMU);
+ }
+ if (cpu_isar_feature(aa64_sve, cpu)) {
+ assert(kvm_arm_sve_supported());
+ cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
+ }
+ if (cpu_isar_feature(aa64_pauth, cpu)) {
+ cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
+ 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
+ }
+
+ /* Do KVM_ARM_VCPU_INIT ioctl */
+ ret = kvm_arm_vcpu_init(cpu);
+ if (ret) {
+ return ret;
+ }
+
+ if (cpu_isar_feature(aa64_sve, cpu)) {
+ ret = kvm_arm_sve_set_vls(cpu);
+ if (ret) {
+ return ret;
+ }
+ ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ /*
+ * KVM reports the exact PSCI version it is implementing via a
+ * special sysreg. If it is present, use its contents to determine
+ * what to report to the guest in the dtb (it is the PSCI version,
+ * in the same 15-bits major 16-bits minor format that PSCI_VERSION
+ * returns).
+ */
+ if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
+ cpu->psci_version = psciver;
+ }
+
+ /*
+ * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
+ * Currently KVM has its own idea about MPIDR assignment, so we
+ * override our defaults with what we get from KVM.
+ */
+ ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
+ if (ret) {
+ return ret;
+ }
+ cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
+
+ return kvm_arm_init_cpreg_list(cpu);
+}
+
+int kvm_arch_destroy_vcpu(CPUState *cs)
+{
+ return 0;
+}
+
+/* Callers must hold the iothread mutex lock */
+static void kvm_inject_arm_sea(CPUState *c)
+{
+ ARMCPU *cpu = ARM_CPU(c);
+ CPUARMState *env = &cpu->env;
+ uint32_t esr;
+ bool same_el;
+
+ c->exception_index = EXCP_DATA_ABORT;
+ env->exception.target_el = 1;
+
+ /*
+ * Set the DFSC to synchronous external abort and set FnV to not valid,
+ * this will tell guest the FAR_ELx is UNKNOWN for this abort.
+ */
+ same_el = arm_current_el(env) == env->exception.target_el;
+ esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
+
+ env->exception.syndrome = esr;
+
+ arm_cpu_do_interrupt(c);
+}
+
+#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
+ KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
+ KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
+ KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+static int kvm_arch_put_fpsimd(CPUState *cs)
+{
+ CPUARMState *env = &ARM_CPU(cs)->env;
+ int i, ret;
+
+ for (i = 0; i < 32; i++) {
+ uint64_t *q = aa64_vfp_qreg(env, i);
+#if HOST_BIG_ENDIAN
+ uint64_t fp_val[2] = { q[1], q[0] };
+ ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
+ fp_val);
+#else
+ ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
+#endif
+ if (ret) {
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_put_sve(CPUState *cs)
+{
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+ uint64_t tmp[ARM_MAX_VQ * 2];
+ uint64_t *r;
+ int n, ret;
+
+ for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+ r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
+ ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+ r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
+ DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+ ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
+ DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+ ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
+ if (ret) {
+ return ret;
+ }
+
+ return 0;
+}
+
+int kvm_arch_put_registers(CPUState *cs, int level)
+{
+ uint64_t val;
+ uint32_t fpr;
+ int i, ret;
+ unsigned int el;
+
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+
+ /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
+ * AArch64 registers before pushing them out to 64-bit KVM.
+ */
+ if (!is_a64(env)) {
+ aarch64_sync_32_to_64(env);
+ }
+
+ for (i = 0; i < 31; i++) {
+ ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
+ &env->xregs[i]);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+ * QEMU side we keep the current SP in xregs[31] as well.
+ */
+ aarch64_save_sp(env, 1);
+
+ ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
+ if (ret) {
+ return ret;
+ }
+
+ ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
+ if (ret) {
+ return ret;
+ }
+
+ /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
+ if (is_a64(env)) {
+ val = pstate_read(env);
+ } else {
+ val = cpsr_read(env);
+ }
+ ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
+ if (ret) {
+ return ret;
+ }
+
+ ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
+ if (ret) {
+ return ret;
+ }
+
+ ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
+ if (ret) {
+ return ret;
+ }
+
+ /* Saved Program State Registers
+ *
+ * Before we restore from the banked_spsr[] array we need to
+ * ensure that any modifications to env->spsr are correctly
+ * reflected in the banks.
+ */
+ el = arm_current_el(env);
+ if (el > 0 && !is_a64(env)) {
+ i = bank_number(env->uncached_cpsr & CPSR_M);
+ env->banked_spsr[i] = env->spsr;
+ }
+
+ /* KVM 0-4 map to QEMU banks 1-5 */
+ for (i = 0; i < KVM_NR_SPSR; i++) {
+ ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
+ &env->banked_spsr[i + 1]);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ if (cpu_isar_feature(aa64_sve, cpu)) {
+ ret = kvm_arch_put_sve(cs);
+ } else {
+ ret = kvm_arch_put_fpsimd(cs);
+ }
+ if (ret) {
+ return ret;
+ }
+
+ fpr = vfp_get_fpsr(env);
+ ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
+ if (ret) {
+ return ret;
+ }
+
+ fpr = vfp_get_fpcr(env);
+ ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
+ if (ret) {
+ return ret;
+ }
+
+ write_cpustate_to_list(cpu, true);
+
+ if (!write_list_to_kvmstate(cpu, level)) {
+ return -EINVAL;
+ }
+
+ /*
+ * Setting VCPU events should be triggered after syncing the registers
+ * to avoid overwriting potential changes made by KVM upon calling
+ * KVM_SET_VCPU_EVENTS ioctl
+ */
+ ret = kvm_put_vcpu_events(cpu);
+ if (ret) {
+ return ret;
+ }
+
+ return kvm_arm_sync_mpstate_to_kvm(cpu);
+}
+
+static int kvm_arch_get_fpsimd(CPUState *cs)
+{
+ CPUARMState *env = &ARM_CPU(cs)->env;
+ int i, ret;
+
+ for (i = 0; i < 32; i++) {
+ uint64_t *q = aa64_vfp_qreg(env, i);
+ ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
+ if (ret) {
+ return ret;
+ } else {
+#if HOST_BIG_ENDIAN
+ uint64_t t;
+ t = q[0], q[0] = q[1], q[1] = t;
+#endif
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_get_sve(CPUState *cs)
+{
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+ uint64_t *r;
+ int n, ret;
+
+ for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+ r = &env->vfp.zregs[n].d[0];
+ ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
+ if (ret) {
+ return ret;
+ }
+ sve_bswap64(r, r, cpu->sve_max_vq * 2);
+ }
+
+ for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+ r = &env->vfp.pregs[n].p[0];
+ ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
+ if (ret) {
+ return ret;
+ }
+ sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+ }
+
+ r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
+ ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
+ if (ret) {
+ return ret;
+ }
+ sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+
+ return 0;
+}
+
+int kvm_arch_get_registers(CPUState *cs)
+{
+ uint64_t val;
+ unsigned int el;
+ uint32_t fpr;
+ int i, ret;
+
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+
+ for (i = 0; i < 31; i++) {
+ ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
+ &env->xregs[i]);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
+ if (ret) {
+ return ret;
+ }
+
+ ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
+ if (ret) {
+ return ret;
+ }
+
+ ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
+ if (ret) {
+ return ret;
+ }
+
+ env->aarch64 = ((val & PSTATE_nRW) == 0);
+ if (is_a64(env)) {
+ pstate_write(env, val);
+ } else {
+ cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
+ }
+
+ /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+ * QEMU side we keep the current SP in xregs[31] as well.
+ */
+ aarch64_restore_sp(env, 1);
+
+ ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
+ if (ret) {
+ return ret;
+ }
+
+ /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
+ * incoming AArch64 regs received from 64-bit KVM.
+ * We must perform this after all of the registers have been acquired from
+ * the kernel.
+ */
+ if (!is_a64(env)) {
+ aarch64_sync_64_to_32(env);
+ }
+
+ ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
+ if (ret) {
+ return ret;
+ }
+
+ /* Fetch the SPSR registers
+ *
+ * KVM SPSRs 0-4 map to QEMU banks 1-5
+ */
+ for (i = 0; i < KVM_NR_SPSR; i++) {
+ ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
+ &env->banked_spsr[i + 1]);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ el = arm_current_el(env);
+ if (el > 0 && !is_a64(env)) {
+ i = bank_number(env->uncached_cpsr & CPSR_M);
+ env->spsr = env->banked_spsr[i];
+ }
+
+ if (cpu_isar_feature(aa64_sve, cpu)) {
+ ret = kvm_arch_get_sve(cs);
+ } else {
+ ret = kvm_arch_get_fpsimd(cs);
+ }
+ if (ret) {
+ return ret;
+ }
+
+ ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
+ if (ret) {
+ return ret;
+ }
+ vfp_set_fpsr(env, fpr);
+
+ ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
+ if (ret) {
+ return ret;
+ }
+ vfp_set_fpcr(env, fpr);
+
+ ret = kvm_get_vcpu_events(cpu);
+ if (ret) {
+ return ret;
+ }
+
+ if (!write_kvmstate_to_list(cpu)) {
+ return -EINVAL;
+ }
+ /* Note that it's OK to have registers which aren't in CPUState,
+ * so we can ignore a failure return here.
+ */
+ write_list_to_cpustate(cpu);
+
+ ret = kvm_arm_sync_mpstate_to_qemu(cpu);
+
+ /* TODO: other registers */
+ return ret;
+}
+
+void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
+{
+ ram_addr_t ram_addr;
+ hwaddr paddr;
+
+ assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
+
+ if (acpi_ghes_present() && addr) {
+ ram_addr = qemu_ram_addr_from_host(addr);
+ if (ram_addr != RAM_ADDR_INVALID &&
+ kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
+ kvm_hwpoison_page_add(ram_addr);
+ /*
+ * If this is a BUS_MCEERR_AR, we know we have been called
+ * synchronously from the vCPU thread, so we can easily
+ * synchronize the state and inject an error.
+ *
+ * TODO: we currently don't tell the guest at all about
+ * BUS_MCEERR_AO. In that case we might either be being
+ * called synchronously from the vCPU thread, or a bit
+ * later from the main thread, so doing the injection of
+ * the error would be more complicated.
+ */
+ if (code == BUS_MCEERR_AR) {
+ kvm_cpu_synchronize_state(c);
+ if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
+ kvm_inject_arm_sea(c);
+ } else {
+ error_report("failed to record the error");
+ abort();
+ }
+ }
+ return;
+ }
+ if (code == BUS_MCEERR_AO) {
+ error_report("Hardware memory error at addr %p for memory used by "
+ "QEMU itself instead of guest system!", addr);
+ }
+ }
+
+ if (code == BUS_MCEERR_AR) {
+ error_report("Hardware memory error!");
+ exit(1);
+ }
+}
+
+/* C6.6.29 BRK instruction */
+static const uint32_t brk_insn = 0xd4200000;
+
+int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+ if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
+ cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
+ return -EINVAL;
+ }
+ return 0;
+}
+
+int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+ static uint32_t brk;
+
+ if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
+ brk != brk_insn ||
+ cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
+ return -EINVAL;
+ }
+ return 0;
+}