aboutsummaryrefslogtreecommitdiff
path: root/target/arm/debug_helper.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm/debug_helper.c')
-rw-r--r--target/arm/debug_helper.c979
1 files changed, 965 insertions, 14 deletions
diff --git a/target/arm/debug_helper.c b/target/arm/debug_helper.c
index 2983e36dd3..7d856acddf 100644
--- a/target/arm/debug_helper.c
+++ b/target/arm/debug_helper.c
@@ -6,10 +6,168 @@
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
+#include "qemu/log.h"
#include "cpu.h"
#include "internals.h"
+#include "cpu-features.h"
+#include "cpregs.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
+#include "sysemu/tcg.h"
+
+#ifdef CONFIG_TCG
+/* Return the Exception Level targeted by debug exceptions. */
+static int arm_debug_target_el(CPUARMState *env)
+{
+ bool secure = arm_is_secure(env);
+ bool route_to_el2 = false;
+
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ return 1;
+ }
+
+ if (arm_is_el2_enabled(env)) {
+ route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
+ env->cp15.mdcr_el2 & MDCR_TDE;
+ }
+
+ if (route_to_el2) {
+ return 2;
+ } else if (arm_feature(env, ARM_FEATURE_EL3) &&
+ !arm_el_is_aa64(env, 3) && secure) {
+ return 3;
+ } else {
+ return 1;
+ }
+}
+
+/*
+ * Raise an exception to the debug target el.
+ * Modify syndrome to indicate when origin and target EL are the same.
+ */
+G_NORETURN static void
+raise_exception_debug(CPUARMState *env, uint32_t excp, uint32_t syndrome)
+{
+ int debug_el = arm_debug_target_el(env);
+ int cur_el = arm_current_el(env);
+
+ /*
+ * If singlestep is targeting a lower EL than the current one, then
+ * DisasContext.ss_active must be false and we can never get here.
+ * Similarly for watchpoint and breakpoint matches.
+ */
+ assert(debug_el >= cur_el);
+ syndrome |= (debug_el == cur_el) << ARM_EL_EC_SHIFT;
+ raise_exception(env, excp, syndrome, debug_el);
+}
+
+/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
+static bool aa64_generate_debug_exceptions(CPUARMState *env)
+{
+ int cur_el = arm_current_el(env);
+ int debug_el;
+
+ if (cur_el == 3) {
+ return false;
+ }
+
+ /* MDCR_EL3.SDD disables debug events from Secure state */
+ if (arm_is_secure_below_el3(env)
+ && extract32(env->cp15.mdcr_el3, 16, 1)) {
+ return false;
+ }
+
+ /*
+ * Same EL to same EL debug exceptions need MDSCR_KDE enabled
+ * while not masking the (D)ebug bit in DAIF.
+ */
+ debug_el = arm_debug_target_el(env);
+
+ if (cur_el == debug_el) {
+ return extract32(env->cp15.mdscr_el1, 13, 1)
+ && !(env->daif & PSTATE_D);
+ }
+
+ /* Otherwise the debug target needs to be a higher EL */
+ return debug_el > cur_el;
+}
+
+static bool aa32_generate_debug_exceptions(CPUARMState *env)
+{
+ int el = arm_current_el(env);
+
+ if (el == 0 && arm_el_is_aa64(env, 1)) {
+ return aa64_generate_debug_exceptions(env);
+ }
+
+ if (arm_is_secure(env)) {
+ int spd;
+
+ if (el == 0 && (env->cp15.sder & 1)) {
+ /*
+ * SDER.SUIDEN means debug exceptions from Secure EL0
+ * are always enabled. Otherwise they are controlled by
+ * SDCR.SPD like those from other Secure ELs.
+ */
+ return true;
+ }
+
+ spd = extract32(env->cp15.mdcr_el3, 14, 2);
+ switch (spd) {
+ case 1:
+ /* SPD == 0b01 is reserved, but behaves as 0b00. */
+ case 0:
+ /*
+ * For 0b00 we return true if external secure invasive debug
+ * is enabled. On real hardware this is controlled by external
+ * signals to the core. QEMU always permits debug, and behaves
+ * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
+ */
+ return true;
+ case 2:
+ return false;
+ case 3:
+ return true;
+ }
+ }
+
+ return el != 2;
+}
+
+/*
+ * Return true if debugging exceptions are currently enabled.
+ * This corresponds to what in ARM ARM pseudocode would be
+ * if UsingAArch32() then
+ * return AArch32.GenerateDebugExceptions()
+ * else
+ * return AArch64.GenerateDebugExceptions()
+ * We choose to push the if() down into this function for clarity,
+ * since the pseudocode has it at all callsites except for the one in
+ * CheckSoftwareStep(), where it is elided because both branches would
+ * always return the same value.
+ */
+bool arm_generate_debug_exceptions(CPUARMState *env)
+{
+ if ((env->cp15.oslsr_el1 & 1) || (env->cp15.osdlr_el1 & 1)) {
+ return false;
+ }
+ if (is_a64(env)) {
+ return aa64_generate_debug_exceptions(env);
+ } else {
+ return aa32_generate_debug_exceptions(env);
+ }
+}
+
+/*
+ * Is single-stepping active? (Note that the "is EL_D AArch64?" check
+ * implicitly means this always returns false in pre-v8 CPUs.)
+ */
+bool arm_singlestep_active(CPUARMState *env)
+{
+ return extract32(env->cp15.mdscr_el1, 0, 1)
+ && arm_el_is_aa64(env, arm_debug_target_el(env))
+ && arm_generate_debug_exceptions(env);
+}
/* Return true if the linked breakpoint entry lbn passes its checks */
static bool linked_bp_matches(ARMCPU *cpu, int lbn)
@@ -143,9 +301,9 @@ static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
* Non-Secure to simplify the code slightly compared to the full
* table in the ARM ARM.
*/
- pac = extract64(cr, 1, 2);
- hmc = extract64(cr, 13, 1);
- ssc = extract64(cr, 14, 2);
+ pac = FIELD_EX64(cr, DBGWCR, PAC);
+ hmc = FIELD_EX64(cr, DBGWCR, HMC);
+ ssc = FIELD_EX64(cr, DBGWCR, SSC);
switch (ssc) {
case 0:
@@ -184,8 +342,8 @@ static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
g_assert_not_reached();
}
- wt = extract64(cr, 20, 1);
- lbn = extract64(cr, 16, 4);
+ wt = FIELD_EX64(cr, DBGWCR, WT);
+ lbn = FIELD_EX64(cr, DBGWCR, LBN);
if (wt && !linked_bp_matches(cpu, lbn)) {
return false;
@@ -220,6 +378,7 @@ bool arm_debug_check_breakpoint(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
+ target_ulong pc;
int n;
/*
@@ -231,6 +390,28 @@ bool arm_debug_check_breakpoint(CPUState *cs)
return false;
}
+ /*
+ * Single-step exceptions have priority over breakpoint exceptions.
+ * If single-step state is active-pending, suppress the bp.
+ */
+ if (arm_singlestep_active(env) && !(env->pstate & PSTATE_SS)) {
+ return false;
+ }
+
+ /*
+ * PC alignment faults have priority over breakpoint exceptions.
+ */
+ pc = is_a64(env) ? env->pc : env->regs[15];
+ if ((is_a64(env) || !env->thumb) && (pc & 3) != 0) {
+ return false;
+ }
+
+ /*
+ * Instruction aborts have priority over breakpoint exceptions.
+ * TODO: We would need to look up the page for PC and verify that
+ * it is present and executable.
+ */
+
for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
if (bp_wp_matches(cpu, n, false)) {
return true;
@@ -250,6 +431,37 @@ bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
return check_watchpoints(cpu);
}
+/*
+ * Return the FSR value for a debug exception (watchpoint, hardware
+ * breakpoint or BKPT insn) targeting the specified exception level.
+ */
+static uint32_t arm_debug_exception_fsr(CPUARMState *env)
+{
+ ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
+ int target_el = arm_debug_target_el(env);
+ bool using_lpae;
+
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ using_lpae = false;
+ } else if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
+ using_lpae = true;
+ } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
+ arm_feature(env, ARM_FEATURE_V8)) {
+ using_lpae = true;
+ } else if (arm_feature(env, ARM_FEATURE_LPAE) &&
+ (env->cp15.tcr_el[target_el] & TTBCR_EAE)) {
+ using_lpae = true;
+ } else {
+ using_lpae = false;
+ }
+
+ if (using_lpae) {
+ return arm_fi_to_lfsc(&fi);
+ } else {
+ return arm_fi_to_sfsc(&fi);
+ }
+}
+
void arm_debug_excp_handler(CPUState *cs)
{
/*
@@ -263,19 +475,16 @@ void arm_debug_excp_handler(CPUState *cs)
if (wp_hit) {
if (wp_hit->flags & BP_CPU) {
bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
- bool same_el = arm_debug_target_el(env) == arm_current_el(env);
cs->watchpoint_hit = NULL;
env->exception.fsr = arm_debug_exception_fsr(env);
env->exception.vaddress = wp_hit->hitaddr;
- raise_exception(env, EXCP_DATA_ABORT,
- syn_watchpoint(same_el, 0, wnr),
- arm_debug_target_el(env));
+ raise_exception_debug(env, EXCP_DATA_ABORT,
+ syn_watchpoint(0, 0, wnr));
}
} else {
uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
- bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
/*
* (1) GDB breakpoints should be handled first.
@@ -295,9 +504,252 @@ void arm_debug_excp_handler(CPUState *cs)
* exception/security level.
*/
env->exception.vaddress = 0;
- raise_exception(env, EXCP_PREFETCH_ABORT,
- syn_breakpoint(same_el),
- arm_debug_target_el(env));
+ raise_exception_debug(env, EXCP_PREFETCH_ABORT, syn_breakpoint(0));
+ }
+}
+
+/*
+ * Raise an EXCP_BKPT with the specified syndrome register value,
+ * targeting the correct exception level for debug exceptions.
+ */
+void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
+{
+ int debug_el = arm_debug_target_el(env);
+ int cur_el = arm_current_el(env);
+
+ /* FSR will only be used if the debug target EL is AArch32. */
+ env->exception.fsr = arm_debug_exception_fsr(env);
+ /*
+ * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
+ * values to the guest that it shouldn't be able to see at its
+ * exception/security level.
+ */
+ env->exception.vaddress = 0;
+ /*
+ * Other kinds of architectural debug exception are ignored if
+ * they target an exception level below the current one (in QEMU
+ * this is checked by arm_generate_debug_exceptions()). Breakpoint
+ * instructions are special because they always generate an exception
+ * to somewhere: if they can't go to the configured debug exception
+ * level they are taken to the current exception level.
+ */
+ if (debug_el < cur_el) {
+ debug_el = cur_el;
+ }
+ raise_exception(env, EXCP_BKPT, syndrome, debug_el);
+}
+
+void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
+{
+ raise_exception_debug(env, EXCP_UDEF, syndrome);
+}
+
+void hw_watchpoint_update(ARMCPU *cpu, int n)
+{
+ CPUARMState *env = &cpu->env;
+ vaddr len = 0;
+ vaddr wvr = env->cp15.dbgwvr[n];
+ uint64_t wcr = env->cp15.dbgwcr[n];
+ int mask;
+ int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
+
+ if (env->cpu_watchpoint[n]) {
+ cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
+ env->cpu_watchpoint[n] = NULL;
+ }
+
+ if (!FIELD_EX64(wcr, DBGWCR, E)) {
+ /* E bit clear : watchpoint disabled */
+ return;
+ }
+
+ switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
+ case 0:
+ /* LSC 00 is reserved and must behave as if the wp is disabled */
+ return;
+ case 1:
+ flags |= BP_MEM_READ;
+ break;
+ case 2:
+ flags |= BP_MEM_WRITE;
+ break;
+ case 3:
+ flags |= BP_MEM_ACCESS;
+ break;
+ }
+
+ /*
+ * Attempts to use both MASK and BAS fields simultaneously are
+ * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
+ * thus generating a watchpoint for every byte in the masked region.
+ */
+ mask = FIELD_EX64(wcr, DBGWCR, MASK);
+ if (mask == 1 || mask == 2) {
+ /*
+ * Reserved values of MASK; we must act as if the mask value was
+ * some non-reserved value, or as if the watchpoint were disabled.
+ * We choose the latter.
+ */
+ return;
+ } else if (mask) {
+ /* Watchpoint covers an aligned area up to 2GB in size */
+ len = 1ULL << mask;
+ /*
+ * If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
+ * whether the watchpoint fires when the unmasked bits match; we opt
+ * to generate the exceptions.
+ */
+ wvr &= ~(len - 1);
+ } else {
+ /* Watchpoint covers bytes defined by the byte address select bits */
+ int bas = FIELD_EX64(wcr, DBGWCR, BAS);
+ int basstart;
+
+ if (extract64(wvr, 2, 1)) {
+ /*
+ * Deprecated case of an only 4-aligned address. BAS[7:4] are
+ * ignored, and BAS[3:0] define which bytes to watch.
+ */
+ bas &= 0xf;
+ }
+
+ if (bas == 0) {
+ /* This must act as if the watchpoint is disabled */
+ return;
+ }
+
+ /*
+ * The BAS bits are supposed to be programmed to indicate a contiguous
+ * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
+ * we fire for each byte in the word/doubleword addressed by the WVR.
+ * We choose to ignore any non-zero bits after the first range of 1s.
+ */
+ basstart = ctz32(bas);
+ len = cto32(bas >> basstart);
+ wvr += basstart;
+ }
+
+ cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
+ &env->cpu_watchpoint[n]);
+}
+
+void hw_watchpoint_update_all(ARMCPU *cpu)
+{
+ int i;
+ CPUARMState *env = &cpu->env;
+
+ /*
+ * Completely clear out existing QEMU watchpoints and our array, to
+ * avoid possible stale entries following migration load.
+ */
+ cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
+ memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
+
+ for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
+ hw_watchpoint_update(cpu, i);
+ }
+}
+
+void hw_breakpoint_update(ARMCPU *cpu, int n)
+{
+ CPUARMState *env = &cpu->env;
+ uint64_t bvr = env->cp15.dbgbvr[n];
+ uint64_t bcr = env->cp15.dbgbcr[n];
+ vaddr addr;
+ int bt;
+ int flags = BP_CPU;
+
+ if (env->cpu_breakpoint[n]) {
+ cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
+ env->cpu_breakpoint[n] = NULL;
+ }
+
+ if (!extract64(bcr, 0, 1)) {
+ /* E bit clear : watchpoint disabled */
+ return;
+ }
+
+ bt = extract64(bcr, 20, 4);
+
+ switch (bt) {
+ case 4: /* unlinked address mismatch (reserved if AArch64) */
+ case 5: /* linked address mismatch (reserved if AArch64) */
+ qemu_log_mask(LOG_UNIMP,
+ "arm: address mismatch breakpoint types not implemented\n");
+ return;
+ case 0: /* unlinked address match */
+ case 1: /* linked address match */
+ {
+ /*
+ * Bits [1:0] are RES0.
+ *
+ * It is IMPLEMENTATION DEFINED whether bits [63:49]
+ * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
+ * of the VA field ([48] or [52] for FEAT_LVA), or whether the
+ * value is read as written. It is CONSTRAINED UNPREDICTABLE
+ * whether the RESS bits are ignored when comparing an address.
+ * Therefore we are allowed to compare the entire register, which
+ * lets us avoid considering whether FEAT_LVA is actually enabled.
+ *
+ * The BAS field is used to allow setting breakpoints on 16-bit
+ * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
+ * a bp will fire if the addresses covered by the bp and the addresses
+ * covered by the insn overlap but the insn doesn't start at the
+ * start of the bp address range. We choose to require the insn and
+ * the bp to have the same address. The constraints on writing to
+ * BAS enforced in dbgbcr_write mean we have only four cases:
+ * 0b0000 => no breakpoint
+ * 0b0011 => breakpoint on addr
+ * 0b1100 => breakpoint on addr + 2
+ * 0b1111 => breakpoint on addr
+ * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
+ */
+ int bas = extract64(bcr, 5, 4);
+ addr = bvr & ~3ULL;
+ if (bas == 0) {
+ return;
+ }
+ if (bas == 0xc) {
+ addr += 2;
+ }
+ break;
+ }
+ case 2: /* unlinked context ID match */
+ case 8: /* unlinked VMID match (reserved if no EL2) */
+ case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
+ qemu_log_mask(LOG_UNIMP,
+ "arm: unlinked context breakpoint types not implemented\n");
+ return;
+ case 9: /* linked VMID match (reserved if no EL2) */
+ case 11: /* linked context ID and VMID match (reserved if no EL2) */
+ case 3: /* linked context ID match */
+ default:
+ /*
+ * We must generate no events for Linked context matches (unless
+ * they are linked to by some other bp/wp, which is handled in
+ * updates for the linking bp/wp). We choose to also generate no events
+ * for reserved values.
+ */
+ return;
+ }
+
+ cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
+}
+
+void hw_breakpoint_update_all(ARMCPU *cpu)
+{
+ int i;
+ CPUARMState *env = &cpu->env;
+
+ /*
+ * Completely clear out existing QEMU breakpoints and our array, to
+ * avoid possible stale entries following migration load.
+ */
+ cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
+ memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
+
+ for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
+ hw_breakpoint_update(cpu, i);
}
}
@@ -326,4 +778,503 @@ vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
return addr;
}
-#endif
+#endif /* !CONFIG_USER_ONLY */
+#endif /* CONFIG_TCG */
+
+/*
+ * Check for traps to "powerdown debug" registers, which are controlled
+ * by MDCR.TDOSA
+ */
+static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ int el = arm_current_el(env);
+ uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
+ bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
+ (arm_hcr_el2_eff(env) & HCR_TGE);
+
+ if (el < 2 && mdcr_el2_tdosa) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ return CP_ACCESS_OK;
+}
+
+/*
+ * Check for traps to "debug ROM" registers, which are controlled
+ * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
+ */
+static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ int el = arm_current_el(env);
+ uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
+ bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
+ (arm_hcr_el2_eff(env) & HCR_TGE);
+
+ if (el < 2 && mdcr_el2_tdra) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ return CP_ACCESS_OK;
+}
+
+/*
+ * Check for traps to general debug registers, which are controlled
+ * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
+ */
+static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ int el = arm_current_el(env);
+ uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
+ bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
+ (arm_hcr_el2_eff(env) & HCR_TGE);
+
+ if (el < 2 && mdcr_el2_tda) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult access_dbgvcr32(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /* MCDR_EL3.TDMA doesn't apply for FEAT_NV traps */
+ if (arm_current_el(env) == 2 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ return CP_ACCESS_OK;
+}
+
+/*
+ * Check for traps to Debug Comms Channel registers. If FEAT_FGT
+ * is implemented then these are controlled by MDCR_EL2.TDCC for
+ * EL2 and MDCR_EL3.TDCC for EL3. They are also controlled by
+ * the general debug access trap bits MDCR_EL2.TDA and MDCR_EL3.TDA.
+ * For EL0, they are also controlled by MDSCR_EL1.TDCC.
+ */
+static CPAccessResult access_tdcc(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ int el = arm_current_el(env);
+ uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
+ bool mdscr_el1_tdcc = extract32(env->cp15.mdscr_el1, 12, 1);
+ bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
+ (arm_hcr_el2_eff(env) & HCR_TGE);
+ bool mdcr_el2_tdcc = cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
+ (mdcr_el2 & MDCR_TDCC);
+ bool mdcr_el3_tdcc = cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
+ (env->cp15.mdcr_el3 & MDCR_TDCC);
+
+ if (el < 1 && mdscr_el1_tdcc) {
+ return CP_ACCESS_TRAP;
+ }
+ if (el < 2 && (mdcr_el2_tda || mdcr_el2_tdcc)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ if (el < 3 && ((env->cp15.mdcr_el3 & MDCR_TDA) || mdcr_el3_tdcc)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ return CP_ACCESS_OK;
+}
+
+static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * Writes to OSLAR_EL1 may update the OS lock status, which can be
+ * read via a bit in OSLSR_EL1.
+ */
+ int oslock;
+
+ if (ri->state == ARM_CP_STATE_AA32) {
+ oslock = (value == 0xC5ACCE55);
+ } else {
+ oslock = value & 1;
+ }
+
+ env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
+}
+
+static void osdlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ /*
+ * Only defined bit is bit 0 (DLK); if Feat_DoubleLock is not
+ * implemented this is RAZ/WI.
+ */
+ if(arm_feature(env, ARM_FEATURE_AARCH64)
+ ? cpu_isar_feature(aa64_doublelock, cpu)
+ : cpu_isar_feature(aa32_doublelock, cpu)) {
+ env->cp15.osdlr_el1 = value & 1;
+ }
+}
+
+static void dbgclaimset_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.dbgclaim |= (value & 0xFF);
+}
+
+static uint64_t dbgclaimset_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ /* CLAIM bits are RAO */
+ return 0xFF;
+}
+
+static void dbgclaimclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.dbgclaim &= ~(value & 0xFF);
+}
+
+static const ARMCPRegInfo debug_cp_reginfo[] = {
+ /*
+ * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
+ * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
+ * unlike DBGDRAR it is never accessible from EL0.
+ * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
+ * accessor.
+ */
+ { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL0_R, .accessfn = access_tdra,
+ .type = ARM_CP_CONST | ARM_CP_NO_GDB, .resetvalue = 0 },
+ { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
+ .access = PL1_R, .accessfn = access_tdra,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL0_R, .accessfn = access_tdra,
+ .type = ARM_CP_CONST | ARM_CP_NO_GDB, .resetvalue = 0 },
+ /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
+ { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
+ .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
+ .access = PL1_RW, .accessfn = access_tda,
+ .fgt = FGT_MDSCR_EL1,
+ .nv2_redirect_offset = 0x158,
+ .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
+ .resetvalue = 0 },
+ /*
+ * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external
+ * Debug Communication Channel is not implemented.
+ */
+ { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
+ .access = PL0_R, .accessfn = access_tdcc,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ /*
+ * These registers belong to the Debug Communications Channel,
+ * which is not implemented. However we implement RAZ/WI behaviour
+ * with trapping to prevent spurious SIGILLs if the guest OS does
+ * access them as the support cannot be probed for.
+ */
+ { .name = "OSDTRRX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
+ .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 2,
+ .access = PL1_RW, .accessfn = access_tdcc,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "OSDTRTX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
+ .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
+ .access = PL1_RW, .accessfn = access_tdcc,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ /* DBGDTRTX_EL0/DBGDTRRX_EL0 depend on direction */
+ { .name = "DBGDTR_EL0", .state = ARM_CP_STATE_BOTH, .cp = 14,
+ .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 5, .opc2 = 0,
+ .access = PL0_RW, .accessfn = access_tdcc,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ /*
+ * OSECCR_EL1 provides a mechanism for an operating system
+ * to access the contents of EDECCR. EDECCR is not implemented though,
+ * as is the rest of external device mechanism.
+ */
+ { .name = "OSECCR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
+ .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
+ .access = PL1_RW, .accessfn = access_tda,
+ .fgt = FGT_OSECCR_EL1,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ /*
+ * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as
+ * it is unlikely a guest will care.
+ * We don't implement the configurable EL0 access.
+ */
+ { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
+ .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
+ .type = ARM_CP_ALIAS,
+ .access = PL1_R, .accessfn = access_tda,
+ .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
+ { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
+ .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
+ .access = PL1_W, .type = ARM_CP_NO_RAW,
+ .accessfn = access_tdosa,
+ .fgt = FGT_OSLAR_EL1,
+ .writefn = oslar_write },
+ { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
+ .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
+ .access = PL1_R, .resetvalue = 10,
+ .accessfn = access_tdosa,
+ .fgt = FGT_OSLSR_EL1,
+ .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
+ /* Dummy OSDLR_EL1: 32-bit Linux will read this */
+ { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
+ .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
+ .access = PL1_RW, .accessfn = access_tdosa,
+ .fgt = FGT_OSDLR_EL1,
+ .writefn = osdlr_write,
+ .fieldoffset = offsetof(CPUARMState, cp15.osdlr_el1) },
+ /*
+ * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
+ * implement vector catch debug events yet.
+ */
+ { .name = "DBGVCR",
+ .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_tda,
+ .type = ARM_CP_NOP },
+ /*
+ * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
+ * Channel but Linux may try to access this register. The 32-bit
+ * alias is DBGDCCINT.
+ */
+ { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
+ .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_tdcc,
+ .type = ARM_CP_NOP },
+ /*
+ * Dummy DBGCLAIM registers.
+ * "The architecture does not define any functionality for the CLAIM tag bits.",
+ * so we only keep the raw bits
+ */
+ { .name = "DBGCLAIMSET_EL1", .state = ARM_CP_STATE_BOTH,
+ .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 6,
+ .type = ARM_CP_ALIAS,
+ .access = PL1_RW, .accessfn = access_tda,
+ .fgt = FGT_DBGCLAIM,
+ .writefn = dbgclaimset_write, .readfn = dbgclaimset_read },
+ { .name = "DBGCLAIMCLR_EL1", .state = ARM_CP_STATE_BOTH,
+ .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 6,
+ .access = PL1_RW, .accessfn = access_tda,
+ .fgt = FGT_DBGCLAIM,
+ .writefn = dbgclaimclr_write, .raw_writefn = raw_write,
+ .fieldoffset = offsetof(CPUARMState, cp15.dbgclaim) },
+};
+
+/* These are present only when EL1 supports AArch32 */
+static const ARMCPRegInfo debug_aa32_el1_reginfo[] = {
+ /*
+ * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
+ * to save and restore a 32-bit guest's DBGVCR)
+ */
+ { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
+ .access = PL2_RW, .accessfn = access_dbgvcr32,
+ .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
+};
+
+static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
+ /* 64 bit access versions of the (dummy) debug registers */
+ { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
+ .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT | ARM_CP_NO_GDB,
+ .resetvalue = 0 },
+ { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
+ .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT | ARM_CP_NO_GDB,
+ .resetvalue = 0 },
+};
+
+static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ int i = ri->crm;
+
+ /*
+ * Bits [1:0] are RES0.
+ *
+ * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
+ * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
+ * they contain the value written. It is CONSTRAINED UNPREDICTABLE
+ * whether the RESS bits are ignored when comparing an address.
+ *
+ * Therefore we are allowed to compare the entire register, which lets
+ * us avoid considering whether or not FEAT_LVA is actually enabled.
+ */
+ value &= ~3ULL;
+
+ raw_write(env, ri, value);
+ if (tcg_enabled()) {
+ hw_watchpoint_update(cpu, i);
+ }
+}
+
+static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ int i = ri->crm;
+
+ raw_write(env, ri, value);
+ if (tcg_enabled()) {
+ hw_watchpoint_update(cpu, i);
+ }
+}
+
+static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ int i = ri->crm;
+
+ raw_write(env, ri, value);
+ if (tcg_enabled()) {
+ hw_breakpoint_update(cpu, i);
+ }
+}
+
+static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ int i = ri->crm;
+
+ /*
+ * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
+ * copy of BAS[0].
+ */
+ value = deposit64(value, 6, 1, extract64(value, 5, 1));
+ value = deposit64(value, 8, 1, extract64(value, 7, 1));
+
+ raw_write(env, ri, value);
+ if (tcg_enabled()) {
+ hw_breakpoint_update(cpu, i);
+ }
+}
+
+void define_debug_regs(ARMCPU *cpu)
+{
+ /*
+ * Define v7 and v8 architectural debug registers.
+ * These are just dummy implementations for now.
+ */
+ int i;
+ int wrps, brps, ctx_cmps;
+
+ /*
+ * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
+ * use AArch32. Given that bit 15 is RES1, if the value is 0 then
+ * the register must not exist for this cpu.
+ */
+ if (cpu->isar.dbgdidr != 0) {
+ ARMCPRegInfo dbgdidr = {
+ .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
+ .opc1 = 0, .opc2 = 0,
+ .access = PL0_R, .accessfn = access_tda,
+ .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
+ };
+ define_one_arm_cp_reg(cpu, &dbgdidr);
+ }
+
+ /*
+ * DBGDEVID is present in the v7 debug architecture if
+ * DBGDIDR.DEVID_imp is 1 (bit 15); from v7.1 and on it is
+ * mandatory (and bit 15 is RES1). DBGDEVID1 and DBGDEVID2 exist
+ * from v7.1 of the debug architecture. Because no fields have yet
+ * been defined in DBGDEVID2 (and quite possibly none will ever
+ * be) we don't define an ARMISARegisters field for it.
+ * These registers exist only if EL1 can use AArch32, but that
+ * happens naturally because they are only PL1 accessible anyway.
+ */
+ if (extract32(cpu->isar.dbgdidr, 15, 1)) {
+ ARMCPRegInfo dbgdevid = {
+ .name = "DBGDEVID",
+ .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 2, .crn = 7,
+ .access = PL1_R, .accessfn = access_tda,
+ .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid,
+ };
+ define_one_arm_cp_reg(cpu, &dbgdevid);
+ }
+ if (cpu_isar_feature(aa32_debugv7p1, cpu)) {
+ ARMCPRegInfo dbgdevid12[] = {
+ {
+ .name = "DBGDEVID1",
+ .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 1, .crn = 7,
+ .access = PL1_R, .accessfn = access_tda,
+ .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid1,
+ }, {
+ .name = "DBGDEVID2",
+ .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 0, .crn = 7,
+ .access = PL1_R, .accessfn = access_tda,
+ .type = ARM_CP_CONST, .resetvalue = 0,
+ },
+ };
+ define_arm_cp_regs(cpu, dbgdevid12);
+ }
+
+ brps = arm_num_brps(cpu);
+ wrps = arm_num_wrps(cpu);
+ ctx_cmps = arm_num_ctx_cmps(cpu);
+
+ assert(ctx_cmps <= brps);
+
+ define_arm_cp_regs(cpu, debug_cp_reginfo);
+ if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
+ define_arm_cp_regs(cpu, debug_aa32_el1_reginfo);
+ }
+
+ if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
+ define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
+ }
+
+ for (i = 0; i < brps; i++) {
+ char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
+ char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
+ ARMCPRegInfo dbgregs[] = {
+ { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
+ .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
+ .access = PL1_RW, .accessfn = access_tda,
+ .fgt = FGT_DBGBVRN_EL1,
+ .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
+ .writefn = dbgbvr_write, .raw_writefn = raw_write
+ },
+ { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
+ .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
+ .access = PL1_RW, .accessfn = access_tda,
+ .fgt = FGT_DBGBCRN_EL1,
+ .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
+ .writefn = dbgbcr_write, .raw_writefn = raw_write
+ },
+ };
+ define_arm_cp_regs(cpu, dbgregs);
+ g_free(dbgbvr_el1_name);
+ g_free(dbgbcr_el1_name);
+ }
+
+ for (i = 0; i < wrps; i++) {
+ char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
+ char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
+ ARMCPRegInfo dbgregs[] = {
+ { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
+ .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
+ .access = PL1_RW, .accessfn = access_tda,
+ .fgt = FGT_DBGWVRN_EL1,
+ .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
+ .writefn = dbgwvr_write, .raw_writefn = raw_write
+ },
+ { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
+ .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
+ .access = PL1_RW, .accessfn = access_tda,
+ .fgt = FGT_DBGWCRN_EL1,
+ .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
+ .writefn = dbgwcr_write, .raw_writefn = raw_write
+ },
+ };
+ define_arm_cp_regs(cpu, dbgregs);
+ g_free(dbgwvr_el1_name);
+ g_free(dbgwcr_el1_name);
+ }
+}