aboutsummaryrefslogtreecommitdiff
path: root/fpu/softfloat.c
diff options
context:
space:
mode:
Diffstat (limited to 'fpu/softfloat.c')
-rw-r--r--fpu/softfloat.c1305
1 files changed, 168 insertions, 1137 deletions
diff --git a/fpu/softfloat.c b/fpu/softfloat.c
index a362bf89ca..6c8f2d597a 100644
--- a/fpu/softfloat.c
+++ b/fpu/softfloat.c
@@ -339,12 +339,10 @@ static inline bool f64_is_inf(union_float64 a)
return float64_is_infinity(a.s);
}
-/* Note: @fast_test and @post can be NULL */
static inline float32
float32_gen2(float32 xa, float32 xb, float_status *s,
hard_f32_op2_fn hard, soft_f32_op2_fn soft,
- f32_check_fn pre, f32_check_fn post,
- f32_check_fn fast_test, soft_f32_op2_fn fast_op)
+ f32_check_fn pre, f32_check_fn post)
{
union_float32 ua, ub, ur;
@@ -359,17 +357,12 @@ float32_gen2(float32 xa, float32 xb, float_status *s,
if (unlikely(!pre(ua, ub))) {
goto soft;
}
- if (fast_test && fast_test(ua, ub)) {
- return fast_op(ua.s, ub.s, s);
- }
ur.h = hard(ua.h, ub.h);
if (unlikely(f32_is_inf(ur))) {
s->float_exception_flags |= float_flag_overflow;
- } else if (unlikely(fabsf(ur.h) <= FLT_MIN)) {
- if (post == NULL || post(ua, ub)) {
- goto soft;
- }
+ } else if (unlikely(fabsf(ur.h) <= FLT_MIN) && post(ua, ub)) {
+ goto soft;
}
return ur.s;
@@ -380,8 +373,7 @@ float32_gen2(float32 xa, float32 xb, float_status *s,
static inline float64
float64_gen2(float64 xa, float64 xb, float_status *s,
hard_f64_op2_fn hard, soft_f64_op2_fn soft,
- f64_check_fn pre, f64_check_fn post,
- f64_check_fn fast_test, soft_f64_op2_fn fast_op)
+ f64_check_fn pre, f64_check_fn post)
{
union_float64 ua, ub, ur;
@@ -396,17 +388,12 @@ float64_gen2(float64 xa, float64 xb, float_status *s,
if (unlikely(!pre(ua, ub))) {
goto soft;
}
- if (fast_test && fast_test(ua, ub)) {
- return fast_op(ua.s, ub.s, s);
- }
ur.h = hard(ua.h, ub.h);
if (unlikely(f64_is_inf(ur))) {
s->float_exception_flags |= float_flag_overflow;
- } else if (unlikely(fabs(ur.h) <= DBL_MIN)) {
- if (post == NULL || post(ua, ub)) {
- goto soft;
- }
+ } else if (unlikely(fabs(ur.h) <= DBL_MIN) && post(ua, ub)) {
+ goto soft;
}
return ur.s;
@@ -436,7 +423,7 @@ static inline int extractFloat32Exp(float32 a)
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/
-static inline flag extractFloat32Sign(float32 a)
+static inline bool extractFloat32Sign(float32 a)
{
return float32_val(a) >> 31;
}
@@ -463,7 +450,7 @@ static inline int extractFloat64Exp(float64 a)
| Returns the sign bit of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/
-static inline flag extractFloat64Sign(float64 a)
+static inline bool extractFloat64Sign(float64 a)
{
return float64_val(a) >> 63;
}
@@ -757,8 +744,7 @@ static FloatParts round_canonical(FloatParts p, float_status *s,
p.cls = float_class_zero;
goto do_zero;
} else {
- bool is_tiny = (s->float_detect_tininess
- == float_tininess_before_rounding)
+ bool is_tiny = s->tininess_before_rounding
|| (exp < 0)
|| !((frac + inc) & DECOMPOSED_OVERFLOW_BIT);
@@ -773,6 +759,8 @@ static FloatParts round_canonical(FloatParts p, float_status *s,
case float_round_to_odd:
inc = frac & frac_lsb ? 0 : round_mask;
break;
+ default:
+ break;
}
flags |= float_flag_inexact;
frac += inc;
@@ -1115,7 +1103,7 @@ static double hard_f64_sub(double a, double b)
return a - b;
}
-static bool f32_addsub_post(union_float32 a, union_float32 b)
+static bool f32_addsubmul_post(union_float32 a, union_float32 b)
{
if (QEMU_HARDFLOAT_2F32_USE_FP) {
return !(fpclassify(a.h) == FP_ZERO && fpclassify(b.h) == FP_ZERO);
@@ -1123,7 +1111,7 @@ static bool f32_addsub_post(union_float32 a, union_float32 b)
return !(float32_is_zero(a.s) && float32_is_zero(b.s));
}
-static bool f64_addsub_post(union_float64 a, union_float64 b)
+static bool f64_addsubmul_post(union_float64 a, union_float64 b)
{
if (QEMU_HARDFLOAT_2F64_USE_FP) {
return !(fpclassify(a.h) == FP_ZERO && fpclassify(b.h) == FP_ZERO);
@@ -1136,14 +1124,14 @@ static float32 float32_addsub(float32 a, float32 b, float_status *s,
hard_f32_op2_fn hard, soft_f32_op2_fn soft)
{
return float32_gen2(a, b, s, hard, soft,
- f32_is_zon2, f32_addsub_post, NULL, NULL);
+ f32_is_zon2, f32_addsubmul_post);
}
static float64 float64_addsub(float64 a, float64 b, float_status *s,
hard_f64_op2_fn hard, soft_f64_op2_fn soft)
{
return float64_gen2(a, b, s, hard, soft,
- f64_is_zon2, f64_addsub_post, NULL, NULL);
+ f64_is_zon2, f64_addsubmul_post);
}
float32 QEMU_FLATTEN
@@ -1258,42 +1246,18 @@ static double hard_f64_mul(double a, double b)
return a * b;
}
-static bool f32_mul_fast_test(union_float32 a, union_float32 b)
-{
- return float32_is_zero(a.s) || float32_is_zero(b.s);
-}
-
-static bool f64_mul_fast_test(union_float64 a, union_float64 b)
-{
- return float64_is_zero(a.s) || float64_is_zero(b.s);
-}
-
-static float32 f32_mul_fast_op(float32 a, float32 b, float_status *s)
-{
- bool signbit = float32_is_neg(a) ^ float32_is_neg(b);
-
- return float32_set_sign(float32_zero, signbit);
-}
-
-static float64 f64_mul_fast_op(float64 a, float64 b, float_status *s)
-{
- bool signbit = float64_is_neg(a) ^ float64_is_neg(b);
-
- return float64_set_sign(float64_zero, signbit);
-}
-
float32 QEMU_FLATTEN
float32_mul(float32 a, float32 b, float_status *s)
{
return float32_gen2(a, b, s, hard_f32_mul, soft_f32_mul,
- f32_is_zon2, NULL, f32_mul_fast_test, f32_mul_fast_op);
+ f32_is_zon2, f32_addsubmul_post);
}
float64 QEMU_FLATTEN
float64_mul(float64 a, float64 b, float_status *s)
{
return float64_gen2(a, b, s, hard_f64_mul, soft_f64_mul,
- f64_is_zon2, NULL, f64_mul_fast_test, f64_mul_fast_op);
+ f64_is_zon2, f64_addsubmul_post);
}
/*
@@ -1834,14 +1798,14 @@ float32 QEMU_FLATTEN
float32_div(float32 a, float32 b, float_status *s)
{
return float32_gen2(a, b, s, hard_f32_div, soft_f32_div,
- f32_div_pre, f32_div_post, NULL, NULL);
+ f32_div_pre, f32_div_post);
}
float64 QEMU_FLATTEN
float64_div(float64 a, float64 b, float_status *s)
{
return float64_gen2(a, b, s, hard_f64_div, soft_f64_div,
- f64_div_pre, f64_div_post, NULL, NULL);
+ f64_div_pre, f64_div_post);
}
/*
@@ -1966,7 +1930,7 @@ float32 float64_to_float32(float64 a, float_status *s)
* Arithmetic.
*/
-static FloatParts round_to_int(FloatParts a, int rmode,
+static FloatParts round_to_int(FloatParts a, FloatRoundMode rmode,
int scale, float_status *s)
{
switch (a.cls) {
@@ -2099,8 +2063,8 @@ float64 float64_round_to_int(float64 a, float_status *s)
* is returned.
*/
-static int64_t round_to_int_and_pack(FloatParts in, int rmode, int scale,
- int64_t min, int64_t max,
+static int64_t round_to_int_and_pack(FloatParts in, FloatRoundMode rmode,
+ int scale, int64_t min, int64_t max,
float_status *s)
{
uint64_t r;
@@ -2145,63 +2109,63 @@ static int64_t round_to_int_and_pack(FloatParts in, int rmode, int scale,
}
}
-int16_t float16_to_int16_scalbn(float16 a, int rmode, int scale,
+int16_t float16_to_int16_scalbn(float16 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_int_and_pack(float16_unpack_canonical(a, s),
rmode, scale, INT16_MIN, INT16_MAX, s);
}
-int32_t float16_to_int32_scalbn(float16 a, int rmode, int scale,
+int32_t float16_to_int32_scalbn(float16 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_int_and_pack(float16_unpack_canonical(a, s),
rmode, scale, INT32_MIN, INT32_MAX, s);
}
-int64_t float16_to_int64_scalbn(float16 a, int rmode, int scale,
+int64_t float16_to_int64_scalbn(float16 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_int_and_pack(float16_unpack_canonical(a, s),
rmode, scale, INT64_MIN, INT64_MAX, s);
}
-int16_t float32_to_int16_scalbn(float32 a, int rmode, int scale,
+int16_t float32_to_int16_scalbn(float32 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_int_and_pack(float32_unpack_canonical(a, s),
rmode, scale, INT16_MIN, INT16_MAX, s);
}
-int32_t float32_to_int32_scalbn(float32 a, int rmode, int scale,
+int32_t float32_to_int32_scalbn(float32 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_int_and_pack(float32_unpack_canonical(a, s),
rmode, scale, INT32_MIN, INT32_MAX, s);
}
-int64_t float32_to_int64_scalbn(float32 a, int rmode, int scale,
+int64_t float32_to_int64_scalbn(float32 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_int_and_pack(float32_unpack_canonical(a, s),
rmode, scale, INT64_MIN, INT64_MAX, s);
}
-int16_t float64_to_int16_scalbn(float64 a, int rmode, int scale,
+int16_t float64_to_int16_scalbn(float64 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_int_and_pack(float64_unpack_canonical(a, s),
rmode, scale, INT16_MIN, INT16_MAX, s);
}
-int32_t float64_to_int32_scalbn(float64 a, int rmode, int scale,
+int32_t float64_to_int32_scalbn(float64 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_int_and_pack(float64_unpack_canonical(a, s),
rmode, scale, INT32_MIN, INT32_MAX, s);
}
-int64_t float64_to_int64_scalbn(float64 a, int rmode, int scale,
+int64_t float64_to_int64_scalbn(float64 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_int_and_pack(float64_unpack_canonical(a, s),
@@ -2311,8 +2275,9 @@ int64_t float64_to_int64_round_to_zero(float64 a, float_status *s)
* flag.
*/
-static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, int scale,
- uint64_t max, float_status *s)
+static uint64_t round_to_uint_and_pack(FloatParts in, FloatRoundMode rmode,
+ int scale, uint64_t max,
+ float_status *s)
{
int orig_flags = get_float_exception_flags(s);
FloatParts p = round_to_int(in, rmode, scale, s);
@@ -2357,63 +2322,63 @@ static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, int scale,
}
}
-uint16_t float16_to_uint16_scalbn(float16 a, int rmode, int scale,
+uint16_t float16_to_uint16_scalbn(float16 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_uint_and_pack(float16_unpack_canonical(a, s),
rmode, scale, UINT16_MAX, s);
}
-uint32_t float16_to_uint32_scalbn(float16 a, int rmode, int scale,
+uint32_t float16_to_uint32_scalbn(float16 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_uint_and_pack(float16_unpack_canonical(a, s),
rmode, scale, UINT32_MAX, s);
}
-uint64_t float16_to_uint64_scalbn(float16 a, int rmode, int scale,
+uint64_t float16_to_uint64_scalbn(float16 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_uint_and_pack(float16_unpack_canonical(a, s),
rmode, scale, UINT64_MAX, s);
}
-uint16_t float32_to_uint16_scalbn(float32 a, int rmode, int scale,
+uint16_t float32_to_uint16_scalbn(float32 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_uint_and_pack(float32_unpack_canonical(a, s),
rmode, scale, UINT16_MAX, s);
}
-uint32_t float32_to_uint32_scalbn(float32 a, int rmode, int scale,
+uint32_t float32_to_uint32_scalbn(float32 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_uint_and_pack(float32_unpack_canonical(a, s),
rmode, scale, UINT32_MAX, s);
}
-uint64_t float32_to_uint64_scalbn(float32 a, int rmode, int scale,
+uint64_t float32_to_uint64_scalbn(float32 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_uint_and_pack(float32_unpack_canonical(a, s),
rmode, scale, UINT64_MAX, s);
}
-uint16_t float64_to_uint16_scalbn(float64 a, int rmode, int scale,
+uint16_t float64_to_uint16_scalbn(float64 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_uint_and_pack(float64_unpack_canonical(a, s),
rmode, scale, UINT16_MAX, s);
}
-uint32_t float64_to_uint32_scalbn(float64 a, int rmode, int scale,
+uint32_t float64_to_uint32_scalbn(float64 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_uint_and_pack(float64_unpack_canonical(a, s),
rmode, scale, UINT32_MAX, s);
}
-uint64_t float64_to_uint64_scalbn(float64 a, int rmode, int scale,
+uint64_t float64_to_uint64_scalbn(float64 a, FloatRoundMode rmode, int scale,
float_status *s)
{
return round_to_uint_and_pack(float64_unpack_canonical(a, s),
@@ -2883,8 +2848,8 @@ MINMAX(64, maxnummag, false, true, true)
#undef MINMAX
/* Floating point compare */
-static int compare_floats(FloatParts a, FloatParts b, bool is_quiet,
- float_status *s)
+static FloatRelation compare_floats(FloatParts a, FloatParts b, bool is_quiet,
+ float_status *s)
{
if (is_nan(a.cls) || is_nan(b.cls)) {
if (!is_quiet ||
@@ -2955,17 +2920,17 @@ COMPARE(soft_f64_compare, QEMU_SOFTFLOAT_ATTR, 64)
#undef COMPARE
-int float16_compare(float16 a, float16 b, float_status *s)
+FloatRelation float16_compare(float16 a, float16 b, float_status *s)
{
return soft_f16_compare(a, b, false, s);
}
-int float16_compare_quiet(float16 a, float16 b, float_status *s)
+FloatRelation float16_compare_quiet(float16 a, float16 b, float_status *s)
{
return soft_f16_compare(a, b, true, s);
}
-static int QEMU_FLATTEN
+static FloatRelation QEMU_FLATTEN
f32_compare(float32 xa, float32 xb, bool is_quiet, float_status *s)
{
union_float32 ua, ub;
@@ -2994,17 +2959,17 @@ f32_compare(float32 xa, float32 xb, bool is_quiet, float_status *s)
return soft_f32_compare(ua.s, ub.s, is_quiet, s);
}
-int float32_compare(float32 a, float32 b, float_status *s)
+FloatRelation float32_compare(float32 a, float32 b, float_status *s)
{
return f32_compare(a, b, false, s);
}
-int float32_compare_quiet(float32 a, float32 b, float_status *s)
+FloatRelation float32_compare_quiet(float32 a, float32 b, float_status *s)
{
return f32_compare(a, b, true, s);
}
-static int QEMU_FLATTEN
+static FloatRelation QEMU_FLATTEN
f64_compare(float64 xa, float64 xb, bool is_quiet, float_status *s)
{
union_float64 ua, ub;
@@ -3033,12 +2998,12 @@ f64_compare(float64 xa, float64 xb, bool is_quiet, float_status *s)
return soft_f64_compare(ua.s, ub.s, is_quiet, s);
}
-int float64_compare(float64 a, float64 b, float_status *s)
+FloatRelation float64_compare(float64 a, float64 b, float_status *s)
{
return f64_compare(a, b, false, s);
}
-int float64_compare_quiet(float64 a, float64 b, float_status *s)
+FloatRelation float64_compare_quiet(float64 a, float64 b, float_status *s)
{
return f64_compare(a, b, true, s);
}
@@ -3365,10 +3330,11 @@ float64 float64_squash_input_denormal(float64 a, float_status *status)
| positive or negative integer is returned.
*----------------------------------------------------------------------------*/
-static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
+static int32_t roundAndPackInt32(bool zSign, uint64_t absZ,
+ float_status *status)
{
int8_t roundingMode;
- flag roundNearestEven;
+ bool roundNearestEven;
int8_t roundIncrement, roundBits;
int32_t z;
@@ -3422,11 +3388,11 @@ static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status
| returned.
*----------------------------------------------------------------------------*/
-static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
+static int64_t roundAndPackInt64(bool zSign, uint64_t absZ0, uint64_t absZ1,
float_status *status)
{
int8_t roundingMode;
- flag roundNearestEven, increment;
+ bool roundNearestEven, increment;
int64_t z;
roundingMode = status->float_rounding_mode;
@@ -3480,11 +3446,11 @@ static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
| exception is raised and the largest unsigned integer is returned.
*----------------------------------------------------------------------------*/
-static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0,
+static int64_t roundAndPackUint64(bool zSign, uint64_t absZ0,
uint64_t absZ1, float_status *status)
{
int8_t roundingMode;
- flag roundNearestEven, increment;
+ bool roundNearestEven, increment;
roundingMode = status->float_rounding_mode;
roundNearestEven = (roundingMode == float_round_nearest_even);
@@ -3568,13 +3534,13 @@ static void
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
+static float32 roundAndPackFloat32(bool zSign, int zExp, uint32_t zSig,
float_status *status)
{
int8_t roundingMode;
- flag roundNearestEven;
+ bool roundNearestEven;
int8_t roundIncrement, roundBits;
- flag isTiny;
+ bool isTiny;
roundingMode = status->float_rounding_mode;
roundNearestEven = ( roundingMode == float_round_nearest_even );
@@ -3615,11 +3581,9 @@ static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
float_raise(float_flag_output_denormal, status);
return packFloat32(zSign, 0, 0);
}
- isTiny =
- (status->float_detect_tininess
- == float_tininess_before_rounding)
- || ( zExp < -1 )
- || ( zSig + roundIncrement < 0x80000000 );
+ isTiny = status->tininess_before_rounding
+ || (zExp < -1)
+ || (zSig + roundIncrement < 0x80000000);
shift32RightJamming( zSig, - zExp, &zSig );
zExp = 0;
roundBits = zSig & 0x7F;
@@ -3655,7 +3619,7 @@ static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
*----------------------------------------------------------------------------*/
static float32
- normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
+ normalizeRoundAndPackFloat32(bool zSign, int zExp, uint32_t zSig,
float_status *status)
{
int8_t shiftCount;
@@ -3695,7 +3659,7 @@ static void
| significand.
*----------------------------------------------------------------------------*/
-static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
+static inline float64 packFloat64(bool zSign, int zExp, uint64_t zSig)
{
return make_float64(
@@ -3725,13 +3689,13 @@ static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
+static float64 roundAndPackFloat64(bool zSign, int zExp, uint64_t zSig,
float_status *status)
{
int8_t roundingMode;
- flag roundNearestEven;
+ bool roundNearestEven;
int roundIncrement, roundBits;
- flag isTiny;
+ bool isTiny;
roundingMode = status->float_rounding_mode;
roundNearestEven = ( roundingMode == float_round_nearest_even );
@@ -3771,11 +3735,9 @@ static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
float_raise(float_flag_output_denormal, status);
return packFloat64(zSign, 0, 0);
}
- isTiny =
- (status->float_detect_tininess
- == float_tininess_before_rounding)
- || ( zExp < -1 )
- || ( zSig + roundIncrement < UINT64_C(0x8000000000000000) );
+ isTiny = status->tininess_before_rounding
+ || (zExp < -1)
+ || (zSig + roundIncrement < UINT64_C(0x8000000000000000));
shift64RightJamming( zSig, - zExp, &zSig );
zExp = 0;
roundBits = zSig & 0x3FF;
@@ -3811,7 +3773,7 @@ static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
*----------------------------------------------------------------------------*/
static float64
- normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
+ normalizeRoundAndPackFloat64(bool zSign, int zExp, uint64_t zSig,
float_status *status)
{
int8_t shiftCount;
@@ -3863,12 +3825,12 @@ void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
+floatx80 roundAndPackFloatx80(int8_t roundingPrecision, bool zSign,
int32_t zExp, uint64_t zSig0, uint64_t zSig1,
float_status *status)
{
int8_t roundingMode;
- flag roundNearestEven, increment, isTiny;
+ bool roundNearestEven, increment, isTiny;
int64_t roundIncrement, roundMask, roundBits;
roundingMode = status->float_rounding_mode;
@@ -3914,11 +3876,9 @@ floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
float_raise(float_flag_output_denormal, status);
return packFloatx80(zSign, 0, 0);
}
- isTiny =
- (status->float_detect_tininess
- == float_tininess_before_rounding)
- || ( zExp < 0 )
- || ( zSig0 <= zSig0 + roundIncrement );
+ isTiny = status->tininess_before_rounding
+ || (zExp < 0 )
+ || (zSig0 <= zSig0 + roundIncrement);
shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
zExp = 0;
roundBits = zSig0 & roundMask;
@@ -3992,12 +3952,10 @@ floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
floatx80_infinity_low);
}
if ( zExp <= 0 ) {
- isTiny =
- (status->float_detect_tininess
- == float_tininess_before_rounding)
- || ( zExp < 0 )
- || ! increment
- || ( zSig0 < UINT64_C(0xFFFFFFFFFFFFFFFF) );
+ isTiny = status->tininess_before_rounding
+ || (zExp < 0)
+ || !increment
+ || (zSig0 < UINT64_C(0xFFFFFFFFFFFFFFFF));
shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
zExp = 0;
if (isTiny && zSig1) {
@@ -4062,7 +4020,7 @@ floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
*----------------------------------------------------------------------------*/
floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
- flag zSign, int32_t zExp,
+ bool zSign, int32_t zExp,
uint64_t zSig0, uint64_t zSig1,
float_status *status)
{
@@ -4121,11 +4079,9 @@ static inline int32_t extractFloat128Exp( float128 a )
| Returns the sign bit of the quadruple-precision floating-point value `a'.
*----------------------------------------------------------------------------*/
-static inline flag extractFloat128Sign( float128 a )
+static inline bool extractFloat128Sign(float128 a)
{
-
- return a.high>>63;
-
+ return a.high >> 63;
}
/*----------------------------------------------------------------------------
@@ -4183,14 +4139,13 @@ static void
*----------------------------------------------------------------------------*/
static inline float128
- packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 )
+packFloat128(bool zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1)
{
float128 z;
z.low = zSig1;
- z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
+ z.high = ((uint64_t)zSign << 63) + ((uint64_t)zExp << 48) + zSig0;
return z;
-
}
/*----------------------------------------------------------------------------
@@ -4214,12 +4169,12 @@ static inline float128
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
+static float128 roundAndPackFloat128(bool zSign, int32_t zExp,
uint64_t zSig0, uint64_t zSig1,
uint64_t zSig2, float_status *status)
{
int8_t roundingMode;
- flag roundNearestEven, increment, isTiny;
+ bool roundNearestEven, increment, isTiny;
roundingMode = status->float_rounding_mode;
roundNearestEven = ( roundingMode == float_round_nearest_even );
@@ -4276,17 +4231,12 @@ static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
float_raise(float_flag_output_denormal, status);
return packFloat128(zSign, 0, 0, 0);
}
- isTiny =
- (status->float_detect_tininess
- == float_tininess_before_rounding)
- || ( zExp < -1 )
- || ! increment
- || lt128(
- zSig0,
- zSig1,
- UINT64_C(0x0001FFFFFFFFFFFF),
- UINT64_C(0xFFFFFFFFFFFFFFFF)
- );
+ isTiny = status->tininess_before_rounding
+ || (zExp < -1)
+ || !increment
+ || lt128(zSig0, zSig1,
+ UINT64_C(0x0001FFFFFFFFFFFF),
+ UINT64_C(0xFFFFFFFFFFFFFFFF));
shift128ExtraRightJamming(
zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
zExp = 0;
@@ -4339,7 +4289,7 @@ static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
| point exponent.
*----------------------------------------------------------------------------*/
-static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
+static float128 normalizeRoundAndPackFloat128(bool zSign, int32_t zExp,
uint64_t zSig0, uint64_t zSig1,
float_status *status)
{
@@ -4375,7 +4325,7 @@ static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
floatx80 int32_to_floatx80(int32_t a, float_status *status)
{
- flag zSign;
+ bool zSign;
uint32_t absA;
int8_t shiftCount;
uint64_t zSig;
@@ -4397,7 +4347,7 @@ floatx80 int32_to_floatx80(int32_t a, float_status *status)
float128 int32_to_float128(int32_t a, float_status *status)
{
- flag zSign;
+ bool zSign;
uint32_t absA;
int8_t shiftCount;
uint64_t zSig0;
@@ -4420,7 +4370,7 @@ float128 int32_to_float128(int32_t a, float_status *status)
floatx80 int64_to_floatx80(int64_t a, float_status *status)
{
- flag zSign;
+ bool zSign;
uint64_t absA;
int8_t shiftCount;
@@ -4440,7 +4390,7 @@ floatx80 int64_to_floatx80(int64_t a, float_status *status)
float128 int64_to_float128(int64_t a, float_status *status)
{
- flag zSign;
+ bool zSign;
uint64_t absA;
int8_t shiftCount;
int32_t zExp;
@@ -4488,7 +4438,7 @@ float128 uint64_to_float128(uint64_t a, float_status *status)
floatx80 float32_to_floatx80(float32 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int aExp;
uint32_t aSig;
@@ -4524,7 +4474,7 @@ floatx80 float32_to_floatx80(float32 a, float_status *status)
float128 float32_to_float128(float32 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int aExp;
uint32_t aSig;
@@ -4555,7 +4505,7 @@ float128 float32_to_float128(float32 a, float_status *status)
float32 float32_rem(float32 a, float32 b, float_status *status)
{
- flag aSign, zSign;
+ bool aSign, zSign;
int aExp, bExp, expDiff;
uint32_t aSig, bSig;
uint32_t q;
@@ -4690,7 +4640,7 @@ static const float64 float32_exp2_coefficients[15] =
float32 float32_exp2(float32 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int aExp;
uint32_t aSig;
float64 r, x, xn;
@@ -4740,7 +4690,7 @@ float32 float32_exp2(float32 a, float_status *status)
*----------------------------------------------------------------------------*/
float32 float32_log2(float32 a, float_status *status)
{
- flag aSign, zSign;
+ bool aSign, zSign;
int aExp;
uint32_t aSig, zSig, i;
@@ -4784,222 +4734,6 @@ float32 float32_log2(float32 a, float_status *status)
}
/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_eq(float32 a, float32 b, float_status *status)
-{
- uint32_t av, bv;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- av = float32_val(a);
- bv = float32_val(b);
- return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is less than
-| or equal to the corresponding value `b', and 0 otherwise. The invalid
-| exception is raised if either operand is a NaN. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_le(float32 a, float32 b, float_status *status)
-{
- flag aSign, bSign;
- uint32_t av, bv;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- av = float32_val(a);
- bv = float32_val(b);
- if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
- return ( av == bv ) || ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. The comparison is performed according
-| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_lt(float32 a, float32 b, float_status *status)
-{
- flag aSign, bSign;
- uint32_t av, bv;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- av = float32_val(a);
- bv = float32_val(b);
- if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
- return ( av != bv ) && ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point values `a' and `b' cannot
-| be compared, and 0 otherwise. The invalid exception is raised if either
-| operand is a NaN. The comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_unordered(float32 a, float32 b, float_status *status)
-{
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 1;
- }
- return 0;
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-| exception. The comparison is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_eq_quiet(float32 a, float32 b, float_status *status)
-{
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if (float32_is_signaling_nan(a, status)
- || float32_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- return ( float32_val(a) == float32_val(b) ) ||
- ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is less than or
-| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
-| cause an exception. Otherwise, the comparison is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_le_quiet(float32 a, float32 b, float_status *status)
-{
- flag aSign, bSign;
- uint32_t av, bv;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if (float32_is_signaling_nan(a, status)
- || float32_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- av = float32_val(a);
- bv = float32_val(b);
- if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
- return ( av == bv ) || ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-| exception. Otherwise, the comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_lt_quiet(float32 a, float32 b, float_status *status)
-{
- flag aSign, bSign;
- uint32_t av, bv;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if (float32_is_signaling_nan(a, status)
- || float32_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- av = float32_val(a);
- bv = float32_val(b);
- if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
- return ( av != bv ) && ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point values `a' and `b' cannot
-| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
-| comparison is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_unordered_quiet(float32 a, float32 b, float_status *status)
-{
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if (float32_is_signaling_nan(a, status)
- || float32_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 1;
- }
- return 0;
-}
-
-/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the extended double-precision floating-point format. The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
@@ -5008,7 +4742,7 @@ int float32_unordered_quiet(float32 a, float32 b, float_status *status)
floatx80 float64_to_floatx80(float64 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int aExp;
uint64_t aSig;
@@ -5045,7 +4779,7 @@ floatx80 float64_to_floatx80(float64 a, float_status *status)
float128 float64_to_float128(float64 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int aExp;
uint64_t aSig, zSig0, zSig1;
@@ -5078,7 +4812,7 @@ float128 float64_to_float128(float64 a, float_status *status)
float64 float64_rem(float64 a, float64 b, float_status *status)
{
- flag aSign, zSign;
+ bool aSign, zSign;
int aExp, bExp, expDiff;
uint64_t aSig, bSig;
uint64_t q, alternateASig;
@@ -5165,7 +4899,7 @@ float64 float64_rem(float64 a, float64 b, float_status *status)
*----------------------------------------------------------------------------*/
float64 float64_log2(float64 a, float_status *status)
{
- flag aSign, zSign;
+ bool aSign, zSign;
int aExp;
uint64_t aSig, aSig0, aSig1, zSig, i;
a = float64_squash_input_denormal(a, status);
@@ -5208,226 +4942,6 @@ float64 float64_log2(float64 a, float_status *status)
}
/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is equal to the
-| corresponding value `b', and 0 otherwise. The invalid exception is raised
-| if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float64_eq(float64 a, float64 b, float_status *status)
-{
- uint64_t av, bv;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- av = float64_val(a);
- bv = float64_val(b);
- return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is less than or
-| equal to the corresponding value `b', and 0 otherwise. The invalid
-| exception is raised if either operand is a NaN. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float64_le(float64 a, float64 b, float_status *status)
-{
- flag aSign, bSign;
- uint64_t av, bv;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- av = float64_val(a);
- bv = float64_val(b);
- if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
- return ( av == bv ) || ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. The comparison is performed according
-| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float64_lt(float64 a, float64 b, float_status *status)
-{
- flag aSign, bSign;
- uint64_t av, bv;
-
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- av = float64_val(a);
- bv = float64_val(b);
- if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
- return ( av != bv ) && ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point values `a' and `b' cannot
-| be compared, and 0 otherwise. The invalid exception is raised if either
-| operand is a NaN. The comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float64_unordered(float64 a, float64 b, float_status *status)
-{
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 1;
- }
- return 0;
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is equal to the
-| corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-| exception.The comparison is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float64_eq_quiet(float64 a, float64 b, float_status *status)
-{
- uint64_t av, bv;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- if (float64_is_signaling_nan(a, status)
- || float64_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- av = float64_val(a);
- bv = float64_val(b);
- return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is less than or
-| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
-| cause an exception. Otherwise, the comparison is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float64_le_quiet(float64 a, float64 b, float_status *status)
-{
- flag aSign, bSign;
- uint64_t av, bv;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- if (float64_is_signaling_nan(a, status)
- || float64_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- av = float64_val(a);
- bv = float64_val(b);
- if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
- return ( av == bv ) || ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-| exception. Otherwise, the comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float64_lt_quiet(float64 a, float64 b, float_status *status)
-{
- flag aSign, bSign;
- uint64_t av, bv;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- if (float64_is_signaling_nan(a, status)
- || float64_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- av = float64_val(a);
- bv = float64_val(b);
- if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
- return ( av != bv ) && ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point values `a' and `b' cannot
-| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
-| comparison is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float64_unordered_quiet(float64 a, float64 b, float_status *status)
-{
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- if (float64_is_signaling_nan(a, status)
- || float64_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 1;
- }
- return 0;
-}
-
-/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format. The
| conversion is performed according to the IEC/IEEE Standard for Binary
@@ -5439,7 +4953,7 @@ int float64_unordered_quiet(float64 a, float64 b, float_status *status)
int32_t floatx80_to_int32(floatx80 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp, shiftCount;
uint64_t aSig;
@@ -5470,7 +4984,7 @@ int32_t floatx80_to_int32(floatx80 a, float_status *status)
int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp, shiftCount;
uint64_t aSig, savedASig;
int32_t z;
@@ -5521,7 +5035,7 @@ int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
int64_t floatx80_to_int64(floatx80 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp, shiftCount;
uint64_t aSig, aSigExtra;
@@ -5562,7 +5076,7 @@ int64_t floatx80_to_int64(floatx80 a, float_status *status)
int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp, shiftCount;
uint64_t aSig;
int64_t z;
@@ -5609,7 +5123,7 @@ int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
float32 floatx80_to_float32(floatx80 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp;
uint64_t aSig;
@@ -5643,7 +5157,7 @@ float32 floatx80_to_float32(floatx80 a, float_status *status)
float64 floatx80_to_float64(floatx80 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp;
uint64_t aSig, zSig;
@@ -5677,7 +5191,7 @@ float64 floatx80_to_float64(floatx80 a, float_status *status)
float128 floatx80_to_float128(floatx80 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int aExp;
uint64_t aSig, zSig0, zSig1;
@@ -5723,7 +5237,7 @@ floatx80 floatx80_round(floatx80 a, float_status *status)
floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp;
uint64_t lastBitMask, roundBitsMask;
floatx80 z;
@@ -5768,6 +5282,11 @@ floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
return
aSign ? packFloatx80( 1, 0, 0 )
: packFloatx80( 0, 0x3FFF, UINT64_C(0x8000000000000000));
+
+ case float_round_to_zero:
+ break;
+ default:
+ g_assert_not_reached();
}
return packFloatx80( aSign, 0, 0 );
}
@@ -5820,7 +5339,7 @@ floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
+static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, bool zSign,
float_status *status)
{
int32_t aExp, bExp, zExp;
@@ -5900,7 +5419,7 @@ static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
+static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, bool zSign,
float_status *status)
{
int32_t aExp, bExp, zExp;
@@ -5969,7 +5488,7 @@ static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
{
- flag aSign, bSign;
+ bool aSign, bSign;
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
float_raise(float_flag_invalid, status);
@@ -5994,7 +5513,7 @@ floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
{
- flag aSign, bSign;
+ bool aSign, bSign;
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
float_raise(float_flag_invalid, status);
@@ -6019,7 +5538,7 @@ floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
{
- flag aSign, bSign, zSign;
+ bool aSign, bSign, zSign;
int32_t aExp, bExp, zExp;
uint64_t aSig, bSig, zSig0, zSig1;
@@ -6081,7 +5600,7 @@ floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
{
- flag aSign, bSign, zSign;
+ bool aSign, bSign, zSign;
int32_t aExp, bExp, zExp;
uint64_t aSig, bSig, zSig0, zSig1;
uint64_t rem0, rem1, rem2, term0, term1, term2;
@@ -6168,7 +5687,7 @@ floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
{
- flag aSign, zSign;
+ bool aSign, zSign;
int32_t aExp, bExp, expDiff;
uint64_t aSig0, aSig1, bSig;
uint64_t q, term0, term1, alternateASig0, alternateASig1;
@@ -6267,7 +5786,7 @@ floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
floatx80 floatx80_sqrt(floatx80 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp, zExp;
uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
@@ -6331,263 +5850,6 @@ floatx80 floatx80_sqrt(floatx80 a, float_status *status)
}
/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is equal
-| to the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
-{
-
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
- || (extractFloatx80Exp(a) == 0x7FFF
- && (uint64_t) (extractFloatx80Frac(a) << 1))
- || (extractFloatx80Exp(b) == 0x7FFF
- && (uint64_t) (extractFloatx80Frac(b) << 1))
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is
-| less than or equal to the corresponding value `b', and 0 otherwise. The
-| invalid exception is raised if either operand is a NaN. The comparison is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int floatx80_le(floatx80 a, floatx80 b, float_status *status)
-{
- flag aSign, bSign;
-
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
- || (extractFloatx80Exp(a) == 0x7FFF
- && (uint64_t) (extractFloatx80Frac(a) << 1))
- || (extractFloatx80Exp(b) == 0x7FFF
- && (uint64_t) (extractFloatx80Frac(b) << 1))
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is
-| less than the corresponding value `b', and 0 otherwise. The invalid
-| exception is raised if either operand is a NaN. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
-{
- flag aSign, bSign;
-
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
- || (extractFloatx80Exp(a) == 0x7FFF
- && (uint64_t) (extractFloatx80Frac(a) << 1))
- || (extractFloatx80Exp(b) == 0x7FFF
- && (uint64_t) (extractFloatx80Frac(b) << 1))
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point values `a' and `b'
-| cannot be compared, and 0 otherwise. The invalid exception is raised if
-| either operand is a NaN. The comparison is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
-{
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
- || (extractFloatx80Exp(a) == 0x7FFF
- && (uint64_t) (extractFloatx80Frac(a) << 1))
- || (extractFloatx80Exp(b) == 0x7FFF
- && (uint64_t) (extractFloatx80Frac(b) << 1))
- ) {
- float_raise(float_flag_invalid, status);
- return 1;
- }
- return 0;
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is
-| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
-| cause an exception. The comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
-{
-
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if (floatx80_is_signaling_nan(a, status)
- || floatx80_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is less
-| than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
-| do not cause an exception. Otherwise, the comparison is performed according
-| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
-{
- flag aSign, bSign;
-
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if (floatx80_is_signaling_nan(a, status)
- || floatx80_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is less
-| than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
-| an exception. Otherwise, the comparison is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
-{
- flag aSign, bSign;
-
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if (floatx80_is_signaling_nan(a, status)
- || floatx80_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point values `a' and `b'
-| cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception.
-| The comparison is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
-{
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
- float_raise(float_flag_invalid, status);
- return 1;
- }
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if (floatx80_is_signaling_nan(a, status)
- || floatx80_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 1;
- }
- return 0;
-}
-
-/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format. The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
@@ -6599,7 +5861,7 @@ int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
int32_t float128_to_int32(float128 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp, shiftCount;
uint64_t aSig0, aSig1;
@@ -6628,7 +5890,7 @@ int32_t float128_to_int32(float128 a, float_status *status)
int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp, shiftCount;
uint64_t aSig0, aSig1, savedASig;
int32_t z;
@@ -6678,7 +5940,7 @@ int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
int64_t float128_to_int64(float128 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp, shiftCount;
uint64_t aSig0, aSig1;
@@ -6721,7 +5983,7 @@ int64_t float128_to_int64(float128 a, float_status *status)
int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp, shiftCount;
uint64_t aSig0, aSig1;
int64_t z;
@@ -6786,7 +6048,7 @@ int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
uint64_t float128_to_uint64(float128 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int aExp;
int shiftCount;
uint64_t aSig0, aSig1;
@@ -6897,7 +6159,7 @@ uint32_t float128_to_uint32(float128 a, float_status *status)
float32 float128_to_float32(float128 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp;
uint64_t aSig0, aSig1;
uint32_t zSig;
@@ -6932,7 +6194,7 @@ float32 float128_to_float32(float128 a, float_status *status)
float64 float128_to_float64(float128 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp;
uint64_t aSig0, aSig1;
@@ -6965,7 +6227,7 @@ float64 float128_to_float64(float128 a, float_status *status)
floatx80 float128_to_floatx80(float128 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp;
uint64_t aSig0, aSig1;
@@ -7003,7 +6265,7 @@ floatx80 float128_to_floatx80(float128 a, float_status *status)
float128 float128_round_to_int(float128 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp;
uint64_t lastBitMask, roundBitsMask;
float128 z;
@@ -7100,6 +6362,9 @@ float128 float128_round_to_int(float128 a, float_status *status)
case float_round_to_odd:
return packFloat128(aSign, 0x3FFF, 0, 0);
+
+ case float_round_to_zero:
+ break;
}
return packFloat128( aSign, 0, 0, 0 );
}
@@ -7158,7 +6423,7 @@ float128 float128_round_to_int(float128 a, float_status *status)
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
+static float128 addFloat128Sigs(float128 a, float128 b, bool zSign,
float_status *status)
{
int32_t aExp, bExp, zExp;
@@ -7249,7 +6514,7 @@ static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
+static float128 subFloat128Sigs(float128 a, float128 b, bool zSign,
float_status *status)
{
int32_t aExp, bExp, zExp;
@@ -7337,7 +6602,7 @@ static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
float128 float128_add(float128 a, float128 b, float_status *status)
{
- flag aSign, bSign;
+ bool aSign, bSign;
aSign = extractFloat128Sign( a );
bSign = extractFloat128Sign( b );
@@ -7358,7 +6623,7 @@ float128 float128_add(float128 a, float128 b, float_status *status)
float128 float128_sub(float128 a, float128 b, float_status *status)
{
- flag aSign, bSign;
+ bool aSign, bSign;
aSign = extractFloat128Sign( a );
bSign = extractFloat128Sign( b );
@@ -7379,7 +6644,7 @@ float128 float128_sub(float128 a, float128 b, float_status *status)
float128 float128_mul(float128 a, float128 b, float_status *status)
{
- flag aSign, bSign, zSign;
+ bool aSign, bSign, zSign;
int32_t aExp, bExp, zExp;
uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
@@ -7442,7 +6707,7 @@ float128 float128_mul(float128 a, float128 b, float_status *status)
float128 float128_div(float128 a, float128 b, float_status *status)
{
- flag aSign, bSign, zSign;
+ bool aSign, bSign, zSign;
int32_t aExp, bExp, zExp;
uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
@@ -7529,7 +6794,7 @@ float128 float128_div(float128 a, float128 b, float_status *status)
float128 float128_rem(float128 a, float128 b, float_status *status)
{
- flag aSign, zSign;
+ bool aSign, zSign;
int32_t aExp, bExp, expDiff;
uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
@@ -7636,7 +6901,7 @@ float128 float128_rem(float128 a, float128 b, float_status *status)
float128 float128_sqrt(float128 a, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp, zExp;
uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
@@ -7696,248 +6961,11 @@ float128 float128_sqrt(float128 a, float_status *status)
}
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float128_eq(float128 a, float128 b, float_status *status)
-{
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| or equal to the corresponding value `b', and 0 otherwise. The invalid
-| exception is raised if either operand is a NaN. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float128_le(float128 a, float128 b, float_status *status)
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. The comparison is performed according
-| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float128_lt(float128 a, float128 b, float_status *status)
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
-| be compared, and 0 otherwise. The invalid exception is raised if either
-| operand is a NaN. The comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float128_unordered(float128 a, float128 b, float_status *status)
-{
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 1;
- }
- return 0;
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-| exception. The comparison is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float128_eq_quiet(float128 a, float128 b, float_status *status)
-{
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if (float128_is_signaling_nan(a, status)
- || float128_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
-| cause an exception. Otherwise, the comparison is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float128_le_quiet(float128 a, float128 b, float_status *status)
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if (float128_is_signaling_nan(a, status)
- || float128_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-| exception. Otherwise, the comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float128_lt_quiet(float128 a, float128 b, float_status *status)
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if (float128_is_signaling_nan(a, status)
- || float128_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
-| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
-| comparison is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float128_unordered_quiet(float128 a, float128 b, float_status *status)
-{
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if (float128_is_signaling_nan(a, status)
- || float128_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 1;
- }
- return 0;
-}
-
-static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
- int is_quiet, float_status *status)
+static inline FloatRelation
+floatx80_compare_internal(floatx80 a, floatx80 b, bool is_quiet,
+ float_status *status)
{
- flag aSign, bSign;
+ bool aSign, bSign;
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
float_raise(float_flag_invalid, status);
@@ -7981,20 +7009,22 @@ static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
}
}
-int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
+FloatRelation floatx80_compare(floatx80 a, floatx80 b, float_status *status)
{
return floatx80_compare_internal(a, b, 0, status);
}
-int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
+FloatRelation floatx80_compare_quiet(floatx80 a, floatx80 b,
+ float_status *status)
{
return floatx80_compare_internal(a, b, 1, status);
}
-static inline int float128_compare_internal(float128 a, float128 b,
- int is_quiet, float_status *status)
+static inline FloatRelation
+float128_compare_internal(float128 a, float128 b, bool is_quiet,
+ float_status *status)
{
- flag aSign, bSign;
+ bool aSign, bSign;
if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
@@ -8025,19 +7055,20 @@ static inline int float128_compare_internal(float128 a, float128 b,
}
}
-int float128_compare(float128 a, float128 b, float_status *status)
+FloatRelation float128_compare(float128 a, float128 b, float_status *status)
{
return float128_compare_internal(a, b, 0, status);
}
-int float128_compare_quiet(float128 a, float128 b, float_status *status)
+FloatRelation float128_compare_quiet(float128 a, float128 b,
+ float_status *status)
{
return float128_compare_internal(a, b, 1, status);
}
floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp;
uint64_t aSig;
@@ -8076,7 +7107,7 @@ floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
float128 float128_scalbn(float128 a, int n, float_status *status)
{
- flag aSign;
+ bool aSign;
int32_t aExp;
uint64_t aSig0, aSig1;