aboutsummaryrefslogtreecommitdiff
path: root/disas/libvixl/a64/instructions-a64.h
diff options
context:
space:
mode:
Diffstat (limited to 'disas/libvixl/a64/instructions-a64.h')
-rw-r--r--disas/libvixl/a64/instructions-a64.h384
1 files changed, 0 insertions, 384 deletions
diff --git a/disas/libvixl/a64/instructions-a64.h b/disas/libvixl/a64/instructions-a64.h
deleted file mode 100644
index f1d883ccc7..0000000000
--- a/disas/libvixl/a64/instructions-a64.h
+++ /dev/null
@@ -1,384 +0,0 @@
-// Copyright 2013, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef VIXL_A64_INSTRUCTIONS_A64_H_
-#define VIXL_A64_INSTRUCTIONS_A64_H_
-
-#include "globals.h"
-#include "utils.h"
-#include "a64/constants-a64.h"
-
-namespace vixl {
-// ISA constants. --------------------------------------------------------------
-
-typedef uint32_t Instr;
-const unsigned kInstructionSize = 4;
-const unsigned kInstructionSizeLog2 = 2;
-const unsigned kLiteralEntrySize = 4;
-const unsigned kLiteralEntrySizeLog2 = 2;
-const unsigned kMaxLoadLiteralRange = 1 * MBytes;
-
-// This is the nominal page size (as used by the adrp instruction); the actual
-// size of the memory pages allocated by the kernel is likely to differ.
-const unsigned kPageSize = 4 * KBytes;
-const unsigned kPageSizeLog2 = 12;
-
-const unsigned kWRegSize = 32;
-const unsigned kWRegSizeLog2 = 5;
-const unsigned kWRegSizeInBytes = kWRegSize / 8;
-const unsigned kWRegSizeInBytesLog2 = kWRegSizeLog2 - 3;
-const unsigned kXRegSize = 64;
-const unsigned kXRegSizeLog2 = 6;
-const unsigned kXRegSizeInBytes = kXRegSize / 8;
-const unsigned kXRegSizeInBytesLog2 = kXRegSizeLog2 - 3;
-const unsigned kSRegSize = 32;
-const unsigned kSRegSizeLog2 = 5;
-const unsigned kSRegSizeInBytes = kSRegSize / 8;
-const unsigned kSRegSizeInBytesLog2 = kSRegSizeLog2 - 3;
-const unsigned kDRegSize = 64;
-const unsigned kDRegSizeLog2 = 6;
-const unsigned kDRegSizeInBytes = kDRegSize / 8;
-const unsigned kDRegSizeInBytesLog2 = kDRegSizeLog2 - 3;
-const uint64_t kWRegMask = UINT64_C(0xffffffff);
-const uint64_t kXRegMask = UINT64_C(0xffffffffffffffff);
-const uint64_t kSRegMask = UINT64_C(0xffffffff);
-const uint64_t kDRegMask = UINT64_C(0xffffffffffffffff);
-const uint64_t kSSignMask = UINT64_C(0x80000000);
-const uint64_t kDSignMask = UINT64_C(0x8000000000000000);
-const uint64_t kWSignMask = UINT64_C(0x80000000);
-const uint64_t kXSignMask = UINT64_C(0x8000000000000000);
-const uint64_t kByteMask = UINT64_C(0xff);
-const uint64_t kHalfWordMask = UINT64_C(0xffff);
-const uint64_t kWordMask = UINT64_C(0xffffffff);
-const uint64_t kXMaxUInt = UINT64_C(0xffffffffffffffff);
-const uint64_t kWMaxUInt = UINT64_C(0xffffffff);
-const int64_t kXMaxInt = INT64_C(0x7fffffffffffffff);
-const int64_t kXMinInt = INT64_C(0x8000000000000000);
-const int32_t kWMaxInt = INT32_C(0x7fffffff);
-const int32_t kWMinInt = INT32_C(0x80000000);
-const unsigned kLinkRegCode = 30;
-const unsigned kZeroRegCode = 31;
-const unsigned kSPRegInternalCode = 63;
-const unsigned kRegCodeMask = 0x1f;
-
-const unsigned kAddressTagOffset = 56;
-const unsigned kAddressTagWidth = 8;
-const uint64_t kAddressTagMask =
- ((UINT64_C(1) << kAddressTagWidth) - 1) << kAddressTagOffset;
-VIXL_STATIC_ASSERT(kAddressTagMask == UINT64_C(0xff00000000000000));
-
-// AArch64 floating-point specifics. These match IEEE-754.
-const unsigned kDoubleMantissaBits = 52;
-const unsigned kDoubleExponentBits = 11;
-const unsigned kFloatMantissaBits = 23;
-const unsigned kFloatExponentBits = 8;
-
-// Floating-point infinity values.
-extern const float kFP32PositiveInfinity;
-extern const float kFP32NegativeInfinity;
-extern const double kFP64PositiveInfinity;
-extern const double kFP64NegativeInfinity;
-
-// The default NaN values (for FPCR.DN=1).
-extern const double kFP64DefaultNaN;
-extern const float kFP32DefaultNaN;
-
-
-enum LSDataSize {
- LSByte = 0,
- LSHalfword = 1,
- LSWord = 2,
- LSDoubleWord = 3
-};
-
-LSDataSize CalcLSPairDataSize(LoadStorePairOp op);
-
-enum ImmBranchType {
- UnknownBranchType = 0,
- CondBranchType = 1,
- UncondBranchType = 2,
- CompareBranchType = 3,
- TestBranchType = 4
-};
-
-enum AddrMode {
- Offset,
- PreIndex,
- PostIndex
-};
-
-enum FPRounding {
- // The first four values are encodable directly by FPCR<RMode>.
- FPTieEven = 0x0,
- FPPositiveInfinity = 0x1,
- FPNegativeInfinity = 0x2,
- FPZero = 0x3,
-
- // The final rounding mode is only available when explicitly specified by the
- // instruction (such as with fcvta). It cannot be set in FPCR.
- FPTieAway
-};
-
-enum Reg31Mode {
- Reg31IsStackPointer,
- Reg31IsZeroRegister
-};
-
-// Instructions. ---------------------------------------------------------------
-
-class Instruction {
- public:
- Instr InstructionBits() const {
- return *(reinterpret_cast<const Instr*>(this));
- }
-
- void SetInstructionBits(Instr new_instr) {
- *(reinterpret_cast<Instr*>(this)) = new_instr;
- }
-
- int Bit(int pos) const {
- return (InstructionBits() >> pos) & 1;
- }
-
- uint32_t Bits(int msb, int lsb) const {
- return unsigned_bitextract_32(msb, lsb, InstructionBits());
- }
-
- int32_t SignedBits(int msb, int lsb) const {
- int32_t bits = *(reinterpret_cast<const int32_t*>(this));
- return signed_bitextract_32(msb, lsb, bits);
- }
-
- Instr Mask(uint32_t mask) const {
- return InstructionBits() & mask;
- }
-
- #define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
- int64_t Name() const { return Func(HighBit, LowBit); }
- INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
- #undef DEFINE_GETTER
-
- // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
- // formed from ImmPCRelLo and ImmPCRelHi.
- int ImmPCRel() const {
- int const offset = ((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
- int const width = ImmPCRelLo_width + ImmPCRelHi_width;
- return signed_bitextract_32(width-1, 0, offset);
- }
-
- uint64_t ImmLogical() const;
- float ImmFP32() const;
- double ImmFP64() const;
-
- LSDataSize SizeLSPair() const {
- return CalcLSPairDataSize(
- static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
- }
-
- // Helpers.
- bool IsCondBranchImm() const {
- return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
- }
-
- bool IsUncondBranchImm() const {
- return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
- }
-
- bool IsCompareBranch() const {
- return Mask(CompareBranchFMask) == CompareBranchFixed;
- }
-
- bool IsTestBranch() const {
- return Mask(TestBranchFMask) == TestBranchFixed;
- }
-
- bool IsPCRelAddressing() const {
- return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
- }
-
- bool IsLogicalImmediate() const {
- return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
- }
-
- bool IsAddSubImmediate() const {
- return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
- }
-
- bool IsAddSubExtended() const {
- return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
- }
-
- bool IsLoadOrStore() const {
- return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
- }
-
- bool IsLoad() const;
- bool IsStore() const;
-
- bool IsLoadLiteral() const {
- // This includes PRFM_lit.
- return Mask(LoadLiteralFMask) == LoadLiteralFixed;
- }
-
- bool IsMovn() const {
- return (Mask(MoveWideImmediateMask) == MOVN_x) ||
- (Mask(MoveWideImmediateMask) == MOVN_w);
- }
-
- // Indicate whether Rd can be the stack pointer or the zero register. This
- // does not check that the instruction actually has an Rd field.
- Reg31Mode RdMode() const {
- // The following instructions use sp or wsp as Rd:
- // Add/sub (immediate) when not setting the flags.
- // Add/sub (extended) when not setting the flags.
- // Logical (immediate) when not setting the flags.
- // Otherwise, r31 is the zero register.
- if (IsAddSubImmediate() || IsAddSubExtended()) {
- if (Mask(AddSubSetFlagsBit)) {
- return Reg31IsZeroRegister;
- } else {
- return Reg31IsStackPointer;
- }
- }
- if (IsLogicalImmediate()) {
- // Of the logical (immediate) instructions, only ANDS (and its aliases)
- // can set the flags. The others can all write into sp.
- // Note that some logical operations are not available to
- // immediate-operand instructions, so we have to combine two masks here.
- if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
- return Reg31IsZeroRegister;
- } else {
- return Reg31IsStackPointer;
- }
- }
- return Reg31IsZeroRegister;
- }
-
- // Indicate whether Rn can be the stack pointer or the zero register. This
- // does not check that the instruction actually has an Rn field.
- Reg31Mode RnMode() const {
- // The following instructions use sp or wsp as Rn:
- // All loads and stores.
- // Add/sub (immediate).
- // Add/sub (extended).
- // Otherwise, r31 is the zero register.
- if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
- return Reg31IsStackPointer;
- }
- return Reg31IsZeroRegister;
- }
-
- ImmBranchType BranchType() const {
- if (IsCondBranchImm()) {
- return CondBranchType;
- } else if (IsUncondBranchImm()) {
- return UncondBranchType;
- } else if (IsCompareBranch()) {
- return CompareBranchType;
- } else if (IsTestBranch()) {
- return TestBranchType;
- } else {
- return UnknownBranchType;
- }
- }
-
- // Find the target of this instruction. 'this' may be a branch or a
- // PC-relative addressing instruction.
- const Instruction* ImmPCOffsetTarget() const;
-
- // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
- // a PC-relative addressing instruction.
- void SetImmPCOffsetTarget(const Instruction* target);
- // Patch a literal load instruction to load from 'source'.
- void SetImmLLiteral(const Instruction* source);
-
- // Calculate the address of a literal referred to by a load-literal
- // instruction, and return it as the specified type.
- //
- // The literal itself is safely mutable only if the backing buffer is safely
- // mutable.
- template <typename T>
- T LiteralAddress() const {
- uint64_t base_raw = reinterpret_cast<uintptr_t>(this);
- ptrdiff_t offset = ImmLLiteral() << kLiteralEntrySizeLog2;
- uint64_t address_raw = base_raw + offset;
-
- // Cast the address using a C-style cast. A reinterpret_cast would be
- // appropriate, but it can't cast one integral type to another.
- T address = (T)(address_raw);
-
- // Assert that the address can be represented by the specified type.
- VIXL_ASSERT((uint64_t)(address) == address_raw);
-
- return address;
- }
-
- uint32_t Literal32() const {
- uint32_t literal;
- memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
- return literal;
- }
-
- uint64_t Literal64() const {
- uint64_t literal;
- memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
- return literal;
- }
-
- float LiteralFP32() const {
- return rawbits_to_float(Literal32());
- }
-
- double LiteralFP64() const {
- return rawbits_to_double(Literal64());
- }
-
- const Instruction* NextInstruction() const {
- return this + kInstructionSize;
- }
-
- const Instruction* InstructionAtOffset(int64_t offset) const {
- VIXL_ASSERT(IsWordAligned(this + offset));
- return this + offset;
- }
-
- template<typename T> static Instruction* Cast(T src) {
- return reinterpret_cast<Instruction*>(src);
- }
-
- template<typename T> static const Instruction* CastConst(T src) {
- return reinterpret_cast<const Instruction*>(src);
- }
-
- private:
- int ImmBranch() const;
-
- void SetPCRelImmTarget(const Instruction* target);
- void SetBranchImmTarget(const Instruction* target);
-};
-} // namespace vixl
-
-#endif // VIXL_A64_INSTRUCTIONS_A64_H_