aboutsummaryrefslogtreecommitdiff
path: root/accel/kvm/kvm-all.c
diff options
context:
space:
mode:
Diffstat (limited to 'accel/kvm/kvm-all.c')
-rw-r--r--accel/kvm/kvm-all.c2442
1 files changed, 1963 insertions, 479 deletions
diff --git a/accel/kvm/kvm-all.c b/accel/kvm/kvm-all.c
index 4e1de942ce..a8cecd040e 100644
--- a/accel/kvm/kvm-all.c
+++ b/accel/kvm/kvm-all.c
@@ -15,33 +15,42 @@
#include "qemu/osdep.h"
#include <sys/ioctl.h>
+#include <poll.h>
#include <linux/kvm.h>
-#include "qemu-common.h"
#include "qemu/atomic.h"
#include "qemu/option.h"
#include "qemu/config-file.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
-#include "hw/hw.h"
#include "hw/pci/msi.h"
#include "hw/pci/msix.h"
#include "hw/s390x/adapter.h"
#include "exec/gdbstub.h"
#include "sysemu/kvm_int.h"
+#include "sysemu/runstate.h"
#include "sysemu/cpus.h"
+#include "sysemu/accel-blocker.h"
#include "qemu/bswap.h"
#include "exec/memory.h"
#include "exec/ram_addr.h"
-#include "exec/address-spaces.h"
#include "qemu/event_notifier.h"
+#include "qemu/main-loop.h"
#include "trace.h"
#include "hw/irq.h"
-#include "sysemu/sev.h"
-#include "sysemu/balloon.h"
+#include "qapi/visitor.h"
+#include "qapi/qapi-types-common.h"
+#include "qapi/qapi-visit-common.h"
+#include "sysemu/reset.h"
+#include "qemu/guest-random.h"
+#include "sysemu/hw_accel.h"
+#include "kvm-cpus.h"
+#include "sysemu/dirtylimit.h"
+#include "qemu/range.h"
#include "hw/boards.h"
+#include "sysemu/stats.h"
/* This check must be after config-host.h is included */
#ifdef CONFIG_EVENTFD
@@ -51,19 +60,14 @@
/* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
* need to use the real host PAGE_SIZE, as that's what KVM will use.
*/
-#define PAGE_SIZE getpagesize()
-
-//#define DEBUG_KVM
-
-#ifdef DEBUG_KVM
-#define DPRINTF(fmt, ...) \
- do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
-#else
-#define DPRINTF(fmt, ...) \
- do { } while (0)
+#ifdef PAGE_SIZE
+#undef PAGE_SIZE
#endif
+#define PAGE_SIZE qemu_real_host_page_size()
-#define KVM_MSI_HASHTAB_SIZE 256
+#ifndef KVM_GUESTDBG_BLOCKIRQ
+#define KVM_GUESTDBG_BLOCKIRQ 0
+#endif
struct KVMParkedVcpu {
unsigned long vcpu_id;
@@ -71,54 +75,11 @@ struct KVMParkedVcpu {
QLIST_ENTRY(KVMParkedVcpu) node;
};
-struct KVMState
-{
- AccelState parent_obj;
-
- int nr_slots;
- int fd;
- int vmfd;
- int coalesced_mmio;
- int coalesced_pio;
- struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
- bool coalesced_flush_in_progress;
- int vcpu_events;
- int robust_singlestep;
- int debugregs;
-#ifdef KVM_CAP_SET_GUEST_DEBUG
- QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
-#endif
- int many_ioeventfds;
- int intx_set_mask;
- bool sync_mmu;
- /* The man page (and posix) say ioctl numbers are signed int, but
- * they're not. Linux, glibc and *BSD all treat ioctl numbers as
- * unsigned, and treating them as signed here can break things */
- unsigned irq_set_ioctl;
- unsigned int sigmask_len;
- GHashTable *gsimap;
-#ifdef KVM_CAP_IRQ_ROUTING
- struct kvm_irq_routing *irq_routes;
- int nr_allocated_irq_routes;
- unsigned long *used_gsi_bitmap;
- unsigned int gsi_count;
- QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
-#endif
- KVMMemoryListener memory_listener;
- QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
-
- /* memory encryption */
- void *memcrypt_handle;
- int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
-};
-
KVMState *kvm_state;
bool kvm_kernel_irqchip;
bool kvm_split_irqchip;
bool kvm_async_interrupts_allowed;
bool kvm_halt_in_kernel_allowed;
-bool kvm_eventfds_allowed;
-bool kvm_irqfds_allowed;
bool kvm_resamplefds_allowed;
bool kvm_msi_via_irqfd_allowed;
bool kvm_gsi_routing_allowed;
@@ -126,45 +87,108 @@ bool kvm_gsi_direct_mapping;
bool kvm_allowed;
bool kvm_readonly_mem_allowed;
bool kvm_vm_attributes_allowed;
-bool kvm_direct_msi_allowed;
-bool kvm_ioeventfd_any_length_allowed;
bool kvm_msi_use_devid;
+static bool kvm_has_guest_debug;
+static int kvm_sstep_flags;
static bool kvm_immediate_exit;
+static hwaddr kvm_max_slot_size = ~0;
static const KVMCapabilityInfo kvm_required_capabilites[] = {
KVM_CAP_INFO(USER_MEMORY),
KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
+ KVM_CAP_INFO(INTERNAL_ERROR_DATA),
+ KVM_CAP_INFO(IOEVENTFD),
+ KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH),
KVM_CAP_LAST_INFO
};
-int kvm_get_max_memslots(void)
+static NotifierList kvm_irqchip_change_notifiers =
+ NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
+
+struct KVMResampleFd {
+ int gsi;
+ EventNotifier *resample_event;
+ QLIST_ENTRY(KVMResampleFd) node;
+};
+typedef struct KVMResampleFd KVMResampleFd;
+
+/*
+ * Only used with split irqchip where we need to do the resample fd
+ * kick for the kernel from userspace.
+ */
+static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
+ QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
+
+static QemuMutex kml_slots_lock;
+
+#define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
+#define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
+
+static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
+
+static inline void kvm_resample_fd_remove(int gsi)
{
- KVMState *s = KVM_STATE(current_machine->accelerator);
+ KVMResampleFd *rfd;
- return s->nr_slots;
+ QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
+ if (rfd->gsi == gsi) {
+ QLIST_REMOVE(rfd, node);
+ g_free(rfd);
+ break;
+ }
+ }
}
-bool kvm_memcrypt_enabled(void)
+static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
{
- if (kvm_state && kvm_state->memcrypt_handle) {
- return true;
+ KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
+
+ rfd->gsi = gsi;
+ rfd->resample_event = event;
+
+ QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
+}
+
+void kvm_resample_fd_notify(int gsi)
+{
+ KVMResampleFd *rfd;
+
+ QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
+ if (rfd->gsi == gsi) {
+ event_notifier_set(rfd->resample_event);
+ trace_kvm_resample_fd_notify(gsi);
+ return;
+ }
}
+}
- return false;
+unsigned int kvm_get_max_memslots(void)
+{
+ KVMState *s = KVM_STATE(current_accel());
+
+ return s->nr_slots;
}
-int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
+unsigned int kvm_get_free_memslots(void)
{
- if (kvm_state->memcrypt_handle &&
- kvm_state->memcrypt_encrypt_data) {
- return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
- ptr, len);
+ unsigned int used_slots = 0;
+ KVMState *s = kvm_state;
+ int i;
+
+ kvm_slots_lock();
+ for (i = 0; i < s->nr_as; i++) {
+ if (!s->as[i].ml) {
+ continue;
+ }
+ used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots);
}
+ kvm_slots_unlock();
- return 1;
+ return s->nr_slots - used_slots;
}
+/* Called with KVMMemoryListener.slots_lock held */
static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
{
KVMState *s = kvm_state;
@@ -179,13 +203,7 @@ static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
return NULL;
}
-bool kvm_has_free_slot(MachineState *ms)
-{
- KVMState *s = KVM_STATE(ms->accelerator);
-
- return kvm_get_free_slot(&s->memory_listener);
-}
-
+/* Called with KVMMemoryListener.slots_lock held */
static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
{
KVMSlot *slot = kvm_get_free_slot(kml);
@@ -230,32 +248,35 @@ static hwaddr kvm_align_section(MemoryRegionSection *section,
with sub-page size and unaligned start address. Pad the start
address to next and truncate size to previous page boundary. */
aligned = ROUND_UP(section->offset_within_address_space,
- qemu_real_host_page_size);
+ qemu_real_host_page_size());
delta = aligned - section->offset_within_address_space;
*start = aligned;
if (delta > size) {
return 0;
}
- return (size - delta) & qemu_real_host_page_mask;
+ return (size - delta) & qemu_real_host_page_mask();
}
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
hwaddr *phys_addr)
{
KVMMemoryListener *kml = &s->memory_listener;
- int i;
+ int i, ret = 0;
+ kvm_slots_lock();
for (i = 0; i < s->nr_slots; i++) {
KVMSlot *mem = &kml->slots[i];
if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
*phys_addr = mem->start_addr + (ram - mem->ram);
- return 1;
+ ret = 1;
+ break;
}
}
+ kvm_slots_unlock();
- return 0;
+ return ret;
}
static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
@@ -273,29 +294,44 @@ static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, boo
/* Set the slot size to 0 before setting the slot to the desired
* value. This is needed based on KVM commit 75d61fbc. */
mem.memory_size = 0;
- kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
+ ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
+ if (ret < 0) {
+ goto err;
+ }
}
mem.memory_size = slot->memory_size;
ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
slot->old_flags = mem.flags;
+err:
trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
mem.memory_size, mem.userspace_addr, ret);
+ if (ret < 0) {
+ error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
+ " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
+ __func__, mem.slot, slot->start_addr,
+ (uint64_t)mem.memory_size, strerror(errno));
+ }
return ret;
}
-int kvm_destroy_vcpu(CPUState *cpu)
+static int do_kvm_destroy_vcpu(CPUState *cpu)
{
KVMState *s = kvm_state;
long mmap_size;
struct KVMParkedVcpu *vcpu = NULL;
int ret = 0;
- DPRINTF("kvm_destroy_vcpu\n");
+ trace_kvm_destroy_vcpu();
+
+ ret = kvm_arch_destroy_vcpu(cpu);
+ if (ret < 0) {
+ goto err;
+ }
mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
if (mmap_size < 0) {
ret = mmap_size;
- DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
+ trace_kvm_failed_get_vcpu_mmap_size();
goto err;
}
@@ -304,6 +340,13 @@ int kvm_destroy_vcpu(CPUState *cpu)
goto err;
}
+ if (cpu->kvm_dirty_gfns) {
+ ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
+ if (ret < 0) {
+ goto err;
+ }
+ }
+
vcpu = g_malloc0(sizeof(*vcpu));
vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
vcpu->kvm_fd = cpu->kvm_fd;
@@ -312,6 +355,14 @@ err:
return ret;
}
+void kvm_destroy_vcpu(CPUState *cpu)
+{
+ if (do_kvm_destroy_vcpu(cpu) < 0) {
+ error_report("kvm_destroy_vcpu failed");
+ exit(EXIT_FAILURE);
+ }
+}
+
static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
{
struct KVMParkedVcpu *cpu;
@@ -330,28 +381,32 @@ static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
}
-int kvm_init_vcpu(CPUState *cpu)
+int kvm_init_vcpu(CPUState *cpu, Error **errp)
{
KVMState *s = kvm_state;
long mmap_size;
int ret;
- DPRINTF("kvm_init_vcpu\n");
+ trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
if (ret < 0) {
- DPRINTF("kvm_create_vcpu failed\n");
+ error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
+ kvm_arch_vcpu_id(cpu));
goto err;
}
cpu->kvm_fd = ret;
cpu->kvm_state = s;
cpu->vcpu_dirty = true;
+ cpu->dirty_pages = 0;
+ cpu->throttle_us_per_full = 0;
mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
if (mmap_size < 0) {
ret = mmap_size;
- DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
+ error_setg_errno(errp, -mmap_size,
+ "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
goto err;
}
@@ -359,7 +414,9 @@ int kvm_init_vcpu(CPUState *cpu)
cpu->kvm_fd, 0);
if (cpu->kvm_run == MAP_FAILED) {
ret = -errno;
- DPRINTF("mmap'ing vcpu state failed\n");
+ error_setg_errno(errp, ret,
+ "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
+ kvm_arch_vcpu_id(cpu));
goto err;
}
@@ -368,7 +425,26 @@ int kvm_init_vcpu(CPUState *cpu)
(void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
}
+ if (s->kvm_dirty_ring_size) {
+ /* Use MAP_SHARED to share pages with the kernel */
+ cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
+ PROT_READ | PROT_WRITE, MAP_SHARED,
+ cpu->kvm_fd,
+ PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
+ if (cpu->kvm_dirty_gfns == MAP_FAILED) {
+ ret = -errno;
+ goto err;
+ }
+ }
+
ret = kvm_arch_init_vcpu(cpu);
+ if (ret < 0) {
+ error_setg_errno(errp, -ret,
+ "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
+ kvm_arch_vcpu_id(cpu));
+ }
+ cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
+
err:
return ret;
}
@@ -391,6 +467,7 @@ static int kvm_mem_flags(MemoryRegion *mr)
return flags;
}
+/* Called with KVMMemoryListener.slots_lock held */
static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
MemoryRegion *mr)
{
@@ -401,27 +478,40 @@ static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
return 0;
}
+ kvm_slot_init_dirty_bitmap(mem);
return kvm_set_user_memory_region(kml, mem, false);
}
static int kvm_section_update_flags(KVMMemoryListener *kml,
MemoryRegionSection *section)
{
- hwaddr start_addr, size;
+ hwaddr start_addr, size, slot_size;
KVMSlot *mem;
+ int ret = 0;
size = kvm_align_section(section, &start_addr);
if (!size) {
return 0;
}
- mem = kvm_lookup_matching_slot(kml, start_addr, size);
- if (!mem) {
- /* We don't have a slot if we want to trap every access. */
- return 0;
+ kvm_slots_lock();
+
+ while (size && !ret) {
+ slot_size = MIN(kvm_max_slot_size, size);
+ mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
+ if (!mem) {
+ /* We don't have a slot if we want to trap every access. */
+ goto out;
+ }
+
+ ret = kvm_slot_update_flags(kml, mem, section->mr);
+ start_addr += slot_size;
+ size -= slot_size;
}
- return kvm_slot_update_flags(kml, mem, section->mr);
+out:
+ kvm_slots_unlock();
+ return ret;
}
static void kvm_log_start(MemoryListener *listener,
@@ -459,72 +549,481 @@ static void kvm_log_stop(MemoryListener *listener,
}
/* get kvm's dirty pages bitmap and update qemu's */
-static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
- unsigned long *bitmap)
+static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
{
- ram_addr_t start = section->offset_within_region +
- memory_region_get_ram_addr(section->mr);
- ram_addr_t pages = int128_get64(section->size) / getpagesize();
+ ram_addr_t start = slot->ram_start_offset;
+ ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
- cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
- return 0;
+ cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
+}
+
+static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
+{
+ memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
}
#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
+/* Allocate the dirty bitmap for a slot */
+static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
+{
+ if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
+ return;
+ }
+
+ /*
+ * XXX bad kernel interface alert
+ * For dirty bitmap, kernel allocates array of size aligned to
+ * bits-per-long. But for case when the kernel is 64bits and
+ * the userspace is 32bits, userspace can't align to the same
+ * bits-per-long, since sizeof(long) is different between kernel
+ * and user space. This way, userspace will provide buffer which
+ * may be 4 bytes less than the kernel will use, resulting in
+ * userspace memory corruption (which is not detectable by valgrind
+ * too, in most cases).
+ * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
+ * a hope that sizeof(long) won't become >8 any time soon.
+ *
+ * Note: the granule of kvm dirty log is qemu_real_host_page_size.
+ * And mem->memory_size is aligned to it (otherwise this mem can't
+ * be registered to KVM).
+ */
+ hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
+ /*HOST_LONG_BITS*/ 64) / 8;
+ mem->dirty_bmap = g_malloc0(bitmap_size);
+ mem->dirty_bmap_size = bitmap_size;
+}
+
+/*
+ * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
+ * succeeded, false otherwise
+ */
+static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
+{
+ struct kvm_dirty_log d = {};
+ int ret;
+
+ d.dirty_bitmap = slot->dirty_bmap;
+ d.slot = slot->slot | (slot->as_id << 16);
+ ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
+
+ if (ret == -ENOENT) {
+ /* kernel does not have dirty bitmap in this slot */
+ ret = 0;
+ }
+ if (ret) {
+ error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
+ __func__, ret);
+ }
+ return ret == 0;
+}
+
+/* Should be with all slots_lock held for the address spaces. */
+static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
+ uint32_t slot_id, uint64_t offset)
+{
+ KVMMemoryListener *kml;
+ KVMSlot *mem;
+
+ if (as_id >= s->nr_as) {
+ return;
+ }
+
+ kml = s->as[as_id].ml;
+ mem = &kml->slots[slot_id];
+
+ if (!mem->memory_size || offset >=
+ (mem->memory_size / qemu_real_host_page_size())) {
+ return;
+ }
+
+ set_bit(offset, mem->dirty_bmap);
+}
+
+static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
+{
+ /*
+ * Read the flags before the value. Pairs with barrier in
+ * KVM's kvm_dirty_ring_push() function.
+ */
+ return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
+}
+
+static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
+{
+ /*
+ * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
+ * sees the full content of the ring:
+ *
+ * CPU0 CPU1 CPU2
+ * ------------------------------------------------------------------------------
+ * fill gfn0
+ * store-rel flags for gfn0
+ * load-acq flags for gfn0
+ * store-rel RESET for gfn0
+ * ioctl(RESET_RINGS)
+ * load-acq flags for gfn0
+ * check if flags have RESET
+ *
+ * The synchronization goes from CPU2 to CPU0 to CPU1.
+ */
+ qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
+}
+
+/*
+ * Should be with all slots_lock held for the address spaces. It returns the
+ * dirty page we've collected on this dirty ring.
+ */
+static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
+{
+ struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
+ uint32_t ring_size = s->kvm_dirty_ring_size;
+ uint32_t count = 0, fetch = cpu->kvm_fetch_index;
+
+ /*
+ * It's possible that we race with vcpu creation code where the vcpu is
+ * put onto the vcpus list but not yet initialized the dirty ring
+ * structures. If so, skip it.
+ */
+ if (!cpu->created) {
+ return 0;
+ }
+
+ assert(dirty_gfns && ring_size);
+ trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
+
+ while (true) {
+ cur = &dirty_gfns[fetch % ring_size];
+ if (!dirty_gfn_is_dirtied(cur)) {
+ break;
+ }
+ kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
+ cur->offset);
+ dirty_gfn_set_collected(cur);
+ trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
+ fetch++;
+ count++;
+ }
+ cpu->kvm_fetch_index = fetch;
+ cpu->dirty_pages += count;
+
+ return count;
+}
+
+/* Must be with slots_lock held */
+static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
+{
+ int ret;
+ uint64_t total = 0;
+ int64_t stamp;
+
+ stamp = get_clock();
+
+ if (cpu) {
+ total = kvm_dirty_ring_reap_one(s, cpu);
+ } else {
+ CPU_FOREACH(cpu) {
+ total += kvm_dirty_ring_reap_one(s, cpu);
+ }
+ }
+
+ if (total) {
+ ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
+ assert(ret == total);
+ }
+
+ stamp = get_clock() - stamp;
+
+ if (total) {
+ trace_kvm_dirty_ring_reap(total, stamp / 1000);
+ }
+
+ return total;
+}
+
+/*
+ * Currently for simplicity, we must hold BQL before calling this. We can
+ * consider to drop the BQL if we're clear with all the race conditions.
+ */
+static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
+{
+ uint64_t total;
+
+ /*
+ * We need to lock all kvm slots for all address spaces here,
+ * because:
+ *
+ * (1) We need to mark dirty for dirty bitmaps in multiple slots
+ * and for tons of pages, so it's better to take the lock here
+ * once rather than once per page. And more importantly,
+ *
+ * (2) We must _NOT_ publish dirty bits to the other threads
+ * (e.g., the migration thread) via the kvm memory slot dirty
+ * bitmaps before correctly re-protect those dirtied pages.
+ * Otherwise we can have potential risk of data corruption if
+ * the page data is read in the other thread before we do
+ * reset below.
+ */
+ kvm_slots_lock();
+ total = kvm_dirty_ring_reap_locked(s, cpu);
+ kvm_slots_unlock();
+
+ return total;
+}
+
+static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
+{
+ /* No need to do anything */
+}
+
+/*
+ * Kick all vcpus out in a synchronized way. When returned, we
+ * guarantee that every vcpu has been kicked and at least returned to
+ * userspace once.
+ */
+static void kvm_cpu_synchronize_kick_all(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
+ }
+}
+
+/*
+ * Flush all the existing dirty pages to the KVM slot buffers. When
+ * this call returns, we guarantee that all the touched dirty pages
+ * before calling this function have been put into the per-kvmslot
+ * dirty bitmap.
+ *
+ * This function must be called with BQL held.
+ */
+static void kvm_dirty_ring_flush(void)
+{
+ trace_kvm_dirty_ring_flush(0);
+ /*
+ * The function needs to be serialized. Since this function
+ * should always be with BQL held, serialization is guaranteed.
+ * However, let's be sure of it.
+ */
+ assert(bql_locked());
+ /*
+ * First make sure to flush the hardware buffers by kicking all
+ * vcpus out in a synchronous way.
+ */
+ kvm_cpu_synchronize_kick_all();
+ kvm_dirty_ring_reap(kvm_state, NULL);
+ trace_kvm_dirty_ring_flush(1);
+}
+
/**
- * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
- * This function updates qemu's dirty bitmap using
- * memory_region_set_dirty(). This means all bits are set
- * to dirty.
+ * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
+ *
+ * This function will first try to fetch dirty bitmap from the kernel,
+ * and then updates qemu's dirty bitmap.
*
- * @start_add: start of logged region.
- * @end_addr: end of logged region.
+ * NOTE: caller must be with kml->slots_lock held.
+ *
+ * @kml: the KVM memory listener object
+ * @section: the memory section to sync the dirty bitmap with
*/
-static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
- MemoryRegionSection *section)
+static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
+ MemoryRegionSection *section)
{
KVMState *s = kvm_state;
- struct kvm_dirty_log d = {};
KVMSlot *mem;
hwaddr start_addr, size;
+ hwaddr slot_size;
size = kvm_align_section(section, &start_addr);
- if (size) {
- mem = kvm_lookup_matching_slot(kml, start_addr, size);
+ while (size) {
+ slot_size = MIN(kvm_max_slot_size, size);
+ mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
if (!mem) {
/* We don't have a slot if we want to trap every access. */
- return 0;
+ return;
}
+ if (kvm_slot_get_dirty_log(s, mem)) {
+ kvm_slot_sync_dirty_pages(mem);
+ }
+ start_addr += slot_size;
+ size -= slot_size;
+ }
+}
+
+/* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
+#define KVM_CLEAR_LOG_SHIFT 6
+#define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
+#define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
+
+static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
+ uint64_t size)
+{
+ KVMState *s = kvm_state;
+ uint64_t end, bmap_start, start_delta, bmap_npages;
+ struct kvm_clear_dirty_log d;
+ unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
+ int ret;
+
+ /*
+ * We need to extend either the start or the size or both to
+ * satisfy the KVM interface requirement. Firstly, do the start
+ * page alignment on 64 host pages
+ */
+ bmap_start = start & KVM_CLEAR_LOG_MASK;
+ start_delta = start - bmap_start;
+ bmap_start /= psize;
+
+ /*
+ * The kernel interface has restriction on the size too, that either:
+ *
+ * (1) the size is 64 host pages aligned (just like the start), or
+ * (2) the size fills up until the end of the KVM memslot.
+ */
+ bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
+ << KVM_CLEAR_LOG_SHIFT;
+ end = mem->memory_size / psize;
+ if (bmap_npages > end - bmap_start) {
+ bmap_npages = end - bmap_start;
+ }
+ start_delta /= psize;
+
+ /*
+ * Prepare the bitmap to clear dirty bits. Here we must guarantee
+ * that we won't clear any unknown dirty bits otherwise we might
+ * accidentally clear some set bits which are not yet synced from
+ * the kernel into QEMU's bitmap, then we'll lose track of the
+ * guest modifications upon those pages (which can directly lead
+ * to guest data loss or panic after migration).
+ *
+ * Layout of the KVMSlot.dirty_bmap:
+ *
+ * |<-------- bmap_npages -----------..>|
+ * [1]
+ * start_delta size
+ * |----------------|-------------|------------------|------------|
+ * ^ ^ ^ ^
+ * | | | |
+ * start bmap_start (start) end
+ * of memslot of memslot
+ *
+ * [1] bmap_npages can be aligned to either 64 pages or the end of slot
+ */
- /* XXX bad kernel interface alert
- * For dirty bitmap, kernel allocates array of size aligned to
- * bits-per-long. But for case when the kernel is 64bits and
- * the userspace is 32bits, userspace can't align to the same
- * bits-per-long, since sizeof(long) is different between kernel
- * and user space. This way, userspace will provide buffer which
- * may be 4 bytes less than the kernel will use, resulting in
- * userspace memory corruption (which is not detectable by valgrind
- * too, in most cases).
- * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
- * a hope that sizeof(long) won't become >8 any time soon.
+ assert(bmap_start % BITS_PER_LONG == 0);
+ /* We should never do log_clear before log_sync */
+ assert(mem->dirty_bmap);
+ if (start_delta || bmap_npages - size / psize) {
+ /* Slow path - we need to manipulate a temp bitmap */
+ bmap_clear = bitmap_new(bmap_npages);
+ bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
+ bmap_start, start_delta + size / psize);
+ /*
+ * We need to fill the holes at start because that was not
+ * specified by the caller and we extended the bitmap only for
+ * 64 pages alignment
*/
- size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
- /*HOST_LONG_BITS*/ 64) / 8;
- d.dirty_bitmap = g_malloc0(size);
+ bitmap_clear(bmap_clear, 0, start_delta);
+ d.dirty_bitmap = bmap_clear;
+ } else {
+ /*
+ * Fast path - both start and size align well with BITS_PER_LONG
+ * (or the end of memory slot)
+ */
+ d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
+ }
+
+ d.first_page = bmap_start;
+ /* It should never overflow. If it happens, say something */
+ assert(bmap_npages <= UINT32_MAX);
+ d.num_pages = bmap_npages;
+ d.slot = mem->slot | (as_id << 16);
+
+ ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
+ if (ret < 0 && ret != -ENOENT) {
+ error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
+ "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
+ __func__, d.slot, (uint64_t)d.first_page,
+ (uint32_t)d.num_pages, ret);
+ } else {
+ ret = 0;
+ trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
+ }
+
+ /*
+ * After we have updated the remote dirty bitmap, we update the
+ * cached bitmap as well for the memslot, then if another user
+ * clears the same region we know we shouldn't clear it again on
+ * the remote otherwise it's data loss as well.
+ */
+ bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
+ size / psize);
+ /* This handles the NULL case well */
+ g_free(bmap_clear);
+ return ret;
+}
+
+
+/**
+ * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
+ *
+ * NOTE: this will be a no-op if we haven't enabled manual dirty log
+ * protection in the host kernel because in that case this operation
+ * will be done within log_sync().
+ *
+ * @kml: the kvm memory listener
+ * @section: the memory range to clear dirty bitmap
+ */
+static int kvm_physical_log_clear(KVMMemoryListener *kml,
+ MemoryRegionSection *section)
+{
+ KVMState *s = kvm_state;
+ uint64_t start, size, offset, count;
+ KVMSlot *mem;
+ int ret = 0, i;
+
+ if (!s->manual_dirty_log_protect) {
+ /* No need to do explicit clear */
+ return ret;
+ }
- d.slot = mem->slot | (kml->as_id << 16);
- if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
- DPRINTF("ioctl failed %d\n", errno);
- g_free(d.dirty_bitmap);
- return -1;
+ start = section->offset_within_address_space;
+ size = int128_get64(section->size);
+
+ if (!size) {
+ /* Nothing more we can do... */
+ return ret;
+ }
+
+ kvm_slots_lock();
+
+ for (i = 0; i < s->nr_slots; i++) {
+ mem = &kml->slots[i];
+ /* Discard slots that are empty or do not overlap the section */
+ if (!mem->memory_size ||
+ mem->start_addr > start + size - 1 ||
+ start > mem->start_addr + mem->memory_size - 1) {
+ continue;
}
- kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
- g_free(d.dirty_bitmap);
+ if (start >= mem->start_addr) {
+ /* The slot starts before section or is aligned to it. */
+ offset = start - mem->start_addr;
+ count = MIN(mem->memory_size - offset, size);
+ } else {
+ /* The slot starts after section. */
+ offset = 0;
+ count = MIN(mem->memory_size, size - (mem->start_addr - start));
+ }
+ ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
+ if (ret < 0) {
+ break;
+ }
}
- return 0;
+ kvm_slots_unlock();
+
+ return ret;
}
static void kvm_coalesce_mmio_region(MemoryListener *listener,
@@ -595,11 +1094,6 @@ static void kvm_coalesce_pio_del(MemoryListener *listener,
}
}
-static MemoryListener kvm_coalesced_pio_listener = {
- .coalesced_io_add = kvm_coalesce_pio_add,
- .coalesced_io_del = kvm_coalesce_pio_del,
-};
-
int kvm_check_extension(KVMState *s, unsigned int extension)
{
int ret;
@@ -625,10 +1119,53 @@ int kvm_vm_check_extension(KVMState *s, unsigned int extension)
return ret;
}
+/*
+ * We track the poisoned pages to be able to:
+ * - replace them on VM reset
+ * - block a migration for a VM with a poisoned page
+ */
+typedef struct HWPoisonPage {
+ ram_addr_t ram_addr;
+ QLIST_ENTRY(HWPoisonPage) list;
+} HWPoisonPage;
+
+static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
+ QLIST_HEAD_INITIALIZER(hwpoison_page_list);
+
+static void kvm_unpoison_all(void *param)
+{
+ HWPoisonPage *page, *next_page;
+
+ QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
+ QLIST_REMOVE(page, list);
+ qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
+ g_free(page);
+ }
+}
+
+void kvm_hwpoison_page_add(ram_addr_t ram_addr)
+{
+ HWPoisonPage *page;
+
+ QLIST_FOREACH(page, &hwpoison_page_list, list) {
+ if (page->ram_addr == ram_addr) {
+ return;
+ }
+ }
+ page = g_new(HWPoisonPage, 1);
+ page->ram_addr = ram_addr;
+ QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
+}
+
+bool kvm_hwpoisoned_mem(void)
+{
+ return !QLIST_EMPTY(&hwpoison_page_list);
+}
+
static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
{
-#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
- /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
+#if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
+ /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
* endianness, but the memory core hands them in target endianness.
* For example, PPC is always treated as big-endian even if running
* on KVM and on PPC64LE. Correct here.
@@ -657,6 +1194,8 @@ static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
.fd = fd,
};
+ trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
+ datamatch);
if (!kvm_enabled()) {
return -ENOSYS;
}
@@ -688,6 +1227,7 @@ static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
.fd = fd,
};
int r;
+ trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
if (!kvm_enabled()) {
return -ENOSYS;
}
@@ -705,43 +1245,6 @@ static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
}
-static int kvm_check_many_ioeventfds(void)
-{
- /* Userspace can use ioeventfd for io notification. This requires a host
- * that supports eventfd(2) and an I/O thread; since eventfd does not
- * support SIGIO it cannot interrupt the vcpu.
- *
- * Older kernels have a 6 device limit on the KVM io bus. Find out so we
- * can avoid creating too many ioeventfds.
- */
-#if defined(CONFIG_EVENTFD)
- int ioeventfds[7];
- int i, ret = 0;
- for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
- ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
- if (ioeventfds[i] < 0) {
- break;
- }
- ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
- if (ret < 0) {
- close(ioeventfds[i]);
- break;
- }
- }
-
- /* Decide whether many devices are supported or not */
- ret = i == ARRAY_SIZE(ioeventfds);
-
- while (i-- > 0) {
- kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
- close(ioeventfds[i]);
- }
- return ret;
-#else
- return 0;
-#endif
-}
-
static const KVMCapabilityInfo *
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
{
@@ -754,18 +1257,28 @@ kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
return NULL;
}
+void kvm_set_max_memslot_size(hwaddr max_slot_size)
+{
+ g_assert(
+ ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
+ );
+ kvm_max_slot_size = max_slot_size;
+}
+
+/* Called with KVMMemoryListener.slots_lock held */
static void kvm_set_phys_mem(KVMMemoryListener *kml,
MemoryRegionSection *section, bool add)
{
KVMSlot *mem;
int err;
MemoryRegion *mr = section->mr;
- bool writeable = !mr->readonly && !mr->rom_device;
- hwaddr start_addr, size;
+ bool writable = !mr->readonly && !mr->rom_device;
+ hwaddr start_addr, size, slot_size, mr_offset;
+ ram_addr_t ram_start_offset;
void *ram;
if (!memory_region_is_ram(mr)) {
- if (writeable || !kvm_readonly_mem_allowed) {
+ if (writable || !kvm_readonly_mem_allowed) {
return;
} else if (!mr->romd_mode) {
/* If the memory device is not in romd_mode, then we actually want
@@ -779,72 +1292,354 @@ static void kvm_set_phys_mem(KVMMemoryListener *kml,
return;
}
- /* use aligned delta to align the ram address */
- ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
- (start_addr - section->offset_within_address_space);
+ /* The offset of the kvmslot within the memory region */
+ mr_offset = section->offset_within_region + start_addr -
+ section->offset_within_address_space;
+
+ /* use aligned delta to align the ram address and offset */
+ ram = memory_region_get_ram_ptr(mr) + mr_offset;
+ ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
if (!add) {
- mem = kvm_lookup_matching_slot(kml, start_addr, size);
- if (!mem) {
- return;
- }
- if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
- kvm_physical_sync_dirty_bitmap(kml, section);
- }
+ do {
+ slot_size = MIN(kvm_max_slot_size, size);
+ mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
+ if (!mem) {
+ return;
+ }
+ if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
+ /*
+ * NOTE: We should be aware of the fact that here we're only
+ * doing a best effort to sync dirty bits. No matter whether
+ * we're using dirty log or dirty ring, we ignored two facts:
+ *
+ * (1) dirty bits can reside in hardware buffers (PML)
+ *
+ * (2) after we collected dirty bits here, pages can be dirtied
+ * again before we do the final KVM_SET_USER_MEMORY_REGION to
+ * remove the slot.
+ *
+ * Not easy. Let's cross the fingers until it's fixed.
+ */
+ if (kvm_state->kvm_dirty_ring_size) {
+ kvm_dirty_ring_reap_locked(kvm_state, NULL);
+ if (kvm_state->kvm_dirty_ring_with_bitmap) {
+ kvm_slot_sync_dirty_pages(mem);
+ kvm_slot_get_dirty_log(kvm_state, mem);
+ }
+ } else {
+ kvm_slot_get_dirty_log(kvm_state, mem);
+ }
+ kvm_slot_sync_dirty_pages(mem);
+ }
- /* unregister the slot */
- mem->memory_size = 0;
- mem->flags = 0;
- err = kvm_set_user_memory_region(kml, mem, false);
+ /* unregister the slot */
+ g_free(mem->dirty_bmap);
+ mem->dirty_bmap = NULL;
+ mem->memory_size = 0;
+ mem->flags = 0;
+ err = kvm_set_user_memory_region(kml, mem, false);
+ if (err) {
+ fprintf(stderr, "%s: error unregistering slot: %s\n",
+ __func__, strerror(-err));
+ abort();
+ }
+ start_addr += slot_size;
+ size -= slot_size;
+ kml->nr_used_slots--;
+ } while (size);
+ return;
+ }
+
+ /* register the new slot */
+ do {
+ slot_size = MIN(kvm_max_slot_size, size);
+ mem = kvm_alloc_slot(kml);
+ mem->as_id = kml->as_id;
+ mem->memory_size = slot_size;
+ mem->start_addr = start_addr;
+ mem->ram_start_offset = ram_start_offset;
+ mem->ram = ram;
+ mem->flags = kvm_mem_flags(mr);
+ kvm_slot_init_dirty_bitmap(mem);
+ err = kvm_set_user_memory_region(kml, mem, true);
if (err) {
- fprintf(stderr, "%s: error unregistering slot: %s\n",
- __func__, strerror(-err));
+ fprintf(stderr, "%s: error registering slot: %s\n", __func__,
+ strerror(-err));
abort();
}
- return;
+ start_addr += slot_size;
+ ram_start_offset += slot_size;
+ ram += slot_size;
+ size -= slot_size;
+ kml->nr_used_slots++;
+ } while (size);
+}
+
+static void *kvm_dirty_ring_reaper_thread(void *data)
+{
+ KVMState *s = data;
+ struct KVMDirtyRingReaper *r = &s->reaper;
+
+ rcu_register_thread();
+
+ trace_kvm_dirty_ring_reaper("init");
+
+ while (true) {
+ r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
+ trace_kvm_dirty_ring_reaper("wait");
+ /*
+ * TODO: provide a smarter timeout rather than a constant?
+ */
+ sleep(1);
+
+ /* keep sleeping so that dirtylimit not be interfered by reaper */
+ if (dirtylimit_in_service()) {
+ continue;
+ }
+
+ trace_kvm_dirty_ring_reaper("wakeup");
+ r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
+
+ bql_lock();
+ kvm_dirty_ring_reap(s, NULL);
+ bql_unlock();
+
+ r->reaper_iteration++;
}
- /* register the new slot */
- mem = kvm_alloc_slot(kml);
- mem->memory_size = size;
- mem->start_addr = start_addr;
- mem->ram = ram;
- mem->flags = kvm_mem_flags(mr);
+ trace_kvm_dirty_ring_reaper("exit");
- err = kvm_set_user_memory_region(kml, mem, true);
- if (err) {
- fprintf(stderr, "%s: error registering slot: %s\n", __func__,
- strerror(-err));
- abort();
+ rcu_unregister_thread();
+
+ return NULL;
+}
+
+static void kvm_dirty_ring_reaper_init(KVMState *s)
+{
+ struct KVMDirtyRingReaper *r = &s->reaper;
+
+ qemu_thread_create(&r->reaper_thr, "kvm-reaper",
+ kvm_dirty_ring_reaper_thread,
+ s, QEMU_THREAD_JOINABLE);
+}
+
+static int kvm_dirty_ring_init(KVMState *s)
+{
+ uint32_t ring_size = s->kvm_dirty_ring_size;
+ uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
+ unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
+ int ret;
+
+ s->kvm_dirty_ring_size = 0;
+ s->kvm_dirty_ring_bytes = 0;
+
+ /* Bail if the dirty ring size isn't specified */
+ if (!ring_size) {
+ return 0;
}
+
+ /*
+ * Read the max supported pages. Fall back to dirty logging mode
+ * if the dirty ring isn't supported.
+ */
+ ret = kvm_vm_check_extension(s, capability);
+ if (ret <= 0) {
+ capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
+ ret = kvm_vm_check_extension(s, capability);
+ }
+
+ if (ret <= 0) {
+ warn_report("KVM dirty ring not available, using bitmap method");
+ return 0;
+ }
+
+ if (ring_bytes > ret) {
+ error_report("KVM dirty ring size %" PRIu32 " too big "
+ "(maximum is %ld). Please use a smaller value.",
+ ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
+ return -EINVAL;
+ }
+
+ ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
+ if (ret) {
+ error_report("Enabling of KVM dirty ring failed: %s. "
+ "Suggested minimum value is 1024.", strerror(-ret));
+ return -EIO;
+ }
+
+ /* Enable the backup bitmap if it is supported */
+ ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
+ if (ret > 0) {
+ ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
+ if (ret) {
+ error_report("Enabling of KVM dirty ring's backup bitmap failed: "
+ "%s. ", strerror(-ret));
+ return -EIO;
+ }
+
+ s->kvm_dirty_ring_with_bitmap = true;
+ }
+
+ s->kvm_dirty_ring_size = ring_size;
+ s->kvm_dirty_ring_bytes = ring_bytes;
+
+ return 0;
}
static void kvm_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
+ KVMMemoryUpdate *update;
+
+ update = g_new0(KVMMemoryUpdate, 1);
+ update->section = *section;
- memory_region_ref(section->mr);
- kvm_set_phys_mem(kml, section, true);
+ QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
}
static void kvm_region_del(MemoryListener *listener,
MemoryRegionSection *section)
{
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
+ KVMMemoryUpdate *update;
+
+ update = g_new0(KVMMemoryUpdate, 1);
+ update->section = *section;
- kvm_set_phys_mem(kml, section, false);
- memory_region_unref(section->mr);
+ QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
+}
+
+static void kvm_region_commit(MemoryListener *listener)
+{
+ KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
+ listener);
+ KVMMemoryUpdate *u1, *u2;
+ bool need_inhibit = false;
+
+ if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
+ QSIMPLEQ_EMPTY(&kml->transaction_del)) {
+ return;
+ }
+
+ /*
+ * We have to be careful when regions to add overlap with ranges to remove.
+ * We have to simulate atomic KVM memslot updates by making sure no ioctl()
+ * is currently active.
+ *
+ * The lists are order by addresses, so it's easy to find overlaps.
+ */
+ u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
+ u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
+ while (u1 && u2) {
+ Range r1, r2;
+
+ range_init_nofail(&r1, u1->section.offset_within_address_space,
+ int128_get64(u1->section.size));
+ range_init_nofail(&r2, u2->section.offset_within_address_space,
+ int128_get64(u2->section.size));
+
+ if (range_overlaps_range(&r1, &r2)) {
+ need_inhibit = true;
+ break;
+ }
+ if (range_lob(&r1) < range_lob(&r2)) {
+ u1 = QSIMPLEQ_NEXT(u1, next);
+ } else {
+ u2 = QSIMPLEQ_NEXT(u2, next);
+ }
+ }
+
+ kvm_slots_lock();
+ if (need_inhibit) {
+ accel_ioctl_inhibit_begin();
+ }
+
+ /* Remove all memslots before adding the new ones. */
+ while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
+ u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
+ QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
+
+ kvm_set_phys_mem(kml, &u1->section, false);
+ memory_region_unref(u1->section.mr);
+
+ g_free(u1);
+ }
+ while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
+ u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
+ QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
+
+ memory_region_ref(u1->section.mr);
+ kvm_set_phys_mem(kml, &u1->section, true);
+
+ g_free(u1);
+ }
+
+ if (need_inhibit) {
+ accel_ioctl_inhibit_end();
+ }
+ kvm_slots_unlock();
}
static void kvm_log_sync(MemoryListener *listener,
MemoryRegionSection *section)
{
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
+
+ kvm_slots_lock();
+ kvm_physical_sync_dirty_bitmap(kml, section);
+ kvm_slots_unlock();
+}
+
+static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
+{
+ KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
+ KVMState *s = kvm_state;
+ KVMSlot *mem;
+ int i;
+
+ /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
+ kvm_dirty_ring_flush();
+
+ /*
+ * TODO: make this faster when nr_slots is big while there are
+ * only a few used slots (small VMs).
+ */
+ kvm_slots_lock();
+ for (i = 0; i < s->nr_slots; i++) {
+ mem = &kml->slots[i];
+ if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
+ kvm_slot_sync_dirty_pages(mem);
+
+ if (s->kvm_dirty_ring_with_bitmap && last_stage &&
+ kvm_slot_get_dirty_log(s, mem)) {
+ kvm_slot_sync_dirty_pages(mem);
+ }
+
+ /*
+ * This is not needed by KVM_GET_DIRTY_LOG because the
+ * ioctl will unconditionally overwrite the whole region.
+ * However kvm dirty ring has no such side effect.
+ */
+ kvm_slot_reset_dirty_pages(mem);
+ }
+ }
+ kvm_slots_unlock();
+}
+
+static void kvm_log_clear(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+ KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
int r;
- r = kvm_physical_sync_dirty_bitmap(kml, section);
+ r = kvm_physical_log_clear(kml, section);
if (r < 0) {
+ error_report_once("%s: kvm log clear failed: mr=%s "
+ "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
+ section->mr->name, section->offset_within_region,
+ int128_get64(section->size));
abort();
}
}
@@ -861,8 +1656,8 @@ static void kvm_mem_ioeventfd_add(MemoryListener *listener,
data, true, int128_get64(section->size),
match_data);
if (r < 0) {
- fprintf(stderr, "%s: error adding ioeventfd: %s\n",
- __func__, strerror(-r));
+ fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
+ __func__, strerror(-r), -r);
abort();
}
}
@@ -879,6 +1674,8 @@ static void kvm_mem_ioeventfd_del(MemoryListener *listener,
data, false, int128_get64(section->size),
match_data);
if (r < 0) {
+ fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
+ __func__, strerror(-r), -r);
abort();
}
}
@@ -895,8 +1692,8 @@ static void kvm_io_ioeventfd_add(MemoryListener *listener,
data, true, int128_get64(section->size),
match_data);
if (r < 0) {
- fprintf(stderr, "%s: error adding ioeventfd: %s\n",
- __func__, strerror(-r));
+ fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
+ __func__, strerror(-r), -r);
abort();
}
}
@@ -914,36 +1711,60 @@ static void kvm_io_ioeventfd_del(MemoryListener *listener,
data, false, int128_get64(section->size),
match_data);
if (r < 0) {
+ fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
+ __func__, strerror(-r), -r);
abort();
}
}
void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
- AddressSpace *as, int as_id)
+ AddressSpace *as, int as_id, const char *name)
{
int i;
- kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
+ kml->slots = g_new0(KVMSlot, s->nr_slots);
kml->as_id = as_id;
for (i = 0; i < s->nr_slots; i++) {
kml->slots[i].slot = i;
}
+ QSIMPLEQ_INIT(&kml->transaction_add);
+ QSIMPLEQ_INIT(&kml->transaction_del);
+
kml->listener.region_add = kvm_region_add;
kml->listener.region_del = kvm_region_del;
+ kml->listener.commit = kvm_region_commit;
kml->listener.log_start = kvm_log_start;
kml->listener.log_stop = kvm_log_stop;
- kml->listener.log_sync = kvm_log_sync;
- kml->listener.priority = 10;
+ kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
+ kml->listener.name = name;
+
+ if (s->kvm_dirty_ring_size) {
+ kml->listener.log_sync_global = kvm_log_sync_global;
+ } else {
+ kml->listener.log_sync = kvm_log_sync;
+ kml->listener.log_clear = kvm_log_clear;
+ }
memory_listener_register(&kml->listener, as);
+
+ for (i = 0; i < s->nr_as; ++i) {
+ if (!s->as[i].as) {
+ s->as[i].as = as;
+ s->as[i].ml = kml;
+ break;
+ }
+ }
}
static MemoryListener kvm_io_listener = {
+ .name = "kvm-io",
+ .coalesced_io_add = kvm_coalesce_pio_add,
+ .coalesced_io_del = kvm_coalesce_pio_del,
.eventfd_add = kvm_io_ioeventfd_add,
.eventfd_del = kvm_io_ioeventfd_del,
- .priority = 10,
+ .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
};
int kvm_set_irq(KVMState *s, int irq, int level)
@@ -982,7 +1803,7 @@ static void clear_gsi(KVMState *s, unsigned int gsi)
void kvm_init_irq_routing(KVMState *s)
{
- int gsi_count, i;
+ int gsi_count;
gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
if (gsi_count > 0) {
@@ -994,12 +1815,6 @@ void kvm_init_irq_routing(KVMState *s)
s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
s->nr_allocated_irq_routes = 0;
- if (!kvm_direct_msi_allowed) {
- for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
- QTAILQ_INIT(&s->msi_hashtab[i]);
- }
- }
-
kvm_arch_init_irq_routing(s);
}
@@ -1104,41 +1919,25 @@ void kvm_irqchip_release_virq(KVMState *s, int virq)
trace_kvm_irqchip_release_virq(virq);
}
-static unsigned int kvm_hash_msi(uint32_t data)
+void kvm_irqchip_add_change_notifier(Notifier *n)
{
- /* This is optimized for IA32 MSI layout. However, no other arch shall
- * repeat the mistake of not providing a direct MSI injection API. */
- return data & 0xff;
+ notifier_list_add(&kvm_irqchip_change_notifiers, n);
}
-static void kvm_flush_dynamic_msi_routes(KVMState *s)
+void kvm_irqchip_remove_change_notifier(Notifier *n)
{
- KVMMSIRoute *route, *next;
- unsigned int hash;
+ notifier_remove(n);
+}
- for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
- QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
- kvm_irqchip_release_virq(s, route->kroute.gsi);
- QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
- g_free(route);
- }
- }
+void kvm_irqchip_change_notify(void)
+{
+ notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
}
static int kvm_irqchip_get_virq(KVMState *s)
{
int next_virq;
- /*
- * PIC and IOAPIC share the first 16 GSI numbers, thus the available
- * GSI numbers are more than the number of IRQ route. Allocating a GSI
- * number can succeed even though a new route entry cannot be added.
- * When this happens, flush dynamic MSI entries to free IRQ route entries.
- */
- if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
- kvm_flush_dynamic_msi_routes(s);
- }
-
/* Return the lowest unused GSI in the bitmap */
next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
if (next_virq >= s->gsi_count) {
@@ -1148,69 +1947,24 @@ static int kvm_irqchip_get_virq(KVMState *s)
}
}
-static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
-{
- unsigned int hash = kvm_hash_msi(msg.data);
- KVMMSIRoute *route;
-
- QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
- if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
- route->kroute.u.msi.address_hi == (msg.address >> 32) &&
- route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
- return route;
- }
- }
- return NULL;
-}
-
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
{
struct kvm_msi msi;
- KVMMSIRoute *route;
-
- if (kvm_direct_msi_allowed) {
- msi.address_lo = (uint32_t)msg.address;
- msi.address_hi = msg.address >> 32;
- msi.data = le32_to_cpu(msg.data);
- msi.flags = 0;
- memset(msi.pad, 0, sizeof(msi.pad));
-
- return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
- }
-
- route = kvm_lookup_msi_route(s, msg);
- if (!route) {
- int virq;
-
- virq = kvm_irqchip_get_virq(s);
- if (virq < 0) {
- return virq;
- }
- route = g_malloc0(sizeof(KVMMSIRoute));
- route->kroute.gsi = virq;
- route->kroute.type = KVM_IRQ_ROUTING_MSI;
- route->kroute.flags = 0;
- route->kroute.u.msi.address_lo = (uint32_t)msg.address;
- route->kroute.u.msi.address_hi = msg.address >> 32;
- route->kroute.u.msi.data = le32_to_cpu(msg.data);
+ msi.address_lo = (uint32_t)msg.address;
+ msi.address_hi = msg.address >> 32;
+ msi.data = le32_to_cpu(msg.data);
+ msi.flags = 0;
+ memset(msi.pad, 0, sizeof(msi.pad));
- kvm_add_routing_entry(s, &route->kroute);
- kvm_irqchip_commit_routes(s);
-
- QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
- entry);
- }
-
- assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
-
- return kvm_set_irq(s, route->kroute.gsi, 1);
+ return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
}
-int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
+int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
{
struct kvm_irq_routing_entry kroute = {};
int virq;
+ KVMState *s = c->s;
MSIMessage msg = {0, 0};
if (pci_available && dev) {
@@ -1250,7 +2004,7 @@ int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
kvm_add_routing_entry(s, &kroute);
kvm_arch_add_msi_route_post(&kroute, vector, dev);
- kvm_irqchip_commit_routes(s);
+ c->changes++;
return virq;
}
@@ -1287,9 +2041,13 @@ int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
return kvm_update_routing_entry(s, &kroute);
}
-static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
+static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
+ EventNotifier *resample, int virq,
bool assign)
{
+ int fd = event_notifier_get_fd(event);
+ int rfd = resample ? event_notifier_get_fd(resample) : -1;
+
struct kvm_irqfd irqfd = {
.fd = fd,
.gsi = virq,
@@ -1297,12 +2055,33 @@ static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
};
if (rfd != -1) {
- irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
- irqfd.resamplefd = rfd;
- }
-
- if (!kvm_irqfds_enabled()) {
- return -ENOSYS;
+ assert(assign);
+ if (kvm_irqchip_is_split()) {
+ /*
+ * When the slow irqchip (e.g. IOAPIC) is in the
+ * userspace, KVM kernel resamplefd will not work because
+ * the EOI of the interrupt will be delivered to userspace
+ * instead, so the KVM kernel resamplefd kick will be
+ * skipped. The userspace here mimics what the kernel
+ * provides with resamplefd, remember the resamplefd and
+ * kick it when we receive EOI of this IRQ.
+ *
+ * This is hackery because IOAPIC is mostly bypassed
+ * (except EOI broadcasts) when irqfd is used. However
+ * this can bring much performance back for split irqchip
+ * with INTx IRQs (for VFIO, this gives 93% perf of the
+ * full fast path, which is 46% perf boost comparing to
+ * the INTx slow path).
+ */
+ kvm_resample_fd_insert(virq, resample);
+ } else {
+ irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
+ irqfd.resamplefd = rfd;
+ }
+ } else if (!assign) {
+ if (kvm_irqchip_is_split()) {
+ kvm_resample_fd_remove(virq);
+ }
}
return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
@@ -1379,7 +2158,7 @@ int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
abort();
}
-int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
+int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
{
return -ENOSYS;
}
@@ -1394,7 +2173,9 @@ int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
return -ENOSYS;
}
-static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
+static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
+ EventNotifier *resample, int virq,
+ bool assign)
{
abort();
}
@@ -1408,15 +2189,13 @@ int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
EventNotifier *rn, int virq)
{
- return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
- rn ? event_notifier_get_fd(rn) : -1, virq, true);
+ return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
}
int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
int virq)
{
- return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
- false);
+ return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
}
int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
@@ -1448,10 +2227,11 @@ void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
}
-static void kvm_irqchip_create(MachineState *machine, KVMState *s)
+static void kvm_irqchip_create(KVMState *s)
{
int ret;
+ assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
;
} else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
@@ -1464,12 +2244,17 @@ static void kvm_irqchip_create(MachineState *machine, KVMState *s)
return;
}
+ if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) {
+ fprintf(stderr, "kvm: irqfd not implemented\n");
+ exit(1);
+ }
+
/* First probe and see if there's a arch-specific hook to create the
* in-kernel irqchip for us */
- ret = kvm_arch_irqchip_create(machine, s);
+ ret = kvm_arch_irqchip_create(s);
if (ret == 0) {
- if (machine_kernel_irqchip_split(machine)) {
- perror("Split IRQ chip mode not supported.");
+ if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
+ error_report("Split IRQ chip mode not supported.");
exit(1);
} else {
ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
@@ -1516,30 +2301,46 @@ static int kvm_max_vcpu_id(KVMState *s)
bool kvm_vcpu_id_is_valid(int vcpu_id)
{
- KVMState *s = KVM_STATE(current_machine->accelerator);
+ KVMState *s = KVM_STATE(current_accel());
return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
}
+bool kvm_dirty_ring_enabled(void)
+{
+ return kvm_state->kvm_dirty_ring_size ? true : false;
+}
+
+static void query_stats_cb(StatsResultList **result, StatsTarget target,
+ strList *names, strList *targets, Error **errp);
+static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
+
+uint32_t kvm_dirty_ring_size(void)
+{
+ return kvm_state->kvm_dirty_ring_size;
+}
+
static int kvm_init(MachineState *ms)
{
MachineClass *mc = MACHINE_GET_CLASS(ms);
static const char upgrade_note[] =
"Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
"(see http://sourceforge.net/projects/kvm).\n";
- struct {
+ const struct {
const char *name;
int num;
} num_cpus[] = {
- { "SMP", smp_cpus },
- { "hotpluggable", max_cpus },
- { NULL, }
+ { "SMP", ms->smp.cpus },
+ { "hotpluggable", ms->smp.max_cpus },
+ { /* end of list */ }
}, *nc = num_cpus;
int soft_vcpus_limit, hard_vcpus_limit;
KVMState *s;
const KVMCapabilityInfo *missing_cap;
int ret;
- int type = 0;
- const char *kvm_type;
+ int type;
+ uint64_t dirty_log_manual_caps;
+
+ qemu_mutex_init(&kml_slots_lock);
s = KVM_STATE(ms->accelerator);
@@ -1549,16 +2350,16 @@ static int kvm_init(MachineState *ms)
* even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
* page size for the system though.
*/
- assert(TARGET_PAGE_SIZE <= getpagesize());
+ assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
s->sigmask_len = 8;
+ accel_blocker_init();
#ifdef KVM_CAP_SET_GUEST_DEBUG
QTAILQ_INIT(&s->kvm_sw_breakpoints);
#endif
QLIST_INIT(&s->kvm_parked_vcpus);
- s->vmfd = -1;
- s->fd = qemu_open("/dev/kvm", O_RDWR);
+ s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR);
if (s->fd == -1) {
fprintf(stderr, "Could not access KVM kernel module: %m\n");
ret = -errno;
@@ -1588,12 +2389,25 @@ static int kvm_init(MachineState *ms)
s->nr_slots = 32;
}
- kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
- if (mc->kvm_type) {
- type = mc->kvm_type(kvm_type);
- } else if (kvm_type) {
+ s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
+ if (s->nr_as <= 1) {
+ s->nr_as = 1;
+ }
+ s->as = g_new0(struct KVMAs, s->nr_as);
+
+ if (object_property_find(OBJECT(current_machine), "kvm-type")) {
+ g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
+ "kvm-type",
+ &error_abort);
+ type = mc->kvm_type(ms, kvm_type);
+ } else if (mc->kvm_type) {
+ type = mc->kvm_type(ms, NULL);
+ } else {
+ type = kvm_arch_get_default_type(ms);
+ }
+
+ if (type < 0) {
ret = -EINVAL;
- fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
goto err;
}
@@ -1617,6 +2431,12 @@ static int kvm_init(MachineState *ms)
"- for kernels supporting the vm.allocate_pgste sysctl, "
"whether it is enabled\n");
}
+#elif defined(TARGET_PPC)
+ if (ret == -EINVAL) {
+ fprintf(stderr,
+ "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
+ (type == 2) ? "pr" : "hv");
+ }
#endif
goto err;
}
@@ -1659,22 +2479,51 @@ static int kvm_init(MachineState *ms)
s->coalesced_pio = s->coalesced_mmio &&
kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
-#ifdef KVM_CAP_VCPU_EVENTS
- s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
-#endif
-
- s->robust_singlestep =
- kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
+ /*
+ * Enable KVM dirty ring if supported, otherwise fall back to
+ * dirty logging mode
+ */
+ ret = kvm_dirty_ring_init(s);
+ if (ret < 0) {
+ goto err;
+ }
-#ifdef KVM_CAP_DEBUGREGS
- s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
-#endif
+ /*
+ * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
+ * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
+ * page is wr-protected initially, which is against how kvm dirty ring is
+ * usage - kvm dirty ring requires all pages are wr-protected at the very
+ * beginning. Enabling this feature for dirty ring causes data corruption.
+ *
+ * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
+ * we may expect a higher stall time when starting the migration. In the
+ * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
+ * instead of clearing dirty bit, it can be a way to explicitly wr-protect
+ * guest pages.
+ */
+ if (!s->kvm_dirty_ring_size) {
+ dirty_log_manual_caps =
+ kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
+ dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
+ KVM_DIRTY_LOG_INITIALLY_SET);
+ s->manual_dirty_log_protect = dirty_log_manual_caps;
+ if (dirty_log_manual_caps) {
+ ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
+ dirty_log_manual_caps);
+ if (ret) {
+ warn_report("Trying to enable capability %"PRIu64" of "
+ "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
+ "Falling back to the legacy mode. ",
+ dirty_log_manual_caps);
+ s->manual_dirty_log_protect = 0;
+ }
+ }
+ }
-#ifdef KVM_CAP_IRQ_ROUTING
- kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
+#ifdef KVM_CAP_VCPU_EVENTS
+ s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
#endif
-
- s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
+ s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
s->irq_set_ioctl = KVM_IRQ_LINE;
if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
@@ -1684,65 +2533,71 @@ static int kvm_init(MachineState *ms)
kvm_readonly_mem_allowed =
(kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
- kvm_eventfds_allowed =
- (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
-
- kvm_irqfds_allowed =
- (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
-
kvm_resamplefds_allowed =
(kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
kvm_vm_attributes_allowed =
(kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
- kvm_ioeventfd_any_length_allowed =
- (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
+#ifdef KVM_CAP_SET_GUEST_DEBUG
+ kvm_has_guest_debug =
+ (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
+#endif
- kvm_state = s;
+ kvm_sstep_flags = 0;
+ if (kvm_has_guest_debug) {
+ kvm_sstep_flags = SSTEP_ENABLE;
- /*
- * if memory encryption object is specified then initialize the memory
- * encryption context.
- */
- if (ms->memory_encryption) {
- kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
- if (!kvm_state->memcrypt_handle) {
- ret = -1;
- goto err;
- }
+#if defined KVM_CAP_SET_GUEST_DEBUG2
+ int guest_debug_flags =
+ kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
- kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
+ if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
+ kvm_sstep_flags |= SSTEP_NOIRQ;
+ }
+#endif
}
+ kvm_state = s;
+
ret = kvm_arch_init(ms, s);
if (ret < 0) {
goto err;
}
- if (machine_kernel_irqchip_allowed(ms)) {
- kvm_irqchip_create(ms, s);
+ if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
+ s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
}
- if (kvm_eventfds_allowed) {
- s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
- s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
+ qemu_register_reset(kvm_unpoison_all, NULL);
+
+ if (s->kernel_irqchip_allowed) {
+ kvm_irqchip_create(s);
}
+
+ s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
+ s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
kvm_memory_listener_register(s, &s->memory_listener,
- &address_space_memory, 0);
+ &address_space_memory, 0, "kvm-memory");
memory_listener_register(&kvm_io_listener,
&address_space_io);
- memory_listener_register(&kvm_coalesced_pio_listener,
- &address_space_io);
-
- s->many_ioeventfds = kvm_check_many_ioeventfds();
s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
if (!s->sync_mmu) {
- qemu_balloon_inhibit(true);
+ ret = ram_block_discard_disable(true);
+ assert(!ret);
+ }
+
+ if (s->kvm_dirty_ring_size) {
+ kvm_dirty_ring_reaper_init(s);
+ }
+
+ if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
+ add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
+ query_stats_schemas_cb);
}
return 0;
@@ -1755,6 +2610,7 @@ err:
if (s->fd != -1) {
close(s->fd);
}
+ g_free(s->as);
g_free(s->memory_listener.slots);
return ret;
@@ -1781,21 +2637,19 @@ static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direc
static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
{
+ int i;
+
fprintf(stderr, "KVM internal error. Suberror: %d\n",
run->internal.suberror);
- if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
- int i;
-
- for (i = 0; i < run->internal.ndata; ++i) {
- fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
- i, (uint64_t)run->internal.data[i]);
- }
+ for (i = 0; i < run->internal.ndata; ++i) {
+ fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
+ i, (uint64_t)run->internal.data[i]);
}
if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
fprintf(stderr, "emulation failure\n");
if (!kvm_arch_stop_on_emulation_error(cpu)) {
- cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
+ cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
return EXCP_INTERRUPT;
}
}
@@ -1809,7 +2663,7 @@ void kvm_flush_coalesced_mmio_buffer(void)
{
KVMState *s = kvm_state;
- if (s->coalesced_flush_in_progress) {
+ if (!s || s->coalesced_flush_in_progress) {
return;
}
@@ -1823,9 +2677,9 @@ void kvm_flush_coalesced_mmio_buffer(void)
ent = &ring->coalesced_mmio[ring->first];
if (ent->pio == 1) {
- address_space_rw(&address_space_io, ent->phys_addr,
- MEMTXATTRS_UNSPECIFIED, ent->data,
- ent->len, true);
+ address_space_write(&address_space_io, ent->phys_addr,
+ MEMTXATTRS_UNSPECIFIED, ent->data,
+ ent->len);
} else {
cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
}
@@ -1837,10 +2691,21 @@ void kvm_flush_coalesced_mmio_buffer(void)
s->coalesced_flush_in_progress = false;
}
+bool kvm_cpu_check_are_resettable(void)
+{
+ return kvm_arch_cpu_check_are_resettable();
+}
+
static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
{
if (!cpu->vcpu_dirty) {
- kvm_arch_get_registers(cpu);
+ int ret = kvm_arch_get_registers(cpu);
+ if (ret) {
+ error_report("Failed to get registers: %s", strerror(-ret));
+ cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
+ vm_stop(RUN_STATE_INTERNAL_ERROR);
+ }
+
cpu->vcpu_dirty = true;
}
}
@@ -1854,7 +2719,13 @@ void kvm_cpu_synchronize_state(CPUState *cpu)
static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
{
- kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
+ int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
+ if (ret) {
+ error_report("Failed to put registers after reset: %s", strerror(-ret));
+ cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
+ vm_stop(RUN_STATE_INTERNAL_ERROR);
+ }
+
cpu->vcpu_dirty = false;
}
@@ -1865,7 +2736,12 @@ void kvm_cpu_synchronize_post_reset(CPUState *cpu)
static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
{
- kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
+ int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
+ if (ret) {
+ error_report("Failed to put registers after init: %s", strerror(-ret));
+ exit(1);
+ }
+
cpu->vcpu_dirty = false;
}
@@ -1892,7 +2768,7 @@ static __thread bool have_sigbus_pending;
static void kvm_cpu_kick(CPUState *cpu)
{
- atomic_set(&cpu->kvm_run->immediate_exit, 1);
+ qatomic_set(&cpu->kvm_run->immediate_exit, 1);
}
static void kvm_cpu_kick_self(void)
@@ -1913,7 +2789,7 @@ static void kvm_eat_signals(CPUState *cpu)
int r;
if (kvm_immediate_exit) {
- atomic_set(&cpu->kvm_run->immediate_exit, 0);
+ qatomic_set(&cpu->kvm_run->immediate_exit, 0);
/* Write kvm_run->immediate_exit before the cpu->exit_request
* write in kvm_cpu_exec.
*/
@@ -1944,27 +2820,34 @@ int kvm_cpu_exec(CPUState *cpu)
struct kvm_run *run = cpu->kvm_run;
int ret, run_ret;
- DPRINTF("kvm_cpu_exec()\n");
+ trace_kvm_cpu_exec();
if (kvm_arch_process_async_events(cpu)) {
- atomic_set(&cpu->exit_request, 0);
+ qatomic_set(&cpu->exit_request, 0);
return EXCP_HLT;
}
- qemu_mutex_unlock_iothread();
+ bql_unlock();
cpu_exec_start(cpu);
do {
MemTxAttrs attrs;
if (cpu->vcpu_dirty) {
- kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
+ ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
+ if (ret) {
+ error_report("Failed to put registers after init: %s",
+ strerror(-ret));
+ ret = -1;
+ break;
+ }
+
cpu->vcpu_dirty = false;
}
kvm_arch_pre_run(cpu, run);
- if (atomic_read(&cpu->exit_request)) {
- DPRINTF("interrupt exit requested\n");
+ if (qatomic_read(&cpu->exit_request)) {
+ trace_kvm_interrupt_exit_request();
/*
* KVM requires us to reenter the kernel after IO exits to complete
* instruction emulation. This self-signal will ensure that we
@@ -1984,17 +2867,17 @@ int kvm_cpu_exec(CPUState *cpu)
#ifdef KVM_HAVE_MCE_INJECTION
if (unlikely(have_sigbus_pending)) {
- qemu_mutex_lock_iothread();
+ bql_lock();
kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
pending_sigbus_addr);
have_sigbus_pending = false;
- qemu_mutex_unlock_iothread();
+ bql_unlock();
}
#endif
if (run_ret < 0) {
if (run_ret == -EINTR || run_ret == -EAGAIN) {
- DPRINTF("io window exit\n");
+ trace_kvm_io_window_exit();
kvm_eat_signals(cpu);
ret = EXCP_INTERRUPT;
break;
@@ -2016,7 +2899,6 @@ int kvm_cpu_exec(CPUState *cpu)
trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
switch (run->exit_reason) {
case KVM_EXIT_IO:
- DPRINTF("handle_io\n");
/* Called outside BQL */
kvm_handle_io(run->io.port, attrs,
(uint8_t *)run + run->io.data_offset,
@@ -2026,7 +2908,6 @@ int kvm_cpu_exec(CPUState *cpu)
ret = 0;
break;
case KVM_EXIT_MMIO:
- DPRINTF("handle_mmio\n");
/* Called outside BQL */
address_space_rw(&address_space_memory,
run->mmio.phys_addr, attrs,
@@ -2036,11 +2917,9 @@ int kvm_cpu_exec(CPUState *cpu)
ret = 0;
break;
case KVM_EXIT_IRQ_WINDOW_OPEN:
- DPRINTF("irq_window_open\n");
ret = EXCP_INTERRUPT;
break;
case KVM_EXIT_SHUTDOWN:
- DPRINTF("shutdown\n");
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
ret = EXCP_INTERRUPT;
break;
@@ -2052,7 +2931,30 @@ int kvm_cpu_exec(CPUState *cpu)
case KVM_EXIT_INTERNAL_ERROR:
ret = kvm_handle_internal_error(cpu, run);
break;
+ case KVM_EXIT_DIRTY_RING_FULL:
+ /*
+ * We shouldn't continue if the dirty ring of this vcpu is
+ * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
+ */
+ trace_kvm_dirty_ring_full(cpu->cpu_index);
+ bql_lock();
+ /*
+ * We throttle vCPU by making it sleep once it exit from kernel
+ * due to dirty ring full. In the dirtylimit scenario, reaping
+ * all vCPUs after a single vCPU dirty ring get full result in
+ * the miss of sleep, so just reap the ring-fulled vCPU.
+ */
+ if (dirtylimit_in_service()) {
+ kvm_dirty_ring_reap(kvm_state, cpu);
+ } else {
+ kvm_dirty_ring_reap(kvm_state, NULL);
+ }
+ bql_unlock();
+ dirtylimit_vcpu_execute(cpu);
+ ret = 0;
+ break;
case KVM_EXIT_SYSTEM_EVENT:
+ trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type);
switch (run->system_event.type) {
case KVM_SYSTEM_EVENT_SHUTDOWN:
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
@@ -2064,33 +2966,31 @@ int kvm_cpu_exec(CPUState *cpu)
break;
case KVM_SYSTEM_EVENT_CRASH:
kvm_cpu_synchronize_state(cpu);
- qemu_mutex_lock_iothread();
+ bql_lock();
qemu_system_guest_panicked(cpu_get_crash_info(cpu));
- qemu_mutex_unlock_iothread();
+ bql_unlock();
ret = 0;
break;
default:
- DPRINTF("kvm_arch_handle_exit\n");
ret = kvm_arch_handle_exit(cpu, run);
break;
}
break;
default:
- DPRINTF("kvm_arch_handle_exit\n");
ret = kvm_arch_handle_exit(cpu, run);
break;
}
} while (ret == 0);
cpu_exec_end(cpu);
- qemu_mutex_lock_iothread();
+ bql_lock();
if (ret < 0) {
- cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
+ cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
vm_stop(RUN_STATE_INTERNAL_ERROR);
}
- atomic_set(&cpu->exit_request, 0);
+ qatomic_set(&cpu->exit_request, 0);
return ret;
}
@@ -2123,7 +3023,9 @@ int kvm_vm_ioctl(KVMState *s, int type, ...)
va_end(ap);
trace_kvm_vm_ioctl(type, arg);
+ accel_ioctl_begin();
ret = ioctl(s->vmfd, type, arg);
+ accel_ioctl_end();
if (ret == -1) {
ret = -errno;
}
@@ -2141,7 +3043,9 @@ int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
va_end(ap);
trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
+ accel_cpu_ioctl_begin(cpu);
ret = ioctl(cpu->kvm_fd, type, arg);
+ accel_cpu_ioctl_end(cpu);
if (ret == -1) {
ret = -errno;
}
@@ -2159,7 +3063,9 @@ int kvm_device_ioctl(int fd, int type, ...)
va_end(ap);
trace_kvm_device_ioctl(fd, type, arg);
+ accel_ioctl_begin();
ret = ioctl(fd, type, arg);
+ accel_ioctl_end();
if (ret == -1) {
ret = -errno;
}
@@ -2227,22 +3133,9 @@ int kvm_has_vcpu_events(void)
return kvm_state->vcpu_events;
}
-int kvm_has_robust_singlestep(void)
+int kvm_max_nested_state_length(void)
{
- return kvm_state->robust_singlestep;
-}
-
-int kvm_has_debugregs(void)
-{
- return kvm_state->debugregs;
-}
-
-int kvm_has_many_ioeventfds(void)
-{
- if (!kvm_enabled()) {
- return 0;
- }
- return kvm_state->many_ioeventfds;
+ return kvm_state->max_nested_state_len;
}
int kvm_has_gsi_routing(void)
@@ -2254,19 +3147,13 @@ int kvm_has_gsi_routing(void)
#endif
}
-int kvm_has_intx_set_mask(void)
-{
- return kvm_state->intx_set_mask;
-}
-
bool kvm_arm_supports_user_irq(void)
{
return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
}
#ifdef KVM_CAP_SET_GUEST_DEBUG
-struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
- target_ulong pc)
+struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
{
struct kvm_sw_breakpoint *bp;
@@ -2305,6 +3192,10 @@ int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
if (cpu->singlestep_enabled) {
data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
+
+ if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
+ data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
+ }
}
kvm_arch_update_guest_debug(cpu, &data.dbg);
@@ -2313,8 +3204,13 @@ int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
return data.err;
}
-int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
- target_ulong len, int type)
+bool kvm_supports_guest_debug(void)
+{
+ /* probed during kvm_init() */
+ return kvm_has_guest_debug;
+}
+
+int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
{
struct kvm_sw_breakpoint *bp;
int err;
@@ -2326,7 +3222,7 @@ int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
return 0;
}
- bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
+ bp = g_new(struct kvm_sw_breakpoint, 1);
bp->pc = addr;
bp->use_count = 1;
err = kvm_arch_insert_sw_breakpoint(cpu, bp);
@@ -2352,8 +3248,7 @@ int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
return 0;
}
-int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
- target_ulong len, int type)
+int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
{
struct kvm_sw_breakpoint *bp;
int err;
@@ -2417,28 +3312,6 @@ void kvm_remove_all_breakpoints(CPUState *cpu)
}
}
-#else /* !KVM_CAP_SET_GUEST_DEBUG */
-
-int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
-{
- return -EINVAL;
-}
-
-int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
- target_ulong len, int type)
-{
- return -EINVAL;
-}
-
-int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
- target_ulong len, int type)
-{
- return -EINVAL;
-}
-
-void kvm_remove_all_breakpoints(CPUState *cpu)
-{
-}
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
@@ -2502,7 +3375,7 @@ int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
have_sigbus_pending = true;
pending_sigbus_addr = addr;
pending_sigbus_code = code;
- atomic_set(&cpu->exit_request, 1);
+ qatomic_set(&cpu->exit_request, 1);
return 0;
#else
return 1;
@@ -2589,17 +3462,227 @@ int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
return r;
}
+static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
+ hwaddr start_addr, hwaddr size)
+{
+ KVMState *kvm = KVM_STATE(ms->accelerator);
+ int i;
+
+ for (i = 0; i < kvm->nr_as; ++i) {
+ if (kvm->as[i].as == as && kvm->as[i].ml) {
+ size = MIN(kvm_max_slot_size, size);
+ return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
+ start_addr, size);
+ }
+ }
+
+ return false;
+}
+
+static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
+ const char *name, void *opaque,
+ Error **errp)
+{
+ KVMState *s = KVM_STATE(obj);
+ int64_t value = s->kvm_shadow_mem;
+
+ visit_type_int(v, name, &value, errp);
+}
+
+static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
+ const char *name, void *opaque,
+ Error **errp)
+{
+ KVMState *s = KVM_STATE(obj);
+ int64_t value;
+
+ if (s->fd != -1) {
+ error_setg(errp, "Cannot set properties after the accelerator has been initialized");
+ return;
+ }
+
+ if (!visit_type_int(v, name, &value, errp)) {
+ return;
+ }
+
+ s->kvm_shadow_mem = value;
+}
+
+static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
+ const char *name, void *opaque,
+ Error **errp)
+{
+ KVMState *s = KVM_STATE(obj);
+ OnOffSplit mode;
+
+ if (s->fd != -1) {
+ error_setg(errp, "Cannot set properties after the accelerator has been initialized");
+ return;
+ }
+
+ if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
+ return;
+ }
+ switch (mode) {
+ case ON_OFF_SPLIT_ON:
+ s->kernel_irqchip_allowed = true;
+ s->kernel_irqchip_required = true;
+ s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
+ break;
+ case ON_OFF_SPLIT_OFF:
+ s->kernel_irqchip_allowed = false;
+ s->kernel_irqchip_required = false;
+ s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
+ break;
+ case ON_OFF_SPLIT_SPLIT:
+ s->kernel_irqchip_allowed = true;
+ s->kernel_irqchip_required = true;
+ s->kernel_irqchip_split = ON_OFF_AUTO_ON;
+ break;
+ default:
+ /* The value was checked in visit_type_OnOffSplit() above. If
+ * we get here, then something is wrong in QEMU.
+ */
+ abort();
+ }
+}
+
+bool kvm_kernel_irqchip_allowed(void)
+{
+ return kvm_state->kernel_irqchip_allowed;
+}
+
+bool kvm_kernel_irqchip_required(void)
+{
+ return kvm_state->kernel_irqchip_required;
+}
+
+bool kvm_kernel_irqchip_split(void)
+{
+ return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
+}
+
+static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
+ const char *name, void *opaque,
+ Error **errp)
+{
+ KVMState *s = KVM_STATE(obj);
+ uint32_t value = s->kvm_dirty_ring_size;
+
+ visit_type_uint32(v, name, &value, errp);
+}
+
+static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
+ const char *name, void *opaque,
+ Error **errp)
+{
+ KVMState *s = KVM_STATE(obj);
+ uint32_t value;
+
+ if (s->fd != -1) {
+ error_setg(errp, "Cannot set properties after the accelerator has been initialized");
+ return;
+ }
+
+ if (!visit_type_uint32(v, name, &value, errp)) {
+ return;
+ }
+ if (value & (value - 1)) {
+ error_setg(errp, "dirty-ring-size must be a power of two.");
+ return;
+ }
+
+ s->kvm_dirty_ring_size = value;
+}
+
+static char *kvm_get_device(Object *obj,
+ Error **errp G_GNUC_UNUSED)
+{
+ KVMState *s = KVM_STATE(obj);
+
+ return g_strdup(s->device);
+}
+
+static void kvm_set_device(Object *obj,
+ const char *value,
+ Error **errp G_GNUC_UNUSED)
+{
+ KVMState *s = KVM_STATE(obj);
+
+ g_free(s->device);
+ s->device = g_strdup(value);
+}
+
+static void kvm_accel_instance_init(Object *obj)
+{
+ KVMState *s = KVM_STATE(obj);
+
+ s->fd = -1;
+ s->vmfd = -1;
+ s->kvm_shadow_mem = -1;
+ s->kernel_irqchip_allowed = true;
+ s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
+ /* KVM dirty ring is by default off */
+ s->kvm_dirty_ring_size = 0;
+ s->kvm_dirty_ring_with_bitmap = false;
+ s->kvm_eager_split_size = 0;
+ s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
+ s->notify_window = 0;
+ s->xen_version = 0;
+ s->xen_gnttab_max_frames = 64;
+ s->xen_evtchn_max_pirq = 256;
+ s->device = NULL;
+}
+
+/**
+ * kvm_gdbstub_sstep_flags():
+ *
+ * Returns: SSTEP_* flags that KVM supports for guest debug. The
+ * support is probed during kvm_init()
+ */
+static int kvm_gdbstub_sstep_flags(void)
+{
+ return kvm_sstep_flags;
+}
+
static void kvm_accel_class_init(ObjectClass *oc, void *data)
{
AccelClass *ac = ACCEL_CLASS(oc);
ac->name = "KVM";
ac->init_machine = kvm_init;
+ ac->has_memory = kvm_accel_has_memory;
ac->allowed = &kvm_allowed;
+ ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
+
+ object_class_property_add(oc, "kernel-irqchip", "on|off|split",
+ NULL, kvm_set_kernel_irqchip,
+ NULL, NULL);
+ object_class_property_set_description(oc, "kernel-irqchip",
+ "Configure KVM in-kernel irqchip");
+
+ object_class_property_add(oc, "kvm-shadow-mem", "int",
+ kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
+ NULL, NULL);
+ object_class_property_set_description(oc, "kvm-shadow-mem",
+ "KVM shadow MMU size");
+
+ object_class_property_add(oc, "dirty-ring-size", "uint32",
+ kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
+ NULL, NULL);
+ object_class_property_set_description(oc, "dirty-ring-size",
+ "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
+
+ object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device);
+ object_class_property_set_description(oc, "device",
+ "Path to the device node to use (default: /dev/kvm)");
+
+ kvm_arch_accel_class_init(oc);
}
static const TypeInfo kvm_accel_type = {
.name = TYPE_KVM_ACCEL,
.parent = TYPE_ACCEL,
+ .instance_init = kvm_accel_instance_init,
.class_init = kvm_accel_class_init,
.instance_size = sizeof(KVMState),
};
@@ -2610,3 +3693,404 @@ static void kvm_type_init(void)
}
type_init(kvm_type_init);
+
+typedef struct StatsArgs {
+ union StatsResultsType {
+ StatsResultList **stats;
+ StatsSchemaList **schema;
+ } result;
+ strList *names;
+ Error **errp;
+} StatsArgs;
+
+static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
+ uint64_t *stats_data,
+ StatsList *stats_list,
+ Error **errp)
+{
+
+ Stats *stats;
+ uint64List *val_list = NULL;
+
+ /* Only add stats that we understand. */
+ switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
+ case KVM_STATS_TYPE_CUMULATIVE:
+ case KVM_STATS_TYPE_INSTANT:
+ case KVM_STATS_TYPE_PEAK:
+ case KVM_STATS_TYPE_LINEAR_HIST:
+ case KVM_STATS_TYPE_LOG_HIST:
+ break;
+ default:
+ return stats_list;
+ }
+
+ switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
+ case KVM_STATS_UNIT_NONE:
+ case KVM_STATS_UNIT_BYTES:
+ case KVM_STATS_UNIT_CYCLES:
+ case KVM_STATS_UNIT_SECONDS:
+ case KVM_STATS_UNIT_BOOLEAN:
+ break;
+ default:
+ return stats_list;
+ }
+
+ switch (pdesc->flags & KVM_STATS_BASE_MASK) {
+ case KVM_STATS_BASE_POW10:
+ case KVM_STATS_BASE_POW2:
+ break;
+ default:
+ return stats_list;
+ }
+
+ /* Alloc and populate data list */
+ stats = g_new0(Stats, 1);
+ stats->name = g_strdup(pdesc->name);
+ stats->value = g_new0(StatsValue, 1);;
+
+ if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
+ stats->value->u.boolean = *stats_data;
+ stats->value->type = QTYPE_QBOOL;
+ } else if (pdesc->size == 1) {
+ stats->value->u.scalar = *stats_data;
+ stats->value->type = QTYPE_QNUM;
+ } else {
+ int i;
+ for (i = 0; i < pdesc->size; i++) {
+ QAPI_LIST_PREPEND(val_list, stats_data[i]);
+ }
+ stats->value->u.list = val_list;
+ stats->value->type = QTYPE_QLIST;
+ }
+
+ QAPI_LIST_PREPEND(stats_list, stats);
+ return stats_list;
+}
+
+static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
+ StatsSchemaValueList *list,
+ Error **errp)
+{
+ StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
+ schema_entry->value = g_new0(StatsSchemaValue, 1);
+
+ switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
+ case KVM_STATS_TYPE_CUMULATIVE:
+ schema_entry->value->type = STATS_TYPE_CUMULATIVE;
+ break;
+ case KVM_STATS_TYPE_INSTANT:
+ schema_entry->value->type = STATS_TYPE_INSTANT;
+ break;
+ case KVM_STATS_TYPE_PEAK:
+ schema_entry->value->type = STATS_TYPE_PEAK;
+ break;
+ case KVM_STATS_TYPE_LINEAR_HIST:
+ schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
+ schema_entry->value->bucket_size = pdesc->bucket_size;
+ schema_entry->value->has_bucket_size = true;
+ break;
+ case KVM_STATS_TYPE_LOG_HIST:
+ schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
+ break;
+ default:
+ goto exit;
+ }
+
+ switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
+ case KVM_STATS_UNIT_NONE:
+ break;
+ case KVM_STATS_UNIT_BOOLEAN:
+ schema_entry->value->has_unit = true;
+ schema_entry->value->unit = STATS_UNIT_BOOLEAN;
+ break;
+ case KVM_STATS_UNIT_BYTES:
+ schema_entry->value->has_unit = true;
+ schema_entry->value->unit = STATS_UNIT_BYTES;
+ break;
+ case KVM_STATS_UNIT_CYCLES:
+ schema_entry->value->has_unit = true;
+ schema_entry->value->unit = STATS_UNIT_CYCLES;
+ break;
+ case KVM_STATS_UNIT_SECONDS:
+ schema_entry->value->has_unit = true;
+ schema_entry->value->unit = STATS_UNIT_SECONDS;
+ break;
+ default:
+ goto exit;
+ }
+
+ schema_entry->value->exponent = pdesc->exponent;
+ if (pdesc->exponent) {
+ switch (pdesc->flags & KVM_STATS_BASE_MASK) {
+ case KVM_STATS_BASE_POW10:
+ schema_entry->value->has_base = true;
+ schema_entry->value->base = 10;
+ break;
+ case KVM_STATS_BASE_POW2:
+ schema_entry->value->has_base = true;
+ schema_entry->value->base = 2;
+ break;
+ default:
+ goto exit;
+ }
+ }
+
+ schema_entry->value->name = g_strdup(pdesc->name);
+ schema_entry->next = list;
+ return schema_entry;
+exit:
+ g_free(schema_entry->value);
+ g_free(schema_entry);
+ return list;
+}
+
+/* Cached stats descriptors */
+typedef struct StatsDescriptors {
+ const char *ident; /* cache key, currently the StatsTarget */
+ struct kvm_stats_desc *kvm_stats_desc;
+ struct kvm_stats_header kvm_stats_header;
+ QTAILQ_ENTRY(StatsDescriptors) next;
+} StatsDescriptors;
+
+static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
+ QTAILQ_HEAD_INITIALIZER(stats_descriptors);
+
+/*
+ * Return the descriptors for 'target', that either have already been read
+ * or are retrieved from 'stats_fd'.
+ */
+static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
+ Error **errp)
+{
+ StatsDescriptors *descriptors;
+ const char *ident;
+ struct kvm_stats_desc *kvm_stats_desc;
+ struct kvm_stats_header *kvm_stats_header;
+ size_t size_desc;
+ ssize_t ret;
+
+ ident = StatsTarget_str(target);
+ QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
+ if (g_str_equal(descriptors->ident, ident)) {
+ return descriptors;
+ }
+ }
+
+ descriptors = g_new0(StatsDescriptors, 1);
+
+ /* Read stats header */
+ kvm_stats_header = &descriptors->kvm_stats_header;
+ ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
+ if (ret != sizeof(*kvm_stats_header)) {
+ error_setg(errp, "KVM stats: failed to read stats header: "
+ "expected %zu actual %zu",
+ sizeof(*kvm_stats_header), ret);
+ g_free(descriptors);
+ return NULL;
+ }
+ size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
+
+ /* Read stats descriptors */
+ kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
+ ret = pread(stats_fd, kvm_stats_desc,
+ size_desc * kvm_stats_header->num_desc,
+ kvm_stats_header->desc_offset);
+
+ if (ret != size_desc * kvm_stats_header->num_desc) {
+ error_setg(errp, "KVM stats: failed to read stats descriptors: "
+ "expected %zu actual %zu",
+ size_desc * kvm_stats_header->num_desc, ret);
+ g_free(descriptors);
+ g_free(kvm_stats_desc);
+ return NULL;
+ }
+ descriptors->kvm_stats_desc = kvm_stats_desc;
+ descriptors->ident = ident;
+ QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
+ return descriptors;
+}
+
+static void query_stats(StatsResultList **result, StatsTarget target,
+ strList *names, int stats_fd, CPUState *cpu,
+ Error **errp)
+{
+ struct kvm_stats_desc *kvm_stats_desc;
+ struct kvm_stats_header *kvm_stats_header;
+ StatsDescriptors *descriptors;
+ g_autofree uint64_t *stats_data = NULL;
+ struct kvm_stats_desc *pdesc;
+ StatsList *stats_list = NULL;
+ size_t size_desc, size_data = 0;
+ ssize_t ret;
+ int i;
+
+ descriptors = find_stats_descriptors(target, stats_fd, errp);
+ if (!descriptors) {
+ return;
+ }
+
+ kvm_stats_header = &descriptors->kvm_stats_header;
+ kvm_stats_desc = descriptors->kvm_stats_desc;
+ size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
+
+ /* Tally the total data size; read schema data */
+ for (i = 0; i < kvm_stats_header->num_desc; ++i) {
+ pdesc = (void *)kvm_stats_desc + i * size_desc;
+ size_data += pdesc->size * sizeof(*stats_data);
+ }
+
+ stats_data = g_malloc0(size_data);
+ ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
+
+ if (ret != size_data) {
+ error_setg(errp, "KVM stats: failed to read data: "
+ "expected %zu actual %zu", size_data, ret);
+ return;
+ }
+
+ for (i = 0; i < kvm_stats_header->num_desc; ++i) {
+ uint64_t *stats;
+ pdesc = (void *)kvm_stats_desc + i * size_desc;
+
+ /* Add entry to the list */
+ stats = (void *)stats_data + pdesc->offset;
+ if (!apply_str_list_filter(pdesc->name, names)) {
+ continue;
+ }
+ stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
+ }
+
+ if (!stats_list) {
+ return;
+ }
+
+ switch (target) {
+ case STATS_TARGET_VM:
+ add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
+ break;
+ case STATS_TARGET_VCPU:
+ add_stats_entry(result, STATS_PROVIDER_KVM,
+ cpu->parent_obj.canonical_path,
+ stats_list);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
+ int stats_fd, Error **errp)
+{
+ struct kvm_stats_desc *kvm_stats_desc;
+ struct kvm_stats_header *kvm_stats_header;
+ StatsDescriptors *descriptors;
+ struct kvm_stats_desc *pdesc;
+ StatsSchemaValueList *stats_list = NULL;
+ size_t size_desc;
+ int i;
+
+ descriptors = find_stats_descriptors(target, stats_fd, errp);
+ if (!descriptors) {
+ return;
+ }
+
+ kvm_stats_header = &descriptors->kvm_stats_header;
+ kvm_stats_desc = descriptors->kvm_stats_desc;
+ size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
+
+ /* Tally the total data size; read schema data */
+ for (i = 0; i < kvm_stats_header->num_desc; ++i) {
+ pdesc = (void *)kvm_stats_desc + i * size_desc;
+ stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
+ }
+
+ add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
+}
+
+static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
+{
+ int stats_fd = cpu->kvm_vcpu_stats_fd;
+ Error *local_err = NULL;
+
+ if (stats_fd == -1) {
+ error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
+ error_propagate(kvm_stats_args->errp, local_err);
+ return;
+ }
+ query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
+ kvm_stats_args->names, stats_fd, cpu,
+ kvm_stats_args->errp);
+}
+
+static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
+{
+ int stats_fd = cpu->kvm_vcpu_stats_fd;
+ Error *local_err = NULL;
+
+ if (stats_fd == -1) {
+ error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
+ error_propagate(kvm_stats_args->errp, local_err);
+ return;
+ }
+ query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
+ kvm_stats_args->errp);
+}
+
+static void query_stats_cb(StatsResultList **result, StatsTarget target,
+ strList *names, strList *targets, Error **errp)
+{
+ KVMState *s = kvm_state;
+ CPUState *cpu;
+ int stats_fd;
+
+ switch (target) {
+ case STATS_TARGET_VM:
+ {
+ stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
+ if (stats_fd == -1) {
+ error_setg_errno(errp, errno, "KVM stats: ioctl failed");
+ return;
+ }
+ query_stats(result, target, names, stats_fd, NULL, errp);
+ close(stats_fd);
+ break;
+ }
+ case STATS_TARGET_VCPU:
+ {
+ StatsArgs stats_args;
+ stats_args.result.stats = result;
+ stats_args.names = names;
+ stats_args.errp = errp;
+ CPU_FOREACH(cpu) {
+ if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
+ continue;
+ }
+ query_stats_vcpu(cpu, &stats_args);
+ }
+ break;
+ }
+ default:
+ break;
+ }
+}
+
+void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
+{
+ StatsArgs stats_args;
+ KVMState *s = kvm_state;
+ int stats_fd;
+
+ stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
+ if (stats_fd == -1) {
+ error_setg_errno(errp, errno, "KVM stats: ioctl failed");
+ return;
+ }
+ query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
+ close(stats_fd);
+
+ if (first_cpu) {
+ stats_args.result.schema = result;
+ stats_args.errp = errp;
+ query_stats_schema_vcpu(first_cpu, &stats_args);
+ }
+}