aboutsummaryrefslogtreecommitdiff
path: root/qemu-doc.texi
diff options
context:
space:
mode:
authorPaolo Bonzini <pbonzini@redhat.com>2016-10-06 14:59:26 +0200
committerPaolo Bonzini <pbonzini@redhat.com>2016-10-07 10:05:11 +0200
commit1f3e7e41bb0ca09e322e95aab98e2593e1f6ff55 (patch)
treed4ce5bebec750cbd9ba2218db950a1eba0f9401e /qemu-doc.texi
parentf91c7e5235357d3bc0db02d6459238b901384bff (diff)
qemu-doc: replace introduction with the one from the internals manual
The user manual has an obsolete introduction, and the one in the internals manual lists QEMU's features quite nicely. Drop the obsolete content and remove generic user-level documentation from qemu-tech. Reviewed-by: Emilio G. Cota <cota@braap.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'qemu-doc.texi')
-rw-r--r--qemu-doc.texi84
1 files changed, 44 insertions, 40 deletions
diff --git a/qemu-doc.texi b/qemu-doc.texi
index f37fd3130e..9f75c9d4d1 100644
--- a/qemu-doc.texi
+++ b/qemu-doc.texi
@@ -57,65 +57,69 @@
QEMU is a FAST! processor emulator using dynamic translation to
achieve good emulation speed.
+@cindex operating modes
QEMU has two operating modes:
@itemize
-@cindex operating modes
-
-@item
@cindex system emulation
-Full system emulation. In this mode, QEMU emulates a full system (for
+@item Full system emulation. In this mode, QEMU emulates a full system (for
example a PC), including one or several processors and various
peripherals. It can be used to launch different Operating Systems
without rebooting the PC or to debug system code.
-@item
@cindex user mode emulation
-User mode emulation. In this mode, QEMU can launch
+@item User mode emulation. In this mode, QEMU can launch
processes compiled for one CPU on another CPU. It can be used to
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
to ease cross-compilation and cross-debugging.
@end itemize
-QEMU can run without a host kernel driver and yet gives acceptable
-performance.
+QEMU has the following features:
+
+@itemize
+@item QEMU can run without a host kernel driver and yet gives acceptable
+performance. It uses dynamic translation to native code for reasonable speed,
+with support for self-modifying code and precise exceptions.
+
+@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
+Windows) and architectures.
+
+@item It performs accurate software emulation of the FPU.
+@end itemize
-For system emulation, the following hardware targets are supported:
+QEMU user mode emulation has the following features:
@itemize
-@cindex emulated target systems
-@cindex supported target systems
-@item PC (x86 or x86_64 processor)
-@item ISA PC (old style PC without PCI bus)
-@item PREP (PowerPC processor)
-@item G3 Beige PowerMac (PowerPC processor)
-@item Mac99 PowerMac (PowerPC processor, in progress)
-@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
-@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
-@item Malta board (32-bit and 64-bit MIPS processors)
-@item MIPS Magnum (64-bit MIPS processor)
-@item ARM Integrator/CP (ARM)
-@item ARM Versatile baseboard (ARM)
-@item ARM RealView Emulation/Platform baseboard (ARM)
-@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
-@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
-@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
-@item Freescale MCF5208EVB (ColdFire V2).
-@item Arnewsh MCF5206 evaluation board (ColdFire V2).
-@item Palm Tungsten|E PDA (OMAP310 processor)
-@item N800 and N810 tablets (OMAP2420 processor)
-@item MusicPal (MV88W8618 ARM processor)
-@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
-@item Siemens SX1 smartphone (OMAP310 processor)
-@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
-@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
-@item Avnet LX60/LX110/LX200 boards (Xtensa)
+@item Generic Linux system call converter, including most ioctls.
+
+@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
+
+@item Accurate signal handling by remapping host signals to target signals.
+@end itemize
+
+QEMU full system emulation has the following features:
+@itemize
+@item
+QEMU uses a full software MMU for maximum portability.
+
+@item
+QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
+execute most of the guest code natively, while
+continuing to emulate the rest of the machine.
+
+@item
+Various hardware devices can be emulated and in some cases, host
+devices (e.g. serial and parallel ports, USB, drives) can be used
+transparently by the guest Operating System. Host device passthrough
+can be used for talking to external physical peripherals (e.g. a
+webcam, modem or tape drive).
+
+@item
+Symmetric multiprocessing (SMP) support. Currently, an in-kernel
+accelerator is required to use more than one host CPU for emulation.
+
@end itemize
-@cindex supported user mode targets
-For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
-ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
-Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
@node Installation
@chapter Installation