aboutsummaryrefslogtreecommitdiff
path: root/net/core/filter.c
blob: d6cb287e4f59fc8b288e9ab28ea86c2ccc612e63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
 *
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
 * Kris Katterjohn - Added many additional checks in sk_chk_filter()
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
#include <linux/gfp.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/netlink.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <linux/errno.h>
#include <linux/timer.h>
#include <asm/uaccess.h>
#include <asm/unaligned.h>
#include <linux/filter.h>
#include <linux/ratelimit.h>
#include <linux/seccomp.h>
#include <linux/if_vlan.h>

/**
 *	sk_filter - run a packet through a socket filter
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
 *
 * Run the filter code and then cut skb->data to correct size returned by
 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
 * than pkt_len we keep whole skb->data. This is the socket level
 * wrapper to sk_run_filter. It returns 0 if the packet should
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
int sk_filter(struct sock *sk, struct sk_buff *skb)
{
	int err;
	struct sk_filter *filter;

	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
		return -ENOMEM;

	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
	if (filter) {
		unsigned int pkt_len = SK_RUN_FILTER(filter, skb);

		err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
	}
	rcu_read_unlock();

	return err;
}
EXPORT_SYMBOL(sk_filter);

/* Helper to find the offset of pkt_type in sk_buff structure. We want
 * to make sure its still a 3bit field starting at a byte boundary;
 * taken from arch/x86/net/bpf_jit_comp.c.
 */
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_TYPE_MAX	(7 << 5)
#else
#define PKT_TYPE_MAX	7
#endif
static unsigned int pkt_type_offset(void)
{
	struct sk_buff skb_probe = { .pkt_type = ~0, };
	u8 *ct = (u8 *) &skb_probe;
	unsigned int off;

	for (off = 0; off < sizeof(struct sk_buff); off++) {
		if (ct[off] == PKT_TYPE_MAX)
			return off;
	}

	pr_err_once("Please fix %s, as pkt_type couldn't be found!\n", __func__);
	return -1;
}

static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
{
	return __skb_get_poff((struct sk_buff *)(unsigned long) ctx);
}

static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

	if (skb->len < sizeof(struct nlattr))
		return 0;

	if (a > skb->len - sizeof(struct nlattr))
		return 0;

	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

	if (skb->len < sizeof(struct nlattr))
		return 0;

	if (a > skb->len - sizeof(struct nlattr))
		return 0;

	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
		return 0;

	nla = nla_find_nested(nla, x);
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
{
	return raw_smp_processor_id();
}

/* note that this only generates 32-bit random numbers */
static u64 __get_random_u32(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
{
	return prandom_u32();
}

static bool convert_bpf_extensions(struct sock_filter *fp,
				   struct bpf_insn **insnp)
{
	struct bpf_insn *insn = *insnp;

	switch (fp->k) {
	case SKF_AD_OFF + SKF_AD_PROTOCOL:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		/* A = *(u16 *) (CTX + offsetof(protocol)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, protocol));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
		break;

	case SKF_AD_OFF + SKF_AD_PKTTYPE:
		*insn = BPF_LDX_MEM(BPF_B, BPF_REG_A, BPF_REG_CTX,
				    pkt_type_offset());
		if (insn->off < 0)
			return false;
		insn++;
		*insn = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		insn++;
                *insn = BPF_ALU32_IMM(BPF_RSH, BPF_REG_A, 5);
#endif
		break;

	case SKF_AD_OFF + SKF_AD_IFINDEX:
	case SKF_AD_OFF + SKF_AD_HATYPE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
		BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);

		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
				      BPF_REG_TMP, BPF_REG_CTX,
				      offsetof(struct sk_buff, dev));
		/* if (tmp != 0) goto pc + 1 */
		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
		*insn++ = BPF_EXIT_INSN();
		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, ifindex));
		else
			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, type));
		break;

	case SKF_AD_OFF + SKF_AD_MARK:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, mark));
		break;

	case SKF_AD_OFF + SKF_AD_RXHASH:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, hash));
		break;

	case SKF_AD_OFF + SKF_AD_QUEUE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);

		*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, queue_mapping));
		break;

	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		/* A = *(u16 *) (CTX + offsetof(vlan_tci)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, vlan_tci));
		if (fp->k == SKF_AD_OFF + SKF_AD_VLAN_TAG) {
			*insn = BPF_ALU32_IMM(BPF_AND, BPF_REG_A,
					      ~VLAN_TAG_PRESENT);
		} else {
			/* A >>= 12 */
			*insn++ = BPF_ALU32_IMM(BPF_RSH, BPF_REG_A, 12);
			/* A &= 1 */
			*insn = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 1);
		}
		break;

	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
	case SKF_AD_OFF + SKF_AD_NLATTR:
	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
	case SKF_AD_OFF + SKF_AD_CPU:
	case SKF_AD_OFF + SKF_AD_RANDOM:
		/* arg1 = CTX */
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
		/* arg2 = A */
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
		/* arg3 = X */
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
		switch (fp->k) {
		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR:
			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
			break;
		case SKF_AD_OFF + SKF_AD_CPU:
			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
			break;
		case SKF_AD_OFF + SKF_AD_RANDOM:
			*insn = BPF_EMIT_CALL(__get_random_u32);
			break;
		}
		break;

	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
		/* A ^= X */
		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
		break;

	default:
		/* This is just a dummy call to avoid letting the compiler
		 * evict __bpf_call_base() as an optimization. Placed here
		 * where no-one bothers.
		 */
		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
		return false;
	}

	*insnp = insn;
	return true;
}

/**
 *	sk_convert_filter - convert filter program
 *	@prog: the user passed filter program
 *	@len: the length of the user passed filter program
 *	@new_prog: buffer where converted program will be stored
 *	@new_len: pointer to store length of converted program
 *
 * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
 * Conversion workflow:
 *
 * 1) First pass for calculating the new program length:
 *   sk_convert_filter(old_prog, old_len, NULL, &new_len)
 *
 * 2) 2nd pass to remap in two passes: 1st pass finds new
 *    jump offsets, 2nd pass remapping:
 *   new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
 *   sk_convert_filter(old_prog, old_len, new_prog, &new_len);
 *
 * User BPF's register A is mapped to our BPF register 6, user BPF
 * register X is mapped to BPF register 7; frame pointer is always
 * register 10; Context 'void *ctx' is stored in register 1, that is,
 * for socket filters: ctx == 'struct sk_buff *', for seccomp:
 * ctx == 'struct seccomp_data *'.
 */
int sk_convert_filter(struct sock_filter *prog, int len,
		      struct bpf_insn *new_prog, int *new_len)
{
	int new_flen = 0, pass = 0, target, i;
	struct bpf_insn *new_insn;
	struct sock_filter *fp;
	int *addrs = NULL;
	u8 bpf_src;

	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);

	if (len <= 0 || len > BPF_MAXINSNS)
		return -EINVAL;

	if (new_prog) {
		addrs = kcalloc(len, sizeof(*addrs), GFP_KERNEL);
		if (!addrs)
			return -ENOMEM;
	}

do_pass:
	new_insn = new_prog;
	fp = prog;

	if (new_insn)
		*new_insn = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
	new_insn++;

	for (i = 0; i < len; fp++, i++) {
		struct bpf_insn tmp_insns[6] = { };
		struct bpf_insn *insn = tmp_insns;

		if (addrs)
			addrs[i] = new_insn - new_prog;

		switch (fp->code) {
		/* All arithmetic insns and skb loads map as-is. */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_NEG:
		case BPF_LD | BPF_ABS | BPF_W:
		case BPF_LD | BPF_ABS | BPF_H:
		case BPF_LD | BPF_ABS | BPF_B:
		case BPF_LD | BPF_IND | BPF_W:
		case BPF_LD | BPF_IND | BPF_H:
		case BPF_LD | BPF_IND | BPF_B:
			/* Check for overloaded BPF extension and
			 * directly convert it if found, otherwise
			 * just move on with mapping.
			 */
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    BPF_MODE(fp->code) == BPF_ABS &&
			    convert_bpf_extensions(fp, &insn))
				break;

			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
			break;

		/* Jump transformation cannot use BPF block macros
		 * everywhere as offset calculation and target updates
		 * require a bit more work than the rest, i.e. jump
		 * opcodes map as-is, but offsets need adjustment.
		 */

#define BPF_EMIT_JMP							\
	do {								\
		if (target >= len || target < 0)			\
			goto err;					\
		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
		insn->off -= insn - tmp_insns;				\
	} while (0)

		case BPF_JMP | BPF_JA:
			target = i + fp->k + 1;
			insn->code = fp->code;
			BPF_EMIT_JMP;
			break;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
				/* BPF immediates are signed, zero extend
				 * immediate into tmp register and use it
				 * in compare insn.
				 */
				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);

				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_TMP;
				bpf_src = BPF_X;
			} else {
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_X;
				insn->imm = fp->k;
				bpf_src = BPF_SRC(fp->code);
			}

			/* Common case where 'jump_false' is next insn. */
			if (fp->jf == 0) {
				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
				target = i + fp->jt + 1;
				BPF_EMIT_JMP;
				break;
			}

			/* Convert JEQ into JNE when 'jump_true' is next insn. */
			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
				insn->code = BPF_JMP | BPF_JNE | bpf_src;
				target = i + fp->jf + 1;
				BPF_EMIT_JMP;
				break;
			}

			/* Other jumps are mapped into two insns: Jxx and JA. */
			target = i + fp->jt + 1;
			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
			BPF_EMIT_JMP;
			insn++;

			insn->code = BPF_JMP | BPF_JA;
			target = i + fp->jf + 1;
			BPF_EMIT_JMP;
			break;

		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
		case BPF_LDX | BPF_MSH | BPF_B:
			/* tmp = A */
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
			/* A &= 0xf */
			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
			/* A <<= 2 */
			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
			/* X = A */
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
			/* A = tmp */
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
			break;

		/* RET_K, RET_A are remaped into 2 insns. */
		case BPF_RET | BPF_A:
		case BPF_RET | BPF_K:
			*insn++ = BPF_MOV32_RAW(BPF_RVAL(fp->code) == BPF_K ?
						BPF_K : BPF_X, BPF_REG_0,
						BPF_REG_A, fp->k);
			*insn = BPF_EXIT_INSN();
			break;

		/* Store to stack. */
		case BPF_ST:
		case BPF_STX:
			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
					    BPF_ST ? BPF_REG_A : BPF_REG_X,
					    -(BPF_MEMWORDS - fp->k) * 4);
			break;

		/* Load from stack. */
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
					    -(BPF_MEMWORDS - fp->k) * 4);
			break;

		/* A = K or X = K */
		case BPF_LD | BPF_IMM:
		case BPF_LDX | BPF_IMM:
			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
					      BPF_REG_A : BPF_REG_X, fp->k);
			break;

		/* X = A */
		case BPF_MISC | BPF_TAX:
			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
			break;

		/* A = X */
		case BPF_MISC | BPF_TXA:
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
			break;

		/* A = skb->len or X = skb->len */
		case BPF_LD | BPF_W | BPF_LEN:
		case BPF_LDX | BPF_W | BPF_LEN:
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
					    offsetof(struct sk_buff, len));
			break;

		/* Access seccomp_data fields. */
		case BPF_LDX | BPF_ABS | BPF_W:
			/* A = *(u32 *) (ctx + K) */
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
			break;

		/* Unkown instruction. */
		default:
			goto err;
		}

		insn++;
		if (new_prog)
			memcpy(new_insn, tmp_insns,
			       sizeof(*insn) * (insn - tmp_insns));
		new_insn += insn - tmp_insns;
	}

	if (!new_prog) {
		/* Only calculating new length. */
		*new_len = new_insn - new_prog;
		return 0;
	}

	pass++;
	if (new_flen != new_insn - new_prog) {
		new_flen = new_insn - new_prog;
		if (pass > 2)
			goto err;
		goto do_pass;
	}

	kfree(addrs);
	BUG_ON(*new_len != new_flen);
	return 0;
err:
	kfree(addrs);
	return -EINVAL;
}

/* Security:
 *
 * A BPF program is able to use 16 cells of memory to store intermediate
 * values (check u32 mem[BPF_MEMWORDS] in sk_run_filter()).
 *
 * As we dont want to clear mem[] array for each packet going through
 * sk_run_filter(), we check that filter loaded by user never try to read
 * a cell if not previously written, and we check all branches to be sure
 * a malicious user doesn't try to abuse us.
 */
static int check_load_and_stores(const struct sock_filter *filter, int flen)
{
	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);

	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
	if (!masks)
		return -ENOMEM;

	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
		case BPF_ST:
		case BPF_STX:
			memvalid |= (1 << filter[pc].k);
			break;
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
		case BPF_JMP | BPF_JA:
			/* A jump must set masks on target */
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* A jump must set masks on targets */
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

static bool chk_code_allowed(u16 code_to_probe)
{
	static const bool codes[] = {
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_K] = true,
		[BPF_ALU | BPF_ADD | BPF_X] = true,
		[BPF_ALU | BPF_SUB | BPF_K] = true,
		[BPF_ALU | BPF_SUB | BPF_X] = true,
		[BPF_ALU | BPF_MUL | BPF_K] = true,
		[BPF_ALU | BPF_MUL | BPF_X] = true,
		[BPF_ALU | BPF_DIV | BPF_K] = true,
		[BPF_ALU | BPF_DIV | BPF_X] = true,
		[BPF_ALU | BPF_MOD | BPF_K] = true,
		[BPF_ALU | BPF_MOD | BPF_X] = true,
		[BPF_ALU | BPF_AND | BPF_K] = true,
		[BPF_ALU | BPF_AND | BPF_X] = true,
		[BPF_ALU | BPF_OR | BPF_K] = true,
		[BPF_ALU | BPF_OR | BPF_X] = true,
		[BPF_ALU | BPF_XOR | BPF_K] = true,
		[BPF_ALU | BPF_XOR | BPF_X] = true,
		[BPF_ALU | BPF_LSH | BPF_K] = true,
		[BPF_ALU | BPF_LSH | BPF_X] = true,
		[BPF_ALU | BPF_RSH | BPF_K] = true,
		[BPF_ALU | BPF_RSH | BPF_X] = true,
		[BPF_ALU | BPF_NEG] = true,
		/* Load instructions */
		[BPF_LD | BPF_W | BPF_ABS] = true,
		[BPF_LD | BPF_H | BPF_ABS] = true,
		[BPF_LD | BPF_B | BPF_ABS] = true,
		[BPF_LD | BPF_W | BPF_LEN] = true,
		[BPF_LD | BPF_W | BPF_IND] = true,
		[BPF_LD | BPF_H | BPF_IND] = true,
		[BPF_LD | BPF_B | BPF_IND] = true,
		[BPF_LD | BPF_IMM] = true,
		[BPF_LD | BPF_MEM] = true,
		[BPF_LDX | BPF_W | BPF_LEN] = true,
		[BPF_LDX | BPF_B | BPF_MSH] = true,
		[BPF_LDX | BPF_IMM] = true,
		[BPF_LDX | BPF_MEM] = true,
		/* Store instructions */
		[BPF_ST] = true,
		[BPF_STX] = true,
		/* Misc instructions */
		[BPF_MISC | BPF_TAX] = true,
		[BPF_MISC | BPF_TXA] = true,
		/* Return instructions */
		[BPF_RET | BPF_K] = true,
		[BPF_RET | BPF_A] = true,
		/* Jump instructions */
		[BPF_JMP | BPF_JA] = true,
		[BPF_JMP | BPF_JEQ | BPF_K] = true,
		[BPF_JMP | BPF_JEQ | BPF_X] = true,
		[BPF_JMP | BPF_JGE | BPF_K] = true,
		[BPF_JMP | BPF_JGE | BPF_X] = true,
		[BPF_JMP | BPF_JGT | BPF_K] = true,
		[BPF_JMP | BPF_JGT | BPF_X] = true,
		[BPF_JMP | BPF_JSET | BPF_K] = true,
		[BPF_JMP | BPF_JSET | BPF_X] = true,
	};

	if (code_to_probe >= ARRAY_SIZE(codes))
		return false;

	return codes[code_to_probe];
}

/**
 *	sk_chk_filter - verify socket filter code
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
 *
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
 */
int sk_chk_filter(const struct sock_filter *filter, unsigned int flen)
{
	bool anc_found;
	int pc;

	if (flen == 0 || flen > BPF_MAXINSNS)
		return -EINVAL;

	/* Check the filter code now */
	for (pc = 0; pc < flen; pc++) {
		const struct sock_filter *ftest = &filter[pc];

		/* May we actually operate on this code? */
		if (!chk_code_allowed(ftest->code))
			return -EINVAL;

		/* Some instructions need special checks */
		switch (ftest->code) {
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_K:
			/* Check for division by zero */
			if (ftest->k == 0)
				return -EINVAL;
			break;
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
		case BPF_ST:
		case BPF_STX:
			/* Check for invalid memory addresses */
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
		case BPF_JMP | BPF_JA:
			/* Note, the large ftest->k might cause loops.
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
			if (ftest->k >= (unsigned int)(flen - pc - 1))
				return -EINVAL;
			break;
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* Both conditionals must be safe */
			if (pc + ftest->jt + 1 >= flen ||
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
			break;
		case BPF_LD | BPF_W | BPF_ABS:
		case BPF_LD | BPF_H | BPF_ABS:
		case BPF_LD | BPF_B | BPF_ABS:
			anc_found = false;
			if (bpf_anc_helper(ftest) & BPF_ANC)
				anc_found = true;
			/* Ancillary operation unknown or unsupported */
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
		}
	}

	/* Last instruction must be a RET code */
	switch (filter[flen - 1].code) {
	case BPF_RET | BPF_K:
	case BPF_RET | BPF_A:
		return check_load_and_stores(filter, flen);
	}

	return -EINVAL;
}
EXPORT_SYMBOL(sk_chk_filter);

static int sk_store_orig_filter(struct sk_filter *fp,
				const struct sock_fprog *fprog)
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct sock_fprog_kern *fkprog;

	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
	if (!fp->orig_prog)
		return -ENOMEM;

	fkprog = fp->orig_prog;
	fkprog->len = fprog->len;
	fkprog->filter = kmemdup(fp->insns, fsize, GFP_KERNEL);
	if (!fkprog->filter) {
		kfree(fp->orig_prog);
		return -ENOMEM;
	}

	return 0;
}

static void sk_release_orig_filter(struct sk_filter *fp)
{
	struct sock_fprog_kern *fprog = fp->orig_prog;

	if (fprog) {
		kfree(fprog->filter);
		kfree(fprog);
	}
}

static void __sk_filter_release(struct sk_filter *fp)
{
	sk_release_orig_filter(fp);
	sk_filter_free(fp);
}

/**
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
 *	@rcu: rcu_head that contains the sk_filter to free
 */
static void sk_filter_release_rcu(struct rcu_head *rcu)
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

	__sk_filter_release(fp);
}

/**
 *	sk_filter_release - release a socket filter
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
static void sk_filter_release(struct sk_filter *fp)
{
	if (atomic_dec_and_test(&fp->refcnt))
		call_rcu(&fp->rcu, sk_filter_release_rcu);
}

void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
	u32 filter_size = sk_filter_size(fp->len);

	atomic_sub(filter_size, &sk->sk_omem_alloc);
	sk_filter_release(fp);
}

/* try to charge the socket memory if there is space available
 * return true on success
 */
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
{
	u32 filter_size = sk_filter_size(fp->len);

	/* same check as in sock_kmalloc() */
	if (filter_size <= sysctl_optmem_max &&
	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
		atomic_inc(&fp->refcnt);
		atomic_add(filter_size, &sk->sk_omem_alloc);
		return true;
	}
	return false;
}

static struct sk_filter *__sk_migrate_filter(struct sk_filter *fp)
{
	struct sock_filter *old_prog;
	struct sk_filter *old_fp;
	int err, new_len, old_len = fp->len;

	/* We are free to overwrite insns et al right here as it
	 * won't be used at this point in time anymore internally
	 * after the migration to the internal BPF instruction
	 * representation.
	 */
	BUILD_BUG_ON(sizeof(struct sock_filter) !=
		     sizeof(struct bpf_insn));

	/* Conversion cannot happen on overlapping memory areas,
	 * so we need to keep the user BPF around until the 2nd
	 * pass. At this time, the user BPF is stored in fp->insns.
	 */
	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
			   GFP_KERNEL);
	if (!old_prog) {
		err = -ENOMEM;
		goto out_err;
	}

	/* 1st pass: calculate the new program length. */
	err = sk_convert_filter(old_prog, old_len, NULL, &new_len);
	if (err)
		goto out_err_free;

	/* Expand fp for appending the new filter representation. */
	old_fp = fp;
	fp = krealloc(old_fp, sk_filter_size(new_len), GFP_KERNEL);
	if (!fp) {
		/* The old_fp is still around in case we couldn't
		 * allocate new memory, so uncharge on that one.
		 */
		fp = old_fp;
		err = -ENOMEM;
		goto out_err_free;
	}

	fp->len = new_len;

	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
	err = sk_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
	if (err)
		/* 2nd sk_convert_filter() can fail only if it fails
		 * to allocate memory, remapping must succeed. Note,
		 * that at this time old_fp has already been released
		 * by krealloc().
		 */
		goto out_err_free;

	sk_filter_select_runtime(fp);

	kfree(old_prog);
	return fp;

out_err_free:
	kfree(old_prog);
out_err:
	__sk_filter_release(fp);
	return ERR_PTR(err);
}

static struct sk_filter *__sk_prepare_filter(struct sk_filter *fp)
{
	int err;

	fp->bpf_func = NULL;
	fp->jited = 0;

	err = sk_chk_filter(fp->insns, fp->len);
	if (err) {
		__sk_filter_release(fp);
		return ERR_PTR(err);
	}

	/* Probe if we can JIT compile the filter and if so, do
	 * the compilation of the filter.
	 */
	bpf_jit_compile(fp);

	/* JIT compiler couldn't process this filter, so do the
	 * internal BPF translation for the optimized interpreter.
	 */
	if (!fp->jited)
		fp = __sk_migrate_filter(fp);

	return fp;
}

/**
 *	sk_unattached_filter_create - create an unattached filter
 *	@pfp: the unattached filter that is created
 *	@fprog: the filter program
 *
 * Create a filter independent of any socket. We first run some
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
int sk_unattached_filter_create(struct sk_filter **pfp,
				struct sock_fprog_kern *fprog)
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct sk_filter *fp;

	/* Make sure new filter is there and in the right amounts. */
	if (fprog->filter == NULL)
		return -EINVAL;

	fp = kmalloc(sk_filter_size(fprog->len), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	memcpy(fp->insns, fprog->filter, fsize);

	atomic_set(&fp->refcnt, 1);
	fp->len = fprog->len;
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;

	/* __sk_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = __sk_prepare_filter(fp);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	*pfp = fp;
	return 0;
}
EXPORT_SYMBOL_GPL(sk_unattached_filter_create);

void sk_unattached_filter_destroy(struct sk_filter *fp)
{
	__sk_filter_release(fp);
}
EXPORT_SYMBOL_GPL(sk_unattached_filter_destroy);

/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
{
	struct sk_filter *fp, *old_fp;
	unsigned int fsize = bpf_classic_proglen(fprog);
	unsigned int sk_fsize = sk_filter_size(fprog->len);
	int err;

	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

	/* Make sure new filter is there and in the right amounts. */
	if (fprog->filter == NULL)
		return -EINVAL;

	fp = kmalloc(sk_fsize, GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		kfree(fp);
		return -EFAULT;
	}

	fp->len = fprog->len;

	err = sk_store_orig_filter(fp, fprog);
	if (err) {
		kfree(fp);
		return -ENOMEM;
	}

	/* __sk_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = __sk_prepare_filter(fp);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	atomic_set(&fp->refcnt, 0);

	if (!sk_filter_charge(sk, fp)) {
		__sk_filter_release(fp);
		return -ENOMEM;
	}

	old_fp = rcu_dereference_protected(sk->sk_filter,
					   sock_owned_by_user(sk));
	rcu_assign_pointer(sk->sk_filter, fp);

	if (old_fp)
		sk_filter_uncharge(sk, old_fp);

	return 0;
}
EXPORT_SYMBOL_GPL(sk_attach_filter);

int sk_detach_filter(struct sock *sk)
{
	int ret = -ENOENT;
	struct sk_filter *filter;

	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

	filter = rcu_dereference_protected(sk->sk_filter,
					   sock_owned_by_user(sk));
	if (filter) {
		RCU_INIT_POINTER(sk->sk_filter, NULL);
		sk_filter_uncharge(sk, filter);
		ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(sk_detach_filter);

int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
		  unsigned int len)
{
	struct sock_fprog_kern *fprog;
	struct sk_filter *filter;
	int ret = 0;

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
					   sock_owned_by_user(sk));
	if (!filter)
		goto out;

	/* We're copying the filter that has been originally attached,
	 * so no conversion/decode needed anymore.
	 */
	fprog = filter->orig_prog;

	ret = fprog->len;
	if (!len)
		/* User space only enquires number of filter blocks. */
		goto out;

	ret = -EINVAL;
	if (len < fprog->len)
		goto out;

	ret = -EFAULT;
	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
		goto out;

	/* Instead of bytes, the API requests to return the number
	 * of filter blocks.
	 */
	ret = fprog->len;
out:
	release_sock(sk);
	return ret;
}