aboutsummaryrefslogtreecommitdiff
path: root/drivers/iio/adc/qcom-vadc-common.c
blob: dcd7fb5b9fb24ab21190d2769cb1238db1fdbc13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
// SPDX-License-Identifier: GPL-2.0
#include <linux/bug.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/math64.h>
#include <linux/log2.h>
#include <linux/err.h>
#include <linux/module.h>

#include "qcom-vadc-common.h"

/* Voltage to temperature */
static const struct vadc_map_pt adcmap_100k_104ef_104fb[] = {
	{1758,	-40},
	{1742,	-35},
	{1719,	-30},
	{1691,	-25},
	{1654,	-20},
	{1608,	-15},
	{1551,	-10},
	{1483,	-5},
	{1404,	0},
	{1315,	5},
	{1218,	10},
	{1114,	15},
	{1007,	20},
	{900,	25},
	{795,	30},
	{696,	35},
	{605,	40},
	{522,	45},
	{448,	50},
	{383,	55},
	{327,	60},
	{278,	65},
	{237,	70},
	{202,	75},
	{172,	80},
	{146,	85},
	{125,	90},
	{107,	95},
	{92,	100},
	{79,	105},
	{68,	110},
	{59,	115},
	{51,	120},
	{44,	125}
};

/*
 * Voltage to temperature table for 100k pull up for NTCG104EF104 with
 * 1.875V reference.
 */
static const struct vadc_map_pt adcmap_100k_104ef_104fb_1875_vref[] = {
	{ 1831,	-40000 },
	{ 1814,	-35000 },
	{ 1791,	-30000 },
	{ 1761,	-25000 },
	{ 1723,	-20000 },
	{ 1675,	-15000 },
	{ 1616,	-10000 },
	{ 1545,	-5000 },
	{ 1463,	0 },
	{ 1370,	5000 },
	{ 1268,	10000 },
	{ 1160,	15000 },
	{ 1049,	20000 },
	{ 937,	25000 },
	{ 828,	30000 },
	{ 726,	35000 },
	{ 630,	40000 },
	{ 544,	45000 },
	{ 467,	50000 },
	{ 399,	55000 },
	{ 340,	60000 },
	{ 290,	65000 },
	{ 247,	70000 },
	{ 209,	75000 },
	{ 179,	80000 },
	{ 153,	85000 },
	{ 130,	90000 },
	{ 112,	95000 },
	{ 96,	100000 },
	{ 82,	105000 },
	{ 71,	110000 },
	{ 62,	115000 },
	{ 53,	120000 },
	{ 46,	125000 },
};

static int qcom_vadc_scale_hw_calib_volt(
				const struct vadc_prescale_ratio *prescale,
				const struct adc5_data *data,
				u16 adc_code, int *result_uv);
static int qcom_vadc_scale_hw_calib_therm(
				const struct vadc_prescale_ratio *prescale,
				const struct adc5_data *data,
				u16 adc_code, int *result_mdec);
static int qcom_vadc_scale_hw_smb_temp(
				const struct vadc_prescale_ratio *prescale,
				const struct adc5_data *data,
				u16 adc_code, int *result_mdec);
static int qcom_vadc_scale_hw_chg5_temp(
				const struct vadc_prescale_ratio *prescale,
				const struct adc5_data *data,
				u16 adc_code, int *result_mdec);
static int qcom_vadc_scale_hw_calib_die_temp(
				const struct vadc_prescale_ratio *prescale,
				const struct adc5_data *data,
				u16 adc_code, int *result_mdec);

static struct qcom_adc5_scale_type scale_adc5_fn[] = {
	[SCALE_HW_CALIB_DEFAULT] = {qcom_vadc_scale_hw_calib_volt},
	[SCALE_HW_CALIB_THERM_100K_PULLUP] = {qcom_vadc_scale_hw_calib_therm},
	[SCALE_HW_CALIB_XOTHERM] = {qcom_vadc_scale_hw_calib_therm},
	[SCALE_HW_CALIB_PMIC_THERM] = {qcom_vadc_scale_hw_calib_die_temp},
	[SCALE_HW_CALIB_PM5_CHG_TEMP] = {qcom_vadc_scale_hw_chg5_temp},
	[SCALE_HW_CALIB_PM5_SMB_TEMP] = {qcom_vadc_scale_hw_smb_temp},
};

static int qcom_vadc_map_voltage_temp(const struct vadc_map_pt *pts,
				      u32 tablesize, s32 input, int *output)
{
	bool descending = 1;
	u32 i = 0;

	if (!pts)
		return -EINVAL;

	/* Check if table is descending or ascending */
	if (tablesize > 1) {
		if (pts[0].x < pts[1].x)
			descending = 0;
	}

	while (i < tablesize) {
		if ((descending) && (pts[i].x < input)) {
			/* table entry is less than measured*/
			 /* value and table is descending, stop */
			break;
		} else if ((!descending) &&
				(pts[i].x > input)) {
			/* table entry is greater than measured*/
			/*value and table is ascending, stop */
			break;
		}
		i++;
	}

	if (i == 0) {
		*output = pts[0].y;
	} else if (i == tablesize) {
		*output = pts[tablesize - 1].y;
	} else {
		/* result is between search_index and search_index-1 */
		/* interpolate linearly */
		*output = (((s32)((pts[i].y - pts[i - 1].y) *
			(input - pts[i - 1].x)) /
			(pts[i].x - pts[i - 1].x)) +
			pts[i - 1].y);
	}

	return 0;
}

static void qcom_vadc_scale_calib(const struct vadc_linear_graph *calib_graph,
				  u16 adc_code,
				  bool absolute,
				  s64 *scale_voltage)
{
	*scale_voltage = (adc_code - calib_graph->gnd);
	*scale_voltage *= calib_graph->dx;
	*scale_voltage = div64_s64(*scale_voltage, calib_graph->dy);
	if (absolute)
		*scale_voltage += calib_graph->dx;

	if (*scale_voltage < 0)
		*scale_voltage = 0;
}

static int qcom_vadc_scale_volt(const struct vadc_linear_graph *calib_graph,
				const struct vadc_prescale_ratio *prescale,
				bool absolute, u16 adc_code,
				int *result_uv)
{
	s64 voltage = 0, result = 0;

	qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);

	voltage = voltage * prescale->den;
	result = div64_s64(voltage, prescale->num);
	*result_uv = result;

	return 0;
}

static int qcom_vadc_scale_therm(const struct vadc_linear_graph *calib_graph,
				 const struct vadc_prescale_ratio *prescale,
				 bool absolute, u16 adc_code,
				 int *result_mdec)
{
	s64 voltage = 0;
	int ret;

	qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);

	if (absolute)
		voltage = div64_s64(voltage, 1000);

	ret = qcom_vadc_map_voltage_temp(adcmap_100k_104ef_104fb,
					 ARRAY_SIZE(adcmap_100k_104ef_104fb),
					 voltage, result_mdec);
	if (ret)
		return ret;

	*result_mdec *= 1000;

	return 0;
}

static int qcom_vadc_scale_die_temp(const struct vadc_linear_graph *calib_graph,
				    const struct vadc_prescale_ratio *prescale,
				    bool absolute,
				    u16 adc_code, int *result_mdec)
{
	s64 voltage = 0;
	u64 temp; /* Temporary variable for do_div */

	qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);

	if (voltage > 0) {
		temp = voltage * prescale->den;
		do_div(temp, prescale->num * 2);
		voltage = temp;
	} else {
		voltage = 0;
	}

	voltage -= KELVINMIL_CELSIUSMIL;
	*result_mdec = voltage;

	return 0;
}

static int qcom_vadc_scale_chg_temp(const struct vadc_linear_graph *calib_graph,
				    const struct vadc_prescale_ratio *prescale,
				    bool absolute,
				    u16 adc_code, int *result_mdec)
{
	s64 voltage = 0, result = 0;

	qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);

	voltage = voltage * prescale->den;
	voltage = div64_s64(voltage, prescale->num);
	voltage = ((PMI_CHG_SCALE_1) * (voltage * 2));
	voltage = (voltage + PMI_CHG_SCALE_2);
	result =  div64_s64(voltage, 1000000);
	*result_mdec = result;

	return 0;
}

static int qcom_vadc_scale_code_voltage_factor(u16 adc_code,
				const struct vadc_prescale_ratio *prescale,
				const struct adc5_data *data,
				unsigned int factor)
{
	s64 voltage, temp, adc_vdd_ref_mv = 1875;

	/*
	 * The normal data range is between 0V to 1.875V. On cases where
	 * we read low voltage values, the ADC code can go beyond the
	 * range and the scale result is incorrect so we clamp the values
	 * for the cases where the code represents a value below 0V
	 */
	if (adc_code > VADC5_MAX_CODE)
		adc_code = 0;

	/* (ADC code * vref_vadc (1.875V)) / full_scale_code */
	voltage = (s64) adc_code * adc_vdd_ref_mv * 1000;
	voltage = div64_s64(voltage, data->full_scale_code_volt);
	if (voltage > 0) {
		voltage *= prescale->den;
		temp = prescale->num * factor;
		voltage = div64_s64(voltage, temp);
	} else {
		voltage = 0;
	}

	return (int) voltage;
}

static int qcom_vadc_scale_hw_calib_volt(
				const struct vadc_prescale_ratio *prescale,
				const struct adc5_data *data,
				u16 adc_code, int *result_uv)
{
	*result_uv = qcom_vadc_scale_code_voltage_factor(adc_code,
				prescale, data, 1);

	return 0;
}

static int qcom_vadc_scale_hw_calib_therm(
				const struct vadc_prescale_ratio *prescale,
				const struct adc5_data *data,
				u16 adc_code, int *result_mdec)
{
	int voltage;

	voltage = qcom_vadc_scale_code_voltage_factor(adc_code,
				prescale, data, 1000);

	/* Map voltage to temperature from look-up table */
	return qcom_vadc_map_voltage_temp(adcmap_100k_104ef_104fb_1875_vref,
				 ARRAY_SIZE(adcmap_100k_104ef_104fb_1875_vref),
				 voltage, result_mdec);
}

static int qcom_vadc_scale_hw_calib_die_temp(
				const struct vadc_prescale_ratio *prescale,
				const struct adc5_data *data,
				u16 adc_code, int *result_mdec)
{
	*result_mdec = qcom_vadc_scale_code_voltage_factor(adc_code,
				prescale, data, 2);
	*result_mdec -= KELVINMIL_CELSIUSMIL;

	return 0;
}

static int qcom_vadc_scale_hw_smb_temp(
				const struct vadc_prescale_ratio *prescale,
				const struct adc5_data *data,
				u16 adc_code, int *result_mdec)
{
	*result_mdec = qcom_vadc_scale_code_voltage_factor(adc_code * 100,
				prescale, data, PMIC5_SMB_TEMP_SCALE_FACTOR);
	*result_mdec = PMIC5_SMB_TEMP_CONSTANT - *result_mdec;

	return 0;
}

static int qcom_vadc_scale_hw_chg5_temp(
				const struct vadc_prescale_ratio *prescale,
				const struct adc5_data *data,
				u16 adc_code, int *result_mdec)
{
	*result_mdec = qcom_vadc_scale_code_voltage_factor(adc_code,
				prescale, data, 4);
	*result_mdec = PMIC5_CHG_TEMP_SCALE_FACTOR - *result_mdec;

	return 0;
}

int qcom_vadc_scale(enum vadc_scale_fn_type scaletype,
		    const struct vadc_linear_graph *calib_graph,
		    const struct vadc_prescale_ratio *prescale,
		    bool absolute,
		    u16 adc_code, int *result)
{
	switch (scaletype) {
	case SCALE_DEFAULT:
		return qcom_vadc_scale_volt(calib_graph, prescale,
					    absolute, adc_code,
					    result);
	case SCALE_THERM_100K_PULLUP:
	case SCALE_XOTHERM:
		return qcom_vadc_scale_therm(calib_graph, prescale,
					     absolute, adc_code,
					     result);
	case SCALE_PMIC_THERM:
		return qcom_vadc_scale_die_temp(calib_graph, prescale,
						absolute, adc_code,
						result);
	case SCALE_PMI_CHG_TEMP:
		return qcom_vadc_scale_chg_temp(calib_graph, prescale,
						absolute, adc_code,
						result);
	default:
		return -EINVAL;
	}
}
EXPORT_SYMBOL(qcom_vadc_scale);

int qcom_adc5_hw_scale(enum vadc_scale_fn_type scaletype,
		    const struct vadc_prescale_ratio *prescale,
		    const struct adc5_data *data,
		    u16 adc_code, int *result)
{
	if (!(scaletype >= SCALE_HW_CALIB_DEFAULT &&
		scaletype < SCALE_HW_CALIB_INVALID)) {
		pr_err("Invalid scale type %d\n", scaletype);
		return -EINVAL;
	}

	return scale_adc5_fn[scaletype].scale_fn(prescale, data,
					adc_code, result);
}
EXPORT_SYMBOL(qcom_adc5_hw_scale);

int qcom_vadc_decimation_from_dt(u32 value)
{
	if (!is_power_of_2(value) || value < VADC_DECIMATION_MIN ||
	    value > VADC_DECIMATION_MAX)
		return -EINVAL;

	return __ffs64(value / VADC_DECIMATION_MIN);
}
EXPORT_SYMBOL(qcom_vadc_decimation_from_dt);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Qualcomm ADC common functionality");