/** * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved. * * This source file is released under GPL v2 license (no other versions). * See the COPYING file included in the main directory of this source * distribution for the license terms and conditions. * * @File ctatc.c * * @Brief * This file contains the implementation of the device resource management * object. * * @Author Liu Chun * @Date Mar 28 2008 */ #include "ctatc.h" #include "ctpcm.h" #include "ctmixer.h" #include "ctsrc.h" #include "ctamixer.h" #include "ctdaio.h" #include "cttimer.h" #include #include #include #include #include #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */ #define MAX_MULTI_CHN 8 #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \ | IEC958_AES0_CON_NOT_COPYRIGHT) \ | ((IEC958_AES1_CON_MIXER \ | IEC958_AES1_CON_ORIGINAL) << 8) \ | (0x10 << 16) \ | ((IEC958_AES3_CON_FS_48000) << 24)) static struct snd_pci_quirk subsys_20k1_list[] = { SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0022, "SB055x", CTSB055X), SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x002f, "SB055x", CTSB055X), SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0029, "SB073x", CTSB073X), SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0031, "SB073x", CTSB073X), SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000, 0x6000, "UAA", CTUAA), { } /* terminator */ }; static struct snd_pci_quirk subsys_20k2_list[] = { SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB0760, "SB0760", CTSB0760), SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB1270, "SB1270", CTSB1270), SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08801, "SB0880", CTSB0880), SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08802, "SB0880", CTSB0880), SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08803, "SB0880", CTSB0880), SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000, PCI_SUBDEVICE_ID_CREATIVE_HENDRIX, "HENDRIX", CTHENDRIX), { } /* terminator */ }; static const char *ct_subsys_name[NUM_CTCARDS] = { /* 20k1 models */ [CTSB055X] = "SB055x", [CTSB073X] = "SB073x", [CTUAA] = "UAA", [CT20K1_UNKNOWN] = "Unknown", /* 20k2 models */ [CTSB0760] = "SB076x", [CTHENDRIX] = "Hendrix", [CTSB0880] = "SB0880", [CTSB1270] = "SB1270", [CT20K2_UNKNOWN] = "Unknown", }; static struct { int (*create)(struct ct_atc *atc, enum CTALSADEVS device, const char *device_name); int (*destroy)(void *alsa_dev); const char *public_name; } alsa_dev_funcs[NUM_CTALSADEVS] = { [FRONT] = { .create = ct_alsa_pcm_create, .destroy = NULL, .public_name = "Front/WaveIn"}, [SURROUND] = { .create = ct_alsa_pcm_create, .destroy = NULL, .public_name = "Surround"}, [CLFE] = { .create = ct_alsa_pcm_create, .destroy = NULL, .public_name = "Center/LFE"}, [SIDE] = { .create = ct_alsa_pcm_create, .destroy = NULL, .public_name = "Side"}, [IEC958] = { .create = ct_alsa_pcm_create, .destroy = NULL, .public_name = "IEC958 Non-audio"}, [MIXER] = { .create = ct_alsa_mix_create, .destroy = NULL, .public_name = "Mixer"} }; typedef int (*create_t)(void *, void **); typedef int (*destroy_t)(void *); static struct { int (*create)(void *hw, void **rmgr); int (*destroy)(void *mgr); } rsc_mgr_funcs[NUM_RSCTYP] = { [SRC] = { .create = (create_t)src_mgr_create, .destroy = (destroy_t)src_mgr_destroy }, [SRCIMP] = { .create = (create_t)srcimp_mgr_create, .destroy = (destroy_t)srcimp_mgr_destroy }, [AMIXER] = { .create = (create_t)amixer_mgr_create, .destroy = (destroy_t)amixer_mgr_destroy }, [SUM] = { .create = (create_t)sum_mgr_create, .destroy = (destroy_t)sum_mgr_destroy }, [DAIO] = { .create = (create_t)daio_mgr_create, .destroy = (destroy_t)daio_mgr_destroy } }; static int atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm); /* * * Only mono and interleaved modes are supported now. * Always allocates a contiguous channel block. * */ static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm) { struct snd_pcm_runtime *runtime; struct ct_vm *vm; if (!apcm->substream) return 0; runtime = apcm->substream->runtime; vm = atc->vm; apcm->vm_block = vm->map(vm, apcm->substream, runtime->dma_bytes); if (!apcm->vm_block) return -ENOENT; return 0; } static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm) { struct ct_vm *vm; if (!apcm->vm_block) return; vm = atc->vm; vm->unmap(vm, apcm->vm_block); apcm->vm_block = NULL; } static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index) { return atc->vm->get_ptp_phys(atc->vm, index); } static unsigned int convert_format(snd_pcm_format_t snd_format) { switch (snd_format) { case SNDRV_PCM_FORMAT_U8: return SRC_SF_U8; case SNDRV_PCM_FORMAT_S16_LE: return SRC_SF_S16; case SNDRV_PCM_FORMAT_S24_3LE: return SRC_SF_S24; case SNDRV_PCM_FORMAT_S32_LE: return SRC_SF_S32; case SNDRV_PCM_FORMAT_FLOAT_LE: return SRC_SF_F32; default: printk(KERN_ERR "ctxfi: not recognized snd format is %d \n", snd_format); return SRC_SF_S16; } } static unsigned int atc_get_pitch(unsigned int input_rate, unsigned int output_rate) { unsigned int pitch; int b; /* get pitch and convert to fixed-point 8.24 format. */ pitch = (input_rate / output_rate) << 24; input_rate %= output_rate; input_rate /= 100; output_rate /= 100; for (b = 31; ((b >= 0) && !(input_rate >> b)); ) b--; if (b >= 0) { input_rate <<= (31 - b); input_rate /= output_rate; b = 24 - (31 - b); if (b >= 0) input_rate <<= b; else input_rate >>= -b; pitch |= input_rate; } return pitch; } static int select_rom(unsigned int pitch) { if (pitch > 0x00428f5c && pitch < 0x01b851ec) { /* 0.26 <= pitch <= 1.72 */ return 1; } else if (pitch == 0x01d66666 || pitch == 0x01d66667) { /* pitch == 1.8375 */ return 2; } else if (pitch == 0x02000000) { /* pitch == 2 */ return 3; } else if (pitch <= 0x08000000) { /* 0 <= pitch <= 8 */ return 0; } else { return -ENOENT; } } static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm) { struct src_mgr *src_mgr = atc->rsc_mgrs[SRC]; struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER]; struct src_desc desc = {0}; struct amixer_desc mix_dsc = {0}; struct src *src; struct amixer *amixer; int err; int n_amixer = apcm->substream->runtime->channels, i = 0; int device = apcm->substream->pcm->device; unsigned int pitch; /* first release old resources */ atc_pcm_release_resources(atc, apcm); /* Get SRC resource */ desc.multi = apcm->substream->runtime->channels; desc.msr = atc->msr; desc.mode = MEMRD; err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src); if (err) goto error1; pitch = atc_get_pitch(apcm->substream->runtime->rate, (atc->rsr * atc->msr)); src = apcm->src; src->ops->set_pitch(src, pitch); src->ops->set_rom(src, select_rom(pitch)); src->ops->set_sf(src, convert_format(apcm->substream->runtime->format)); src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL)); /* Get AMIXER resource */ n_amixer = (n_amixer < 2) ? 2 : n_amixer; apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL); if (!apcm->amixers) { err = -ENOMEM; goto error1; } mix_dsc.msr = atc->msr; for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) { err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc, (struct amixer **)&apcm->amixers[i]); if (err) goto error1; apcm->n_amixer++; } /* Set up device virtual mem map */ err = ct_map_audio_buffer(atc, apcm); if (err < 0) goto error1; /* Connect resources */ src = apcm->src; for (i = 0; i < n_amixer; i++) { amixer = apcm->amixers[i]; mutex_lock(&atc->atc_mutex); amixer->ops->setup(amixer, &src->rsc, INIT_VOL, atc->pcm[i+device*2]); mutex_unlock(&atc->atc_mutex); src = src->ops->next_interleave(src); if (!src) src = apcm->src; } ct_timer_prepare(apcm->timer); return 0; error1: atc_pcm_release_resources(atc, apcm); return err; } static int atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm) { struct src_mgr *src_mgr = atc->rsc_mgrs[SRC]; struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP]; struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER]; struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM]; struct srcimp *srcimp; int i; if (apcm->srcimps) { for (i = 0; i < apcm->n_srcimp; i++) { srcimp = apcm->srcimps[i]; srcimp->ops->unmap(srcimp); srcimp_mgr->put_srcimp(srcimp_mgr, srcimp); apcm->srcimps[i] = NULL; } kfree(apcm->srcimps); apcm->srcimps = NULL; } if (apcm->srccs) { for (i = 0; i < apcm->n_srcc; i++) { src_mgr->put_src(src_mgr, apcm->srccs[i]); apcm->srccs[i] = NULL; } kfree(apcm->srccs); apcm->srccs = NULL; } if (apcm->amixers) { for (i = 0; i < apcm->n_amixer; i++) { amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]); apcm->amixers[i] = NULL; } kfree(apcm->amixers); apcm->amixers = NULL; } if (apcm->mono) { sum_mgr->put_sum(sum_mgr, apcm->mono); apcm->mono = NULL; } if (apcm->src) { src_mgr->put_src(src_mgr, apcm->src); apcm->src = NULL; } if (apcm->vm_block) { /* Undo device virtual mem map */ ct_unmap_audio_buffer(atc, apcm); apcm->vm_block = NULL; } return 0; } static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm) { unsigned int max_cisz; struct src *src = apcm->src; if (apcm->started) return 0; apcm->started = 1; max_cisz = src->multi * src->rsc.msr; max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8); src->ops->set_sa(src, apcm->vm_block->addr); src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size); src->ops->set_ca(src, apcm->vm_block->addr + max_cisz); src->ops->set_cisz(src, max_cisz); src->ops->set_bm(src, 1); src->ops->set_state(src, SRC_STATE_INIT); src->ops->commit_write(src); ct_timer_start(apcm->timer); return 0; } static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm) { struct src *src; int i; ct_timer_stop(apcm->timer); src = apcm->src; src->ops->set_bm(src, 0); src->ops->set_state(src, SRC_STATE_OFF); src->ops->commit_write(src); if (apcm->srccs) { for (i = 0; i < apcm->n_srcc; i++) { src = apcm->srccs[i]; src->ops->set_bm(src, 0); src->ops->set_state(src, SRC_STATE_OFF); src->ops->commit_write(src); } } apcm->started = 0; return 0; } static int atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm) { struct src *src = apcm->src; u32 size, max_cisz; int position; if (!src) return 0; position = src->ops->get_ca(src); if (position < apcm->vm_block->addr) { snd_printdd("ctxfi: bad ca - ca=0x%08x, vba=0x%08x, vbs=0x%08x\n", position, apcm->vm_block->addr, apcm->vm_block->size); position = apcm->vm_block->addr; } size = apcm->vm_block->size; max_cisz = src->multi * src->rsc.msr; max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8); return (position + size - max_cisz - apcm->vm_block->addr) % size; } struct src_node_conf_t { unsigned int pitch; unsigned int msr:8; unsigned int mix_msr:8; unsigned int imp_msr:8; unsigned int vo:1; }; static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm, struct src_node_conf_t *conf, int *n_srcc) { unsigned int pitch; /* get pitch and convert to fixed-point 8.24 format. */ pitch = atc_get_pitch((atc->rsr * atc->msr), apcm->substream->runtime->rate); *n_srcc = 0; if (1 == atc->msr) { /* FIXME: do we really need SRC here if pitch==1 */ *n_srcc = apcm->substream->runtime->channels; conf[0].pitch = pitch; conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1; conf[0].vo = 1; } else if (2 <= atc->msr) { if (0x8000000 < pitch) { /* Need two-stage SRCs, SRCIMPs and * AMIXERs for converting format */ conf[0].pitch = (atc->msr << 24); conf[0].msr = conf[0].mix_msr = 1; conf[0].imp_msr = atc->msr; conf[0].vo = 0; conf[1].pitch = atc_get_pitch(atc->rsr, apcm->substream->runtime->rate); conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1; conf[1].vo = 1; *n_srcc = apcm->substream->runtime->channels * 2; } else if (0x1000000 < pitch) { /* Need one-stage SRCs, SRCIMPs and * AMIXERs for converting format */ conf[0].pitch = pitch; conf[0].msr = conf[0].mix_msr = conf[0].imp_msr = atc->msr; conf[0].vo = 1; *n_srcc = apcm->substream->runtime->channels; } } } static int atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm) { struct src_mgr *src_mgr = atc->rsc_mgrs[SRC]; struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP]; struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER]; struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM]; struct src_desc src_dsc = {0}; struct src *src; struct srcimp_desc srcimp_dsc = {0}; struct srcimp *srcimp; struct amixer_desc mix_dsc = {0}; struct sum_desc sum_dsc = {0}; unsigned int pitch; int multi, err, i; int n_srcimp, n_amixer, n_srcc, n_sum; struct src_node_conf_t src_node_conf[2] = {{0} }; /* first release old resources */ atc_pcm_release_resources(atc, apcm); /* The numbers of converting SRCs and SRCIMPs should be determined * by pitch value. */ multi = apcm->substream->runtime->channels; /* get pitch and convert to fixed-point 8.24 format. */ pitch = atc_get_pitch((atc->rsr * atc->msr), apcm->substream->runtime->rate); setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc); n_sum = (1 == multi) ? 1 : 0; n_amixer = n_sum * 2 + n_srcc; n_srcimp = n_srcc; if ((multi > 1) && (0x8000000 >= pitch)) { /* Need extra AMIXERs and SRCIMPs for special treatment * of interleaved recording of conjugate channels */ n_amixer += multi * atc->msr; n_srcimp += multi * atc->msr; } else { n_srcimp += multi; } if (n_srcc) { apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL); if (!apcm->srccs) return -ENOMEM; } if (n_amixer) { apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL); if (!apcm->amixers) { err = -ENOMEM; goto error1; } } apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL); if (!apcm->srcimps) { err = -ENOMEM; goto error1; } /* Allocate SRCs for sample rate conversion if needed */ src_dsc.multi = 1; src_dsc.mode = ARCRW; for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) { src_dsc.msr = src_node_conf[i/multi].msr; err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->srccs[i]); if (err) goto error1; src = apcm->srccs[i]; pitch = src_node_conf[i/multi].pitch; src->ops->set_pitch(src, pitch); src->ops->set_rom(src, select_rom(pitch)); src->ops->set_vo(src, src_node_conf[i/multi].vo); apcm->n_srcc++; } /* Allocate AMIXERs for routing SRCs of conversion if needed */ for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) { if (i < (n_sum*2)) mix_dsc.msr = atc->msr; else if (i < (n_sum*2+n_srcc)) mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr; else mix_dsc.msr = 1; err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc, (struct amixer **)&apcm->amixers[i]); if (err) goto error1; apcm->n_amixer++; } /* Allocate a SUM resource to mix all input channels together */ sum_dsc.msr = atc->msr; err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono); if (err) goto error1; pitch = atc_get_pitch((atc->rsr * atc->msr), apcm->substream->runtime->rate); /* Allocate SRCIMP resources */ for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) { if (i < (n_srcc)) srcimp_dsc.msr = src_node_conf[i/multi].imp_msr; else if (1 == multi) srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1; else srcimp_dsc.msr = 1; err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp); if (err) goto error1; apcm->srcimps[i] = srcimp; apcm->n_srcimp++; } /* Allocate a SRC for writing data to host memory */ src_dsc.multi = apcm->substream->runtime->channels; src_dsc.msr = 1; src_dsc.mode = MEMWR; err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src); if (err) goto error1; src = apcm->src; src->ops->set_pitch(src, pitch); /* Set up device virtual mem map */ err = ct_map_audio_buffer(atc, apcm); if (err < 0) goto error1; return 0; error1: atc_pcm_release_resources(atc, apcm); return err; } static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm) { struct src *src; struct amixer *amixer; struct srcimp *srcimp; struct ct_mixer *mixer = atc->mixer; struct sum *mono; struct rsc *out_ports[8] = {NULL}; int err, i, j, n_sum, multi; unsigned int pitch; int mix_base = 0, imp_base = 0; atc_pcm_release_resources(atc, apcm); /* Get needed resources. */ err = atc_pcm_capture_get_resources(atc, apcm); if (err) return err; /* Connect resources */ mixer->get_output_ports(mixer, MIX_PCMO_FRONT, &out_ports[0], &out_ports[1]); multi = apcm->substream->runtime->channels; if (1 == multi) { mono = apcm->mono; for (i = 0; i < 2; i++) { amixer = apcm->amixers[i]; amixer->ops->setup(amixer, out_ports[i], MONO_SUM_SCALE, mono); } out_ports[0] = &mono->rsc; n_sum = 1; mix_base = n_sum * 2; } for (i = 0; i < apcm->n_srcc; i++) { src = apcm->srccs[i]; srcimp = apcm->srcimps[imp_base+i]; amixer = apcm->amixers[mix_base+i]; srcimp->ops->map(srcimp, src, out_ports[i%multi]); amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL); out_ports[i%multi] = &amixer->rsc; } pitch = atc_get_pitch((atc->rsr * atc->msr), apcm->substream->runtime->rate); if ((multi > 1) && (pitch <= 0x8000000)) { /* Special connection for interleaved * recording with conjugate channels */ for (i = 0; i < multi; i++) { out_ports[i]->ops->master(out_ports[i]); for (j = 0; j < atc->msr; j++) { amixer = apcm->amixers[apcm->n_srcc+j*multi+i]; amixer->ops->set_input(amixer, out_ports[i]); amixer->ops->set_scale(amixer, INIT_VOL); amixer->ops->set_sum(amixer, NULL); amixer->ops->commit_raw_write(amixer); out_ports[i]->ops->next_conj(out_ports[i]); srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i]; srcimp->ops->map(srcimp, apcm->src, &amixer->rsc); } } } else { for (i = 0; i < multi; i++) { srcimp = apcm->srcimps[apcm->n_srcc+i]; srcimp->ops->map(srcimp, apcm->src, out_ports[i]); } } ct_timer_prepare(apcm->timer); return 0; } static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm) { struct src *src; struct src_mgr *src_mgr = atc->rsc_mgrs[SRC]; int i, multi; if (apcm->started) return 0; apcm->started = 1; multi = apcm->substream->runtime->channels; /* Set up converting SRCs */ for (i = 0; i < apcm->n_srcc; i++) { src = apcm->srccs[i]; src->ops->set_pm(src, ((i%multi) != (multi-1))); src_mgr->src_disable(src_mgr, src); } /* Set up recording SRC */ src = apcm->src; src->ops->set_sf(src, convert_format(apcm->substream->runtime->format)); src->ops->set_sa(src, apcm->vm_block->addr); src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size); src->ops->set_ca(src, apcm->vm_block->addr); src_mgr->src_disable(src_mgr, src); /* Disable relevant SRCs firstly */ src_mgr->commit_write(src_mgr); /* Enable SRCs respectively */ for (i = 0; i < apcm->n_srcc; i++) { src = apcm->srccs[i]; src->ops->set_state(src, SRC_STATE_RUN); src->ops->commit_write(src); src_mgr->src_enable_s(src_mgr, src); } src = apcm->src; src->ops->set_bm(src, 1); src->ops->set_state(src, SRC_STATE_RUN); src->ops->commit_write(src); src_mgr->src_enable_s(src_mgr, src); /* Enable relevant SRCs synchronously */ src_mgr->commit_write(src_mgr); ct_timer_start(apcm->timer); return 0; } static int atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm) { struct src *src = apcm->src; if (!src) return 0; return src->ops->get_ca(src) - apcm->vm_block->addr; } static int spdif_passthru_playback_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm) { struct src_mgr *src_mgr = atc->rsc_mgrs[SRC]; struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER]; struct src_desc desc = {0}; struct amixer_desc mix_dsc = {0}; struct src *src; int err; int n_amixer = apcm->substream->runtime->channels, i; unsigned int pitch, rsr = atc->pll_rate; /* first release old resources */ atc_pcm_release_resources(atc, apcm); /* Get SRC resource */ desc.multi = apcm->substream->runtime->channels; desc.msr = 1; while (apcm->substream->runtime->rate > (rsr * desc.msr)) desc.msr <<= 1; desc.mode = MEMRD; err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src); if (err) goto error1; pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr)); src = apcm->src; src->ops->set_pitch(src, pitch); src->ops->set_rom(src, select_rom(pitch)); src->ops->set_sf(src, convert_format(apcm->substream->runtime->format)); src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL)); src->ops->set_bp(src, 1); /* Get AMIXER resource */ n_amixer = (n_amixer < 2) ? 2 : n_amixer; apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL); if (!apcm->amixers) { err = -ENOMEM; goto error1; } mix_dsc.msr = desc.msr; for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) { err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc, (struct amixer **)&apcm->amixers[i]); if (err) goto error1; apcm->n_amixer++; } /* Set up device virtual mem map */ err = ct_map_audio_buffer(atc, apcm); if (err < 0) goto error1; return 0; error1: atc_pcm_release_resources(atc, apcm); return err; } static int atc_pll_init(struct ct_atc *atc, int rate) { struct hw *hw = atc->hw; int err; err = hw->pll_init(hw, rate); atc->pll_rate = err ? 0 : rate; return err; } static int spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm) { struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio); unsigned int rate = apcm->substream->runtime->rate; unsigned int status; int err = 0; unsigned char iec958_con_fs; switch (rate) { case 48000: iec958_con_fs = IEC958_AES3_CON_FS_48000; break; case 44100: iec958_con_fs = IEC958_AES3_CON_FS_44100; break; case 32000: iec958_con_fs = IEC958_AES3_CON_FS_32000; break; default: return -ENOENT; } mutex_lock(&atc->atc_mutex); dao->ops->get_spos(dao, &status); if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) { status &= ~(IEC958_AES3_CON_FS << 24); status |= (iec958_con_fs << 24); dao->ops->set_spos(dao, status); dao->ops->commit_write(dao); } if ((rate != atc->pll_rate) && (32000 != rate)) err = atc_pll_init(atc, rate); mutex_unlock(&atc->atc_mutex); return err; } static int spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm) { struct src *src; struct amixer *amixer; struct dao *dao; int err; int i; atc_pcm_release_resources(atc, apcm); /* Configure SPDIFOO and PLL to passthrough mode; * determine pll_rate. */ err = spdif_passthru_playback_setup(atc, apcm); if (err) return err; /* Get needed resources. */ err = spdif_passthru_playback_get_resources(atc, apcm); if (err) return err; /* Connect resources */ src = apcm->src; for (i = 0; i < apcm->n_amixer; i++) { amixer = apcm->amixers[i]; amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL); src = src->ops->next_interleave(src); if (!src) src = apcm->src; } /* Connect to SPDIFOO */ mutex_lock(&atc->atc_mutex); dao = container_of(atc->daios[SPDIFOO], struct dao, daio); amixer = apcm->amixers[0]; dao->ops->set_left_input(dao, &amixer->rsc); amixer = apcm->amixers[1]; dao->ops->set_right_input(dao, &amixer->rsc); mutex_unlock(&atc->atc_mutex); ct_timer_prepare(apcm->timer); return 0; } static int atc_select_line_in(struct ct_atc *atc) { struct hw *hw = atc->hw; struct ct_mixer *mixer = atc->mixer; struct src *src; if (hw->is_adc_source_selected(hw, ADC_LINEIN)) return 0; mixer->set_input_left(mixer, MIX_MIC_IN, NULL); mixer->set_input_right(mixer, MIX_MIC_IN, NULL); hw->select_adc_source(hw, ADC_LINEIN); src = atc->srcs[2]; mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc); src = atc->srcs[3]; mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc); return 0; } static int atc_select_mic_in(struct ct_atc *atc) { struct hw *hw = atc->hw; struct ct_mixer *mixer = atc->mixer; struct src *src; if (hw->is_adc_source_selected(hw, ADC_MICIN)) return 0; mixer->set_input_left(mixer, MIX_LINE_IN, NULL); mixer->set_input_right(mixer, MIX_LINE_IN, NULL); hw->select_adc_source(hw, ADC_MICIN); src = atc->srcs[2]; mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc); src = atc->srcs[3]; mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc); return 0; } static struct capabilities atc_capabilities(struct ct_atc *atc) { struct hw *hw = atc->hw; return hw->capabilities(hw); } static int atc_output_switch_get(struct ct_atc *atc) { struct hw *hw = atc->hw; return hw->output_switch_get(hw); } static int atc_output_switch_put(struct ct_atc *atc, int position) { struct hw *hw = atc->hw; return hw->output_switch_put(hw, position); } static int atc_mic_source_switch_get(struct ct_atc *atc) { struct hw *hw = atc->hw; return hw->mic_source_switch_get(hw); } static int atc_mic_source_switch_put(struct ct_atc *atc, int position) { struct hw *hw = atc->hw; return hw->mic_source_switch_put(hw, position); } static int atc_select_digit_io(struct ct_atc *atc) { struct hw *hw = atc->hw; if (hw->is_adc_source_selected(hw, ADC_NONE)) return 0; hw->select_adc_source(hw, ADC_NONE); return 0; } static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type) { struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO]; if (state) daio_mgr->daio_enable(daio_mgr, atc->daios[type]); else daio_mgr->daio_disable(daio_mgr, atc->daios[type]); daio_mgr->commit_write(daio_mgr); return 0; } static int atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type) { struct dao *dao = container_of(atc->daios[type], struct dao, daio); return dao->ops->get_spos(dao, status); } static int atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type) { struct dao *dao = container_of(atc->daios[type], struct dao, daio); dao->ops->set_spos(dao, status); dao->ops->commit_write(dao); return 0; } static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state) { return atc_daio_unmute(atc, state, LINEO1); } static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state) { return atc_daio_unmute(atc, state, LINEO2); } static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state) { return atc_daio_unmute(atc, state, LINEO3); } static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state) { return atc_daio_unmute(atc, state, LINEO4); } static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state) { return atc_daio_unmute(atc, state, LINEIM); } static int atc_mic_unmute(struct ct_atc *atc, unsigned char state) { return atc_daio_unmute(atc, state, MIC); } static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state) { return atc_daio_unmute(atc, state, SPDIFOO); } static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state) { return atc_daio_unmute(atc, state, SPDIFIO); } static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status) { return atc_dao_get_status(atc, status, SPDIFOO); } static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status) { return atc_dao_set_status(atc, status, SPDIFOO); } static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state) { struct dao_desc da_dsc = {0}; struct dao *dao; int err; struct ct_mixer *mixer = atc->mixer; struct rsc *rscs[2] = {NULL}; unsigned int spos = 0; mutex_lock(&atc->atc_mutex); dao = container_of(atc->daios[SPDIFOO], struct dao, daio); da_dsc.msr = state ? 1 : atc->msr; da_dsc.passthru = state ? 1 : 0; err = dao->ops->reinit(dao, &da_dsc); if (state) { spos = IEC958_DEFAULT_CON; } else { mixer->get_output_ports(mixer, MIX_SPDIF_OUT, &rscs[0], &rscs[1]); dao->ops->set_left_input(dao, rscs[0]); dao->ops->set_right_input(dao, rscs[1]); /* Restore PLL to atc->rsr if needed. */ if (atc->pll_rate != atc->rsr) err = atc_pll_init(atc, atc->rsr); } dao->ops->set_spos(dao, spos); dao->ops->commit_write(dao); mutex_unlock(&atc->atc_mutex); return err; } static int atc_release_resources(struct ct_atc *atc) { int i; struct daio_mgr *daio_mgr = NULL; struct dao *dao = NULL; struct dai *dai = NULL; struct daio *daio = NULL; struct sum_mgr *sum_mgr = NULL; struct src_mgr *src_mgr = NULL; struct srcimp_mgr *srcimp_mgr = NULL; struct srcimp *srcimp = NULL; struct ct_mixer *mixer = NULL; /* disconnect internal mixer objects */ if (atc->mixer) { mixer = atc->mixer; mixer->set_input_left(mixer, MIX_LINE_IN, NULL); mixer->set_input_right(mixer, MIX_LINE_IN, NULL); mixer->set_input_left(mixer, MIX_MIC_IN, NULL); mixer->set_input_right(mixer, MIX_MIC_IN, NULL); mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL); mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL); } if (atc->daios) { daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO]; for (i = 0; i < atc->n_daio; i++) { daio = atc->daios[i]; if (daio->type < LINEIM) { dao = container_of(daio, struct dao, daio); dao->ops->clear_left_input(dao); dao->ops->clear_right_input(dao); } else { dai = container_of(daio, struct dai, daio); /* some thing to do for dai ... */ } daio_mgr->put_daio(daio_mgr, daio); } kfree(atc->daios); atc->daios = NULL; } if (atc->pcm) { sum_mgr = atc->rsc_mgrs[SUM]; for (i = 0; i < atc->n_pcm; i++) sum_mgr->put_sum(sum_mgr, atc->pcm[i]); kfree(atc->pcm); atc->pcm = NULL; } if (atc->srcs) { src_mgr = atc->rsc_mgrs[SRC]; for (i = 0; i < atc->n_src; i++) src_mgr->put_src(src_mgr, atc->srcs[i]); kfree(atc->srcs); atc->srcs = NULL; } if (atc->srcimps) { srcimp_mgr = atc->rsc_mgrs[SRCIMP]; for (i = 0; i < atc->n_srcimp; i++) { srcimp = atc->srcimps[i]; srcimp->ops->unmap(srcimp); srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]); } kfree(atc->srcimps); atc->srcimps = NULL; } return 0; } static int ct_atc_destroy(struct ct_atc *atc) { int i = 0; if (!atc) return 0; if (atc->timer) { ct_timer_free(atc->timer); atc->timer = NULL; } atc_release_resources(atc); /* Destroy internal mixer objects */ if (atc->mixer) ct_mixer_destroy(atc->mixer); for (i = 0; i < NUM_RSCTYP; i++) { if (rsc_mgr_funcs[i].destroy && atc->rsc_mgrs[i]) rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]); } if (atc->hw) destroy_hw_obj((struct hw *)atc->hw); /* Destroy device virtual memory manager object */ if (atc->vm) { ct_vm_destroy(atc->vm); atc->vm = NULL; } kfree(atc); return 0; } static int atc_dev_free(struct snd_device *dev) { struct ct_atc *atc = dev->device_data; return ct_atc_destroy(atc); } static int atc_identify_card(struct ct_atc *atc, unsigned int ssid) { const struct snd_pci_quirk *p; const struct snd_pci_quirk *list; u16 vendor_id, device_id; switch (atc->chip_type) { case ATC20K1: atc->chip_name = "20K1"; list = subsys_20k1_list; break; case ATC20K2: atc->chip_name = "20K2"; list = subsys_20k2_list; break; default: return -ENOENT; } if (ssid) { vendor_id = ssid >> 16; device_id = ssid & 0xffff; } else { vendor_id = atc->pci->subsystem_vendor; device_id = atc->pci->subsystem_device; } p = snd_pci_quirk_lookup_id(vendor_id, device_id, list); if (p) { if (p->value < 0) { printk(KERN_ERR "ctxfi: " "Device %04x:%04x is black-listed\n", vendor_id, device_id); return -ENOENT; } atc->model = p->value; } else { if (atc->chip_type == ATC20K1) atc->model = CT20K1_UNKNOWN; else atc->model = CT20K2_UNKNOWN; } atc->model_name = ct_subsys_name[atc->model]; snd_printd("ctxfi: chip %s model %s (%04x:%04x) is found\n", atc->chip_name, atc->model_name, vendor_id, device_id); return 0; } int ct_atc_create_alsa_devs(struct ct_atc *atc) { enum CTALSADEVS i; int err; alsa_dev_funcs[MIXER].public_name = atc->chip_name; for (i = 0; i < NUM_CTALSADEVS; i++) { if (!alsa_dev_funcs[i].create) continue; err = alsa_dev_funcs[i].create(atc, i, alsa_dev_funcs[i].public_name); if (err) { printk(KERN_ERR "ctxfi: " "Creating alsa device %d failed!\n", i); return err; } } return 0; } static int atc_create_hw_devs(struct ct_atc *atc) { struct hw *hw; struct card_conf info = {0}; int i, err; err = create_hw_obj(atc->pci, atc->chip_type, atc->model, &hw); if (err) { printk(KERN_ERR "Failed to create hw obj!!!\n"); return err; } atc->hw = hw; /* Initialize card hardware. */ info.rsr = atc->rsr; info.msr = atc->msr; info.vm_pgt_phys = atc_get_ptp_phys(atc, 0); err = hw->card_init(hw, &info); if (err < 0) return err; for (i = 0; i < NUM_RSCTYP; i++) { if (!rsc_mgr_funcs[i].create) continue; err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]); if (err) { printk(KERN_ERR "ctxfi: " "Failed to create rsc_mgr %d!!!\n", i); return err; } } return 0; } static int atc_get_resources(struct ct_atc *atc) { struct daio_desc da_desc = {0}; struct daio_mgr *daio_mgr; struct src_desc src_dsc = {0}; struct src_mgr *src_mgr; struct srcimp_desc srcimp_dsc = {0}; struct srcimp_mgr *srcimp_mgr; struct sum_desc sum_dsc = {0}; struct sum_mgr *sum_mgr; int err, i, num_srcs, num_daios; num_daios = ((atc->model == CTSB1270) ? 8 : 7); num_srcs = ((atc->model == CTSB1270) ? 6 : 4); atc->daios = kzalloc(sizeof(void *)*num_daios, GFP_KERNEL); if (!atc->daios) return -ENOMEM; atc->srcs = kzalloc(sizeof(void *)*num_srcs, GFP_KERNEL); if (!atc->srcs) return -ENOMEM; atc->srcimps = kzalloc(sizeof(void *)*num_srcs, GFP_KERNEL); if (!atc->srcimps) return -ENOMEM; atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL); if (!atc->pcm) return -ENOMEM; daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO]; da_desc.msr = atc->msr; for (i = 0, atc->n_daio = 0; i < num_daios; i++) { da_desc.type = (atc->model != CTSB073X) ? i : ((i == SPDIFIO) ? SPDIFI1 : i); err = daio_mgr->get_daio(daio_mgr, &da_desc, (struct daio **)&atc->daios[i]); if (err) { printk(KERN_ERR "ctxfi: Failed to get DAIO " "resource %d!!!\n", i); return err; } atc->n_daio++; } src_mgr = atc->rsc_mgrs[SRC]; src_dsc.multi = 1; src_dsc.msr = atc->msr; src_dsc.mode = ARCRW; for (i = 0, atc->n_src = 0; i < num_srcs; i++) { err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&atc->srcs[i]); if (err) return err; atc->n_src++; } srcimp_mgr = atc->rsc_mgrs[SRCIMP]; srcimp_dsc.msr = 8; for (i = 0, atc->n_srcimp = 0; i < num_srcs; i++) { err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, (struct srcimp **)&atc->srcimps[i]); if (err) return err; atc->n_srcimp++; } sum_mgr = atc->rsc_mgrs[SUM]; sum_dsc.msr = atc->msr; for (i = 0, atc->n_pcm = 0; i < (2*4); i++) { err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&atc->pcm[i]); if (err) return err; atc->n_pcm++; } return 0; } static void atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai, struct src **srcs, struct srcimp **srcimps) { struct rsc *rscs[2] = {NULL}; struct src *src; struct srcimp *srcimp; int i = 0; rscs[0] = &dai->daio.rscl; rscs[1] = &dai->daio.rscr; for (i = 0; i < 2; i++) { src = srcs[i]; srcimp = srcimps[i]; srcimp->ops->map(srcimp, src, rscs[i]); src_mgr->src_disable(src_mgr, src); } src_mgr->commit_write(src_mgr); /* Actually disable SRCs */ src = srcs[0]; src->ops->set_pm(src, 1); for (i = 0; i < 2; i++) { src = srcs[i]; src->ops->set_state(src, SRC_STATE_RUN); src->ops->commit_write(src); src_mgr->src_enable_s(src_mgr, src); } dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc)); dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc)); dai->ops->set_enb_src(dai, 1); dai->ops->set_enb_srt(dai, 1); dai->ops->commit_write(dai); src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */ } static void atc_connect_resources(struct ct_atc *atc) { struct dai *dai; struct dao *dao; struct src *src; struct sum *sum; struct ct_mixer *mixer; struct rsc *rscs[2] = {NULL}; int i, j; mixer = atc->mixer; for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) { mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]); dao = container_of(atc->daios[j], struct dao, daio); dao->ops->set_left_input(dao, rscs[0]); dao->ops->set_right_input(dao, rscs[1]); } dai = container_of(atc->daios[LINEIM], struct dai, daio); atc_connect_dai(atc->rsc_mgrs[SRC], dai, (struct src **)&atc->srcs[2], (struct srcimp **)&atc->srcimps[2]); src = atc->srcs[2]; mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc); src = atc->srcs[3]; mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc); if (atc->model == CTSB1270) { /* Titanium HD has a dedicated ADC for the Mic. */ dai = container_of(atc->daios[MIC], struct dai, daio); atc_connect_dai(atc->rsc_mgrs[SRC], dai, (struct src **)&atc->srcs[4], (struct srcimp **)&atc->srcimps[4]); src = atc->srcs[4]; mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc); src = atc->srcs[5]; mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc); } dai = container_of(atc->daios[SPDIFIO], struct dai, daio); atc_connect_dai(atc->rsc_mgrs[SRC], dai, (struct src **)&atc->srcs[0], (struct srcimp **)&atc->srcimps[0]); src = atc->srcs[0]; mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc); src = atc->srcs[1]; mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc); for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) { sum = atc->pcm[j]; mixer->set_input_left(mixer, i, &sum->rsc); sum = atc->pcm[j+1]; mixer->set_input_right(mixer, i, &sum->rsc); } } #ifdef CONFIG_PM_SLEEP static int atc_suspend(struct ct_atc *atc) { int i; struct hw *hw = atc->hw; snd_power_change_state(atc->card, SNDRV_CTL_POWER_D3hot); for (i = FRONT; i < NUM_PCMS; i++) { if (!atc->pcms[i]) continue; snd_pcm_suspend_all(atc->pcms[i]); } atc_release_resources(atc); hw->suspend(hw); return 0; } static int atc_hw_resume(struct ct_atc *atc) { struct hw *hw = atc->hw; struct card_conf info = {0}; /* Re-initialize card hardware. */ info.rsr = atc->rsr; info.msr = atc->msr; info.vm_pgt_phys = atc_get_ptp_phys(atc, 0); return hw->resume(hw, &info); } static int atc_resources_resume(struct ct_atc *atc) { struct ct_mixer *mixer; int err = 0; /* Get resources */ err = atc_get_resources(atc); if (err < 0) { atc_release_resources(atc); return err; } /* Build topology */ atc_connect_resources(atc); mixer = atc->mixer; mixer->resume(mixer); return 0; } static int atc_resume(struct ct_atc *atc) { int err = 0; /* Do hardware resume. */ err = atc_hw_resume(atc); if (err < 0) { printk(KERN_ERR "ctxfi: pci_enable_device failed, " "disabling device\n"); snd_card_disconnect(atc->card); return err; } err = atc_resources_resume(atc); if (err < 0) return err; snd_power_change_state(atc->card, SNDRV_CTL_POWER_D0); return 0; } #endif static struct ct_atc atc_preset = { .map_audio_buffer = ct_map_audio_buffer, .unmap_audio_buffer = ct_unmap_audio_buffer, .pcm_playback_prepare = atc_pcm_playback_prepare, .pcm_release_resources = atc_pcm_release_resources, .pcm_playback_start = atc_pcm_playback_start, .pcm_playback_stop = atc_pcm_stop, .pcm_playback_position = atc_pcm_playback_position, .pcm_capture_prepare = atc_pcm_capture_prepare, .pcm_capture_start = atc_pcm_capture_start, .pcm_capture_stop = atc_pcm_stop, .pcm_capture_position = atc_pcm_capture_position, .spdif_passthru_playback_prepare = spdif_passthru_playback_prepare, .get_ptp_phys = atc_get_ptp_phys, .select_line_in = atc_select_line_in, .select_mic_in = atc_select_mic_in, .select_digit_io = atc_select_digit_io, .line_front_unmute = atc_line_front_unmute, .line_surround_unmute = atc_line_surround_unmute, .line_clfe_unmute = atc_line_clfe_unmute, .line_rear_unmute = atc_line_rear_unmute, .line_in_unmute = atc_line_in_unmute, .mic_unmute = atc_mic_unmute, .spdif_out_unmute = atc_spdif_out_unmute, .spdif_in_unmute = atc_spdif_in_unmute, .spdif_out_get_status = atc_spdif_out_get_status, .spdif_out_set_status = atc_spdif_out_set_status, .spdif_out_passthru = atc_spdif_out_passthru, .capabilities = atc_capabilities, .output_switch_get = atc_output_switch_get, .output_switch_put = atc_output_switch_put, .mic_source_switch_get = atc_mic_source_switch_get, .mic_source_switch_put = atc_mic_source_switch_put, #ifdef CONFIG_PM_SLEEP .suspend = atc_suspend, .resume = atc_resume, #endif }; /** * ct_atc_create - create and initialize a hardware manager * @card: corresponding alsa card object * @pci: corresponding kernel pci device object * @ratc: return created object address in it * * Creates and initializes a hardware manager. * * Creates kmallocated ct_atc structure. Initializes hardware. * Returns 0 if succeeds, or negative error code if fails. */ int ct_atc_create(struct snd_card *card, struct pci_dev *pci, unsigned int rsr, unsigned int msr, int chip_type, unsigned int ssid, struct ct_atc **ratc) { struct ct_atc *atc; static struct snd_device_ops ops = { .dev_free = atc_dev_free, }; int err; *ratc = NULL; atc = kzalloc(sizeof(*atc), GFP_KERNEL); if (!atc) return -ENOMEM; /* Set operations */ *atc = atc_preset; atc->card = card; atc->pci = pci; atc->rsr = rsr; atc->msr = msr; atc->chip_type = chip_type; mutex_init(&atc->atc_mutex); /* Find card model */ err = atc_identify_card(atc, ssid); if (err < 0) { printk(KERN_ERR "ctatc: Card not recognised\n"); goto error1; } /* Set up device virtual memory management object */ err = ct_vm_create(&atc->vm, pci); if (err < 0) goto error1; /* Create all atc hw devices */ err = atc_create_hw_devs(atc); if (err < 0) goto error1; err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer); if (err) { printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n"); goto error1; } /* Get resources */ err = atc_get_resources(atc); if (err < 0) goto error1; /* Build topology */ atc_connect_resources(atc); atc->timer = ct_timer_new(atc); if (!atc->timer) { err = -ENOMEM; goto error1; } err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops); if (err < 0) goto error1; *ratc = atc; return 0; error1: ct_atc_destroy(atc); printk(KERN_ERR "ctxfi: Something wrong!!!\n"); return err; }