/* mpi-mod.c - Modular reduction * Copyright (C) 1998, 1999, 2001, 2002, 2003, * 2007 Free Software Foundation, Inc. * * This file is part of Libgcrypt. */ #include "mpi-internal.h" #include "longlong.h" /* Context used with Barrett reduction. */ struct barrett_ctx_s { MPI m; /* The modulus - may not be modified. */ int m_copied; /* If true, M needs to be released. */ int k; MPI y; MPI r1; /* Helper MPI. */ MPI r2; /* Helper MPI. */ MPI r3; /* Helper MPI allocated on demand. */ }; void mpi_mod(MPI rem, MPI dividend, MPI divisor) { mpi_fdiv_r(rem, dividend, divisor); } /* This function returns a new context for Barrett based operations on * the modulus M. This context needs to be released using * _gcry_mpi_barrett_free. If COPY is true M will be transferred to * the context and the user may change M. If COPY is false, M may not * be changed until gcry_mpi_barrett_free has been called. */ mpi_barrett_t mpi_barrett_init(MPI m, int copy) { mpi_barrett_t ctx; MPI tmp; mpi_normalize(m); ctx = kcalloc(1, sizeof(*ctx), GFP_KERNEL); if (copy) { ctx->m = mpi_copy(m); ctx->m_copied = 1; } else ctx->m = m; ctx->k = mpi_get_nlimbs(m); tmp = mpi_alloc(ctx->k + 1); /* Barrett precalculation: y = floor(b^(2k) / m). */ mpi_set_ui(tmp, 1); mpi_lshift_limbs(tmp, 2 * ctx->k); mpi_fdiv_q(tmp, tmp, m); ctx->y = tmp; ctx->r1 = mpi_alloc(2 * ctx->k + 1); ctx->r2 = mpi_alloc(2 * ctx->k + 1); return ctx; } void mpi_barrett_free(mpi_barrett_t ctx) { if (ctx) { mpi_free(ctx->y); mpi_free(ctx->r1); mpi_free(ctx->r2); if (ctx->r3) mpi_free(ctx->r3); if (ctx->m_copied) mpi_free(ctx->m); kfree(ctx); } } /* R = X mod M * * Using Barrett reduction. Before using this function * _gcry_mpi_barrett_init must have been called to do the * precalculations. CTX is the context created by this precalculation * and also conveys M. If the Barret reduction could no be done a * straightforward reduction method is used. * * We assume that these conditions are met: * Input: x =(x_2k-1 ...x_0)_b * m =(m_k-1 ....m_0)_b with m_k-1 != 0 * Output: r = x mod m */ void mpi_mod_barrett(MPI r, MPI x, mpi_barrett_t ctx) { MPI m = ctx->m; int k = ctx->k; MPI y = ctx->y; MPI r1 = ctx->r1; MPI r2 = ctx->r2; int sign; mpi_normalize(x); if (mpi_get_nlimbs(x) > 2*k) { mpi_mod(r, x, m); return; } sign = x->sign; x->sign = 0; /* 1. q1 = floor( x / b^k-1) * q2 = q1 * y * q3 = floor( q2 / b^k+1 ) * Actually, we don't need qx, we can work direct on r2 */ mpi_set(r2, x); mpi_rshift_limbs(r2, k-1); mpi_mul(r2, r2, y); mpi_rshift_limbs(r2, k+1); /* 2. r1 = x mod b^k+1 * r2 = q3 * m mod b^k+1 * r = r1 - r2 * 3. if r < 0 then r = r + b^k+1 */ mpi_set(r1, x); if (r1->nlimbs > k+1) /* Quick modulo operation. */ r1->nlimbs = k+1; mpi_mul(r2, r2, m); if (r2->nlimbs > k+1) /* Quick modulo operation. */ r2->nlimbs = k+1; mpi_sub(r, r1, r2); if (mpi_has_sign(r)) { if (!ctx->r3) { ctx->r3 = mpi_alloc(k + 2); mpi_set_ui(ctx->r3, 1); mpi_lshift_limbs(ctx->r3, k + 1); } mpi_add(r, r, ctx->r3); } /* 4. while r >= m do r = r - m */ while (mpi_cmp(r, m) >= 0) mpi_sub(r, r, m); x->sign = sign; } void mpi_mul_barrett(MPI w, MPI u, MPI v, mpi_barrett_t ctx) { mpi_mul(w, u, v); mpi_mod_barrett(w, w, ctx); }