/* * Generic process-grouping system. * * Based originally on the cpuset system, extracted by Paul Menage * Copyright (C) 2006 Google, Inc * * Notifications support * Copyright (C) 2009 Nokia Corporation * Author: Kirill A. Shutemov * * Copyright notices from the original cpuset code: * -------------------------------------------------- * Copyright (C) 2003 BULL SA. * Copyright (C) 2004-2006 Silicon Graphics, Inc. * * Portions derived from Patrick Mochel's sysfs code. * sysfs is Copyright (c) 2001-3 Patrick Mochel * * 2003-10-10 Written by Simon Derr. * 2003-10-22 Updates by Stephen Hemminger. * 2004 May-July Rework by Paul Jackson. * --------------------------------------------------- * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of the Linux * distribution for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* TODO: replace with more sophisticated array */ #include /* used in cgroup_attach_task */ #include #include /* * pidlists linger the following amount before being destroyed. The goal * is avoiding frequent destruction in the middle of consecutive read calls * Expiring in the middle is a performance problem not a correctness one. * 1 sec should be enough. */ #define CGROUP_PIDLIST_DESTROY_DELAY HZ /* * cgroup_mutex is the master lock. Any modification to cgroup or its * hierarchy must be performed while holding it. * * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify * cgroupfs_root of any cgroup hierarchy - subsys list, flags, * release_agent_path and so on. Modifying requires both cgroup_mutex and * cgroup_root_mutex. Readers can acquire either of the two. This is to * break the following locking order cycle. * * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem * B. namespace_sem -> cgroup_mutex * * B happens only through cgroup_show_options() and using cgroup_root_mutex * breaks it. */ #ifdef CONFIG_PROVE_RCU DEFINE_MUTEX(cgroup_mutex); EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */ #else static DEFINE_MUTEX(cgroup_mutex); #endif static DEFINE_MUTEX(cgroup_root_mutex); #define cgroup_assert_mutex_or_rcu_locked() \ rcu_lockdep_assert(rcu_read_lock_held() || \ lockdep_is_held(&cgroup_mutex), \ "cgroup_mutex or RCU read lock required"); #ifdef CONFIG_LOCKDEP #define cgroup_assert_mutex_or_root_locked() \ WARN_ON_ONCE(debug_locks && (!lockdep_is_held(&cgroup_mutex) && \ !lockdep_is_held(&cgroup_root_mutex))) #else #define cgroup_assert_mutex_or_root_locked() do { } while (0) #endif /* * cgroup destruction makes heavy use of work items and there can be a lot * of concurrent destructions. Use a separate workqueue so that cgroup * destruction work items don't end up filling up max_active of system_wq * which may lead to deadlock. */ static struct workqueue_struct *cgroup_destroy_wq; /* * pidlist destructions need to be flushed on cgroup destruction. Use a * separate workqueue as flush domain. */ static struct workqueue_struct *cgroup_pidlist_destroy_wq; /* * Generate an array of cgroup subsystem pointers. At boot time, this is * populated with the built in subsystems, and modular subsystems are * registered after that. The mutable section of this array is protected by * cgroup_mutex. */ #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys, #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option) static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = { #include }; /* * The dummy hierarchy, reserved for the subsystems that are otherwise * unattached - it never has more than a single cgroup, and all tasks are * part of that cgroup. */ static struct cgroupfs_root cgroup_dummy_root; /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */ static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup; /* The list of hierarchy roots */ static LIST_HEAD(cgroup_roots); static int cgroup_root_count; /* * Hierarchy ID allocation and mapping. It follows the same exclusion * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for * writes, either for reads. */ static DEFINE_IDR(cgroup_hierarchy_idr); static struct cgroup_name root_cgroup_name = { .name = "/" }; /* * Assign a monotonically increasing serial number to cgroups. It * guarantees cgroups with bigger numbers are newer than those with smaller * numbers. Also, as cgroups are always appended to the parent's * ->children list, it guarantees that sibling cgroups are always sorted in * the ascending serial number order on the list. Protected by * cgroup_mutex. */ static u64 cgroup_serial_nr_next = 1; /* This flag indicates whether tasks in the fork and exit paths should * check for fork/exit handlers to call. This avoids us having to do * extra work in the fork/exit path if none of the subsystems need to * be called. */ static int need_forkexit_callback __read_mostly; static struct cftype cgroup_base_files[]; static void cgroup_destroy_css_killed(struct cgroup *cgrp); static int cgroup_destroy_locked(struct cgroup *cgrp); static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[], bool is_add); static int cgroup_file_release(struct inode *inode, struct file *file); static void cgroup_pidlist_destroy_all(struct cgroup *cgrp); /** * cgroup_css - obtain a cgroup's css for the specified subsystem * @cgrp: the cgroup of interest * @ss: the subsystem of interest (%NULL returns the dummy_css) * * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This * function must be called either under cgroup_mutex or rcu_read_lock() and * the caller is responsible for pinning the returned css if it wants to * keep accessing it outside the said locks. This function may return * %NULL if @cgrp doesn't have @subsys_id enabled. */ static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, struct cgroup_subsys *ss) { if (ss) return rcu_dereference_check(cgrp->subsys[ss->subsys_id], lockdep_is_held(&cgroup_mutex)); else return &cgrp->dummy_css; } /* convenient tests for these bits */ static inline bool cgroup_is_dead(const struct cgroup *cgrp) { return test_bit(CGRP_DEAD, &cgrp->flags); } /** * cgroup_is_descendant - test ancestry * @cgrp: the cgroup to be tested * @ancestor: possible ancestor of @cgrp * * Test whether @cgrp is a descendant of @ancestor. It also returns %true * if @cgrp == @ancestor. This function is safe to call as long as @cgrp * and @ancestor are accessible. */ bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor) { while (cgrp) { if (cgrp == ancestor) return true; cgrp = cgrp->parent; } return false; } EXPORT_SYMBOL_GPL(cgroup_is_descendant); static int cgroup_is_releasable(const struct cgroup *cgrp) { const int bits = (1 << CGRP_RELEASABLE) | (1 << CGRP_NOTIFY_ON_RELEASE); return (cgrp->flags & bits) == bits; } static int notify_on_release(const struct cgroup *cgrp) { return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); } /** * for_each_css - iterate all css's of a cgroup * @css: the iteration cursor * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end * @cgrp: the target cgroup to iterate css's of * * Should be called under cgroup_mutex. */ #define for_each_css(css, ssid, cgrp) \ for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ if (!((css) = rcu_dereference_check( \ (cgrp)->subsys[(ssid)], \ lockdep_is_held(&cgroup_mutex)))) { } \ else /** * for_each_subsys - iterate all loaded cgroup subsystems * @ss: the iteration cursor * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end * * Iterates through all loaded subsystems. Should be called under * cgroup_mutex or cgroup_root_mutex. */ #define for_each_subsys(ss, ssid) \ for (({ cgroup_assert_mutex_or_root_locked(); (ssid) = 0; }); \ (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ if (!((ss) = cgroup_subsys[(ssid)])) { } \ else /** * for_each_builtin_subsys - iterate all built-in cgroup subsystems * @ss: the iteration cursor * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end * * Bulit-in subsystems are always present and iteration itself doesn't * require any synchronization. */ #define for_each_builtin_subsys(ss, i) \ for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \ (((ss) = cgroup_subsys[i]) || true); (i)++) /* iterate across the active hierarchies */ #define for_each_active_root(root) \ list_for_each_entry((root), &cgroup_roots, root_list) static inline struct cgroup *__d_cgrp(struct dentry *dentry) { return dentry->d_fsdata; } static inline struct cfent *__d_cfe(struct dentry *dentry) { return dentry->d_fsdata; } static inline struct cftype *__d_cft(struct dentry *dentry) { return __d_cfe(dentry)->type; } /** * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. * @cgrp: the cgroup to be checked for liveness * * On success, returns true; the mutex should be later unlocked. On * failure returns false with no lock held. */ static bool cgroup_lock_live_group(struct cgroup *cgrp) { mutex_lock(&cgroup_mutex); if (cgroup_is_dead(cgrp)) { mutex_unlock(&cgroup_mutex); return false; } return true; } /* the list of cgroups eligible for automatic release. Protected by * release_list_lock */ static LIST_HEAD(release_list); static DEFINE_RAW_SPINLOCK(release_list_lock); static void cgroup_release_agent(struct work_struct *work); static DECLARE_WORK(release_agent_work, cgroup_release_agent); static void check_for_release(struct cgroup *cgrp); /* * A cgroup can be associated with multiple css_sets as different tasks may * belong to different cgroups on different hierarchies. In the other * direction, a css_set is naturally associated with multiple cgroups. * This M:N relationship is represented by the following link structure * which exists for each association and allows traversing the associations * from both sides. */ struct cgrp_cset_link { /* the cgroup and css_set this link associates */ struct cgroup *cgrp; struct css_set *cset; /* list of cgrp_cset_links anchored at cgrp->cset_links */ struct list_head cset_link; /* list of cgrp_cset_links anchored at css_set->cgrp_links */ struct list_head cgrp_link; }; /* The default css_set - used by init and its children prior to any * hierarchies being mounted. It contains a pointer to the root state * for each subsystem. Also used to anchor the list of css_sets. Not * reference-counted, to improve performance when child cgroups * haven't been created. */ static struct css_set init_css_set; static struct cgrp_cset_link init_cgrp_cset_link; /* * css_set_lock protects the list of css_set objects, and the chain of * tasks off each css_set. Nests outside task->alloc_lock due to * css_task_iter_start(). */ static DEFINE_RWLOCK(css_set_lock); static int css_set_count; /* * hash table for cgroup groups. This improves the performance to find * an existing css_set. This hash doesn't (currently) take into * account cgroups in empty hierarchies. */ #define CSS_SET_HASH_BITS 7 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) { unsigned long key = 0UL; struct cgroup_subsys *ss; int i; for_each_subsys(ss, i) key += (unsigned long)css[i]; key = (key >> 16) ^ key; return key; } /* * We don't maintain the lists running through each css_set to its task * until after the first call to css_task_iter_start(). This reduces the * fork()/exit() overhead for people who have cgroups compiled into their * kernel but not actually in use. */ static int use_task_css_set_links __read_mostly; static void __put_css_set(struct css_set *cset, int taskexit) { struct cgrp_cset_link *link, *tmp_link; /* * Ensure that the refcount doesn't hit zero while any readers * can see it. Similar to atomic_dec_and_lock(), but for an * rwlock */ if (atomic_add_unless(&cset->refcount, -1, 1)) return; write_lock(&css_set_lock); if (!atomic_dec_and_test(&cset->refcount)) { write_unlock(&css_set_lock); return; } /* This css_set is dead. unlink it and release cgroup refcounts */ hash_del(&cset->hlist); css_set_count--; list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { struct cgroup *cgrp = link->cgrp; list_del(&link->cset_link); list_del(&link->cgrp_link); /* @cgrp can't go away while we're holding css_set_lock */ if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) { if (taskexit) set_bit(CGRP_RELEASABLE, &cgrp->flags); check_for_release(cgrp); } kfree(link); } write_unlock(&css_set_lock); kfree_rcu(cset, rcu_head); } /* * refcounted get/put for css_set objects */ static inline void get_css_set(struct css_set *cset) { atomic_inc(&cset->refcount); } static inline void put_css_set(struct css_set *cset) { __put_css_set(cset, 0); } static inline void put_css_set_taskexit(struct css_set *cset) { __put_css_set(cset, 1); } /** * compare_css_sets - helper function for find_existing_css_set(). * @cset: candidate css_set being tested * @old_cset: existing css_set for a task * @new_cgrp: cgroup that's being entered by the task * @template: desired set of css pointers in css_set (pre-calculated) * * Returns true if "cset" matches "old_cset" except for the hierarchy * which "new_cgrp" belongs to, for which it should match "new_cgrp". */ static bool compare_css_sets(struct css_set *cset, struct css_set *old_cset, struct cgroup *new_cgrp, struct cgroup_subsys_state *template[]) { struct list_head *l1, *l2; if (memcmp(template, cset->subsys, sizeof(cset->subsys))) { /* Not all subsystems matched */ return false; } /* * Compare cgroup pointers in order to distinguish between * different cgroups in heirarchies with no subsystems. We * could get by with just this check alone (and skip the * memcmp above) but on most setups the memcmp check will * avoid the need for this more expensive check on almost all * candidates. */ l1 = &cset->cgrp_links; l2 = &old_cset->cgrp_links; while (1) { struct cgrp_cset_link *link1, *link2; struct cgroup *cgrp1, *cgrp2; l1 = l1->next; l2 = l2->next; /* See if we reached the end - both lists are equal length. */ if (l1 == &cset->cgrp_links) { BUG_ON(l2 != &old_cset->cgrp_links); break; } else { BUG_ON(l2 == &old_cset->cgrp_links); } /* Locate the cgroups associated with these links. */ link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); cgrp1 = link1->cgrp; cgrp2 = link2->cgrp; /* Hierarchies should be linked in the same order. */ BUG_ON(cgrp1->root != cgrp2->root); /* * If this hierarchy is the hierarchy of the cgroup * that's changing, then we need to check that this * css_set points to the new cgroup; if it's any other * hierarchy, then this css_set should point to the * same cgroup as the old css_set. */ if (cgrp1->root == new_cgrp->root) { if (cgrp1 != new_cgrp) return false; } else { if (cgrp1 != cgrp2) return false; } } return true; } /** * find_existing_css_set - init css array and find the matching css_set * @old_cset: the css_set that we're using before the cgroup transition * @cgrp: the cgroup that we're moving into * @template: out param for the new set of csses, should be clear on entry */ static struct css_set *find_existing_css_set(struct css_set *old_cset, struct cgroup *cgrp, struct cgroup_subsys_state *template[]) { struct cgroupfs_root *root = cgrp->root; struct cgroup_subsys *ss; struct css_set *cset; unsigned long key; int i; /* * Build the set of subsystem state objects that we want to see in the * new css_set. while subsystems can change globally, the entries here * won't change, so no need for locking. */ for_each_subsys(ss, i) { if (root->subsys_mask & (1UL << i)) { /* Subsystem is in this hierarchy. So we want * the subsystem state from the new * cgroup */ template[i] = cgroup_css(cgrp, ss); } else { /* Subsystem is not in this hierarchy, so we * don't want to change the subsystem state */ template[i] = old_cset->subsys[i]; } } key = css_set_hash(template); hash_for_each_possible(css_set_table, cset, hlist, key) { if (!compare_css_sets(cset, old_cset, cgrp, template)) continue; /* This css_set matches what we need */ return cset; } /* No existing cgroup group matched */ return NULL; } static void free_cgrp_cset_links(struct list_head *links_to_free) { struct cgrp_cset_link *link, *tmp_link; list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { list_del(&link->cset_link); kfree(link); } } /** * allocate_cgrp_cset_links - allocate cgrp_cset_links * @count: the number of links to allocate * @tmp_links: list_head the allocated links are put on * * Allocate @count cgrp_cset_link structures and chain them on @tmp_links * through ->cset_link. Returns 0 on success or -errno. */ static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) { struct cgrp_cset_link *link; int i; INIT_LIST_HEAD(tmp_links); for (i = 0; i < count; i++) { link = kzalloc(sizeof(*link), GFP_KERNEL); if (!link) { free_cgrp_cset_links(tmp_links); return -ENOMEM; } list_add(&link->cset_link, tmp_links); } return 0; } /** * link_css_set - a helper function to link a css_set to a cgroup * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() * @cset: the css_set to be linked * @cgrp: the destination cgroup */ static void link_css_set(struct list_head *tmp_links, struct css_set *cset, struct cgroup *cgrp) { struct cgrp_cset_link *link; BUG_ON(list_empty(tmp_links)); link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); link->cset = cset; link->cgrp = cgrp; list_move(&link->cset_link, &cgrp->cset_links); /* * Always add links to the tail of the list so that the list * is sorted by order of hierarchy creation */ list_add_tail(&link->cgrp_link, &cset->cgrp_links); } /** * find_css_set - return a new css_set with one cgroup updated * @old_cset: the baseline css_set * @cgrp: the cgroup to be updated * * Return a new css_set that's equivalent to @old_cset, but with @cgrp * substituted into the appropriate hierarchy. */ static struct css_set *find_css_set(struct css_set *old_cset, struct cgroup *cgrp) { struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; struct css_set *cset; struct list_head tmp_links; struct cgrp_cset_link *link; unsigned long key; lockdep_assert_held(&cgroup_mutex); /* First see if we already have a cgroup group that matches * the desired set */ read_lock(&css_set_lock); cset = find_existing_css_set(old_cset, cgrp, template); if (cset) get_css_set(cset); read_unlock(&css_set_lock); if (cset) return cset; cset = kzalloc(sizeof(*cset), GFP_KERNEL); if (!cset) return NULL; /* Allocate all the cgrp_cset_link objects that we'll need */ if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { kfree(cset); return NULL; } atomic_set(&cset->refcount, 1); INIT_LIST_HEAD(&cset->cgrp_links); INIT_LIST_HEAD(&cset->tasks); INIT_HLIST_NODE(&cset->hlist); /* Copy the set of subsystem state objects generated in * find_existing_css_set() */ memcpy(cset->subsys, template, sizeof(cset->subsys)); write_lock(&css_set_lock); /* Add reference counts and links from the new css_set. */ list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; if (c->root == cgrp->root) c = cgrp; link_css_set(&tmp_links, cset, c); } BUG_ON(!list_empty(&tmp_links)); css_set_count++; /* Add this cgroup group to the hash table */ key = css_set_hash(cset->subsys); hash_add(css_set_table, &cset->hlist, key); write_unlock(&css_set_lock); return cset; } /* * Return the cgroup for "task" from the given hierarchy. Must be * called with cgroup_mutex held. */ static struct cgroup *task_cgroup_from_root(struct task_struct *task, struct cgroupfs_root *root) { struct css_set *cset; struct cgroup *res = NULL; BUG_ON(!mutex_is_locked(&cgroup_mutex)); read_lock(&css_set_lock); /* * No need to lock the task - since we hold cgroup_mutex the * task can't change groups, so the only thing that can happen * is that it exits and its css is set back to init_css_set. */ cset = task_css_set(task); if (cset == &init_css_set) { res = &root->top_cgroup; } else { struct cgrp_cset_link *link; list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; if (c->root == root) { res = c; break; } } } read_unlock(&css_set_lock); BUG_ON(!res); return res; } /* * There is one global cgroup mutex. We also require taking * task_lock() when dereferencing a task's cgroup subsys pointers. * See "The task_lock() exception", at the end of this comment. * * A task must hold cgroup_mutex to modify cgroups. * * Any task can increment and decrement the count field without lock. * So in general, code holding cgroup_mutex can't rely on the count * field not changing. However, if the count goes to zero, then only * cgroup_attach_task() can increment it again. Because a count of zero * means that no tasks are currently attached, therefore there is no * way a task attached to that cgroup can fork (the other way to * increment the count). So code holding cgroup_mutex can safely * assume that if the count is zero, it will stay zero. Similarly, if * a task holds cgroup_mutex on a cgroup with zero count, it * knows that the cgroup won't be removed, as cgroup_rmdir() * needs that mutex. * * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't * (usually) take cgroup_mutex. These are the two most performance * critical pieces of code here. The exception occurs on cgroup_exit(), * when a task in a notify_on_release cgroup exits. Then cgroup_mutex * is taken, and if the cgroup count is zero, a usermode call made * to the release agent with the name of the cgroup (path relative to * the root of cgroup file system) as the argument. * * A cgroup can only be deleted if both its 'count' of using tasks * is zero, and its list of 'children' cgroups is empty. Since all * tasks in the system use _some_ cgroup, and since there is always at * least one task in the system (init, pid == 1), therefore, top_cgroup * always has either children cgroups and/or using tasks. So we don't * need a special hack to ensure that top_cgroup cannot be deleted. * * The task_lock() exception * * The need for this exception arises from the action of * cgroup_attach_task(), which overwrites one task's cgroup pointer with * another. It does so using cgroup_mutex, however there are * several performance critical places that need to reference * task->cgroup without the expense of grabbing a system global * mutex. Therefore except as noted below, when dereferencing or, as * in cgroup_attach_task(), modifying a task's cgroup pointer we use * task_lock(), which acts on a spinlock (task->alloc_lock) already in * the task_struct routinely used for such matters. * * P.S. One more locking exception. RCU is used to guard the * update of a tasks cgroup pointer by cgroup_attach_task() */ /* * A couple of forward declarations required, due to cyclic reference loop: * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir -> * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations * -> cgroup_mkdir. */ static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode); static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask); static const struct inode_operations cgroup_dir_inode_operations; static const struct file_operations proc_cgroupstats_operations; static struct backing_dev_info cgroup_backing_dev_info = { .name = "cgroup", .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, }; static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb) { struct inode *inode = new_inode(sb); if (inode) { inode->i_ino = get_next_ino(); inode->i_mode = mode; inode->i_uid = current_fsuid(); inode->i_gid = current_fsgid(); inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info; } return inode; } static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry) { struct cgroup_name *name; name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL); if (!name) return NULL; strcpy(name->name, dentry->d_name.name); return name; } static void cgroup_free_fn(struct work_struct *work) { struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work); mutex_lock(&cgroup_mutex); cgrp->root->number_of_cgroups--; mutex_unlock(&cgroup_mutex); /* * We get a ref to the parent's dentry, and put the ref when * this cgroup is being freed, so it's guaranteed that the * parent won't be destroyed before its children. */ dput(cgrp->parent->dentry); /* * Drop the active superblock reference that we took when we * created the cgroup. This will free cgrp->root, if we are * holding the last reference to @sb. */ deactivate_super(cgrp->root->sb); cgroup_pidlist_destroy_all(cgrp); simple_xattrs_free(&cgrp->xattrs); kfree(rcu_dereference_raw(cgrp->name)); kfree(cgrp); } static void cgroup_free_rcu(struct rcu_head *head) { struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head); INIT_WORK(&cgrp->destroy_work, cgroup_free_fn); queue_work(cgroup_destroy_wq, &cgrp->destroy_work); } static void cgroup_diput(struct dentry *dentry, struct inode *inode) { /* is dentry a directory ? if so, kfree() associated cgroup */ if (S_ISDIR(inode->i_mode)) { struct cgroup *cgrp = dentry->d_fsdata; BUG_ON(!(cgroup_is_dead(cgrp))); /* * XXX: cgrp->id is only used to look up css's. As cgroup * and css's lifetimes will be decoupled, it should be made * per-subsystem and moved to css->id so that lookups are * successful until the target css is released. */ idr_remove(&cgrp->root->cgroup_idr, cgrp->id); cgrp->id = -1; call_rcu(&cgrp->rcu_head, cgroup_free_rcu); } else { struct cfent *cfe = __d_cfe(dentry); struct cgroup *cgrp = dentry->d_parent->d_fsdata; WARN_ONCE(!list_empty(&cfe->node) && cgrp != &cgrp->root->top_cgroup, "cfe still linked for %s\n", cfe->type->name); simple_xattrs_free(&cfe->xattrs); kfree(cfe); } iput(inode); } static void remove_dir(struct dentry *d) { struct dentry *parent = dget(d->d_parent); d_delete(d); simple_rmdir(parent->d_inode, d); dput(parent); } static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) { struct cfent *cfe; lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex); lockdep_assert_held(&cgroup_mutex); /* * If we're doing cleanup due to failure of cgroup_create(), * the corresponding @cfe may not exist. */ list_for_each_entry(cfe, &cgrp->files, node) { struct dentry *d = cfe->dentry; if (cft && cfe->type != cft) continue; dget(d); d_delete(d); simple_unlink(cgrp->dentry->d_inode, d); list_del_init(&cfe->node); dput(d); break; } } /** * cgroup_clear_dir - remove subsys files in a cgroup directory * @cgrp: target cgroup * @subsys_mask: mask of the subsystem ids whose files should be removed */ static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask) { struct cgroup_subsys *ss; int i; for_each_subsys(ss, i) { struct cftype_set *set; if (!test_bit(i, &subsys_mask)) continue; list_for_each_entry(set, &ss->cftsets, node) cgroup_addrm_files(cgrp, set->cfts, false); } } /* * NOTE : the dentry must have been dget()'ed */ static void cgroup_d_remove_dir(struct dentry *dentry) { struct dentry *parent; parent = dentry->d_parent; spin_lock(&parent->d_lock); spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); list_del_init(&dentry->d_u.d_child); spin_unlock(&dentry->d_lock); spin_unlock(&parent->d_lock); remove_dir(dentry); } /* * Call with cgroup_mutex held. Drops reference counts on modules, including * any duplicate ones that parse_cgroupfs_options took. If this function * returns an error, no reference counts are touched. */ static int rebind_subsystems(struct cgroupfs_root *root, unsigned long added_mask, unsigned removed_mask) { struct cgroup *cgrp = &root->top_cgroup; struct cgroup_subsys *ss; unsigned long pinned = 0; int i, ret; BUG_ON(!mutex_is_locked(&cgroup_mutex)); BUG_ON(!mutex_is_locked(&cgroup_root_mutex)); /* Check that any added subsystems are currently free */ for_each_subsys(ss, i) { if (!(added_mask & (1 << i))) continue; /* is the subsystem mounted elsewhere? */ if (ss->root != &cgroup_dummy_root) { ret = -EBUSY; goto out_put; } /* pin the module */ if (!try_module_get(ss->module)) { ret = -ENOENT; goto out_put; } pinned |= 1 << i; } /* subsys could be missing if unloaded between parsing and here */ if (added_mask != pinned) { ret = -ENOENT; goto out_put; } ret = cgroup_populate_dir(cgrp, added_mask); if (ret) goto out_put; /* * Nothing can fail from this point on. Remove files for the * removed subsystems and rebind each subsystem. */ cgroup_clear_dir(cgrp, removed_mask); for_each_subsys(ss, i) { unsigned long bit = 1UL << i; if (bit & added_mask) { /* We're binding this subsystem to this hierarchy */ BUG_ON(cgroup_css(cgrp, ss)); BUG_ON(!cgroup_css(cgroup_dummy_top, ss)); BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top); rcu_assign_pointer(cgrp->subsys[i], cgroup_css(cgroup_dummy_top, ss)); cgroup_css(cgrp, ss)->cgroup = cgrp; ss->root = root; if (ss->bind) ss->bind(cgroup_css(cgrp, ss)); /* refcount was already taken, and we're keeping it */ root->subsys_mask |= bit; } else if (bit & removed_mask) { /* We're removing this subsystem */ BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss)); BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp); if (ss->bind) ss->bind(cgroup_css(cgroup_dummy_top, ss)); cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top; RCU_INIT_POINTER(cgrp->subsys[i], NULL); cgroup_subsys[i]->root = &cgroup_dummy_root; /* subsystem is now free - drop reference on module */ module_put(ss->module); root->subsys_mask &= ~bit; } } /* * Mark @root has finished binding subsystems. @root->subsys_mask * now matches the bound subsystems. */ root->flags |= CGRP_ROOT_SUBSYS_BOUND; return 0; out_put: for_each_subsys(ss, i) if (pinned & (1 << i)) module_put(ss->module); return ret; } static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry) { struct cgroupfs_root *root = dentry->d_sb->s_fs_info; struct cgroup_subsys *ss; int ssid; mutex_lock(&cgroup_root_mutex); for_each_subsys(ss, ssid) if (root->subsys_mask & (1 << ssid)) seq_printf(seq, ",%s", ss->name); if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) seq_puts(seq, ",sane_behavior"); if (root->flags & CGRP_ROOT_NOPREFIX) seq_puts(seq, ",noprefix"); if (root->flags & CGRP_ROOT_XATTR) seq_puts(seq, ",xattr"); if (strlen(root->release_agent_path)) seq_printf(seq, ",release_agent=%s", root->release_agent_path); if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags)) seq_puts(seq, ",clone_children"); if (strlen(root->name)) seq_printf(seq, ",name=%s", root->name); mutex_unlock(&cgroup_root_mutex); return 0; } struct cgroup_sb_opts { unsigned long subsys_mask; unsigned long flags; char *release_agent; bool cpuset_clone_children; char *name; /* User explicitly requested empty subsystem */ bool none; struct cgroupfs_root *new_root; }; /* * Convert a hierarchy specifier into a bitmask of subsystems and * flags. Call with cgroup_mutex held to protect the cgroup_subsys[] * array. This function takes refcounts on subsystems to be used, unless it * returns error, in which case no refcounts are taken. */ static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) { char *token, *o = data; bool all_ss = false, one_ss = false; unsigned long mask = (unsigned long)-1; struct cgroup_subsys *ss; int i; BUG_ON(!mutex_is_locked(&cgroup_mutex)); #ifdef CONFIG_CPUSETS mask = ~(1UL << cpuset_subsys_id); #endif memset(opts, 0, sizeof(*opts)); while ((token = strsep(&o, ",")) != NULL) { if (!*token) return -EINVAL; if (!strcmp(token, "none")) { /* Explicitly have no subsystems */ opts->none = true; continue; } if (!strcmp(token, "all")) { /* Mutually exclusive option 'all' + subsystem name */ if (one_ss) return -EINVAL; all_ss = true; continue; } if (!strcmp(token, "__DEVEL__sane_behavior")) { opts->flags |= CGRP_ROOT_SANE_BEHAVIOR; continue; } if (!strcmp(token, "noprefix")) { opts->flags |= CGRP_ROOT_NOPREFIX; continue; } if (!strcmp(token, "clone_children")) { opts->cpuset_clone_children = true; continue; } if (!strcmp(token, "xattr")) { opts->flags |= CGRP_ROOT_XATTR; continue; } if (!strncmp(token, "release_agent=", 14)) { /* Specifying two release agents is forbidden */ if (opts->release_agent) return -EINVAL; opts->release_agent = kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL); if (!opts->release_agent) return -ENOMEM; continue; } if (!strncmp(token, "name=", 5)) { const char *name = token + 5; /* Can't specify an empty name */ if (!strlen(name)) return -EINVAL; /* Must match [\w.-]+ */ for (i = 0; i < strlen(name); i++) { char c = name[i]; if (isalnum(c)) continue; if ((c == '.') || (c == '-') || (c == '_')) continue; return -EINVAL; } /* Specifying two names is forbidden */ if (opts->name) return -EINVAL; opts->name = kstrndup(name, MAX_CGROUP_ROOT_NAMELEN - 1, GFP_KERNEL); if (!opts->name) return -ENOMEM; continue; } for_each_subsys(ss, i) { if (strcmp(token, ss->name)) continue; if (ss->disabled) continue; /* Mutually exclusive option 'all' + subsystem name */ if (all_ss) return -EINVAL; set_bit(i, &opts->subsys_mask); one_ss = true; break; } if (i == CGROUP_SUBSYS_COUNT) return -ENOENT; } /* * If the 'all' option was specified select all the subsystems, * otherwise if 'none', 'name=' and a subsystem name options * were not specified, let's default to 'all' */ if (all_ss || (!one_ss && !opts->none && !opts->name)) for_each_subsys(ss, i) if (!ss->disabled) set_bit(i, &opts->subsys_mask); /* Consistency checks */ if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) { pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n"); if (opts->flags & CGRP_ROOT_NOPREFIX) { pr_err("cgroup: sane_behavior: noprefix is not allowed\n"); return -EINVAL; } if (opts->cpuset_clone_children) { pr_err("cgroup: sane_behavior: clone_children is not allowed\n"); return -EINVAL; } } /* * Option noprefix was introduced just for backward compatibility * with the old cpuset, so we allow noprefix only if mounting just * the cpuset subsystem. */ if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask)) return -EINVAL; /* Can't specify "none" and some subsystems */ if (opts->subsys_mask && opts->none) return -EINVAL; /* * We either have to specify by name or by subsystems. (So all * empty hierarchies must have a name). */ if (!opts->subsys_mask && !opts->name) return -EINVAL; return 0; } static int cgroup_remount(struct super_block *sb, int *flags, char *data) { int ret = 0; struct cgroupfs_root *root = sb->s_fs_info; struct cgroup *cgrp = &root->top_cgroup; struct cgroup_sb_opts opts; unsigned long added_mask, removed_mask; if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) { pr_err("cgroup: sane_behavior: remount is not allowed\n"); return -EINVAL; } mutex_lock(&cgrp->dentry->d_inode->i_mutex); mutex_lock(&cgroup_mutex); mutex_lock(&cgroup_root_mutex); /* See what subsystems are wanted */ ret = parse_cgroupfs_options(data, &opts); if (ret) goto out_unlock; if (opts.subsys_mask != root->subsys_mask || opts.release_agent) pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n", task_tgid_nr(current), current->comm); added_mask = opts.subsys_mask & ~root->subsys_mask; removed_mask = root->subsys_mask & ~opts.subsys_mask; /* Don't allow flags or name to change at remount */ if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) || (opts.name && strcmp(opts.name, root->name))) { pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n", opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "", root->flags & CGRP_ROOT_OPTION_MASK, root->name); ret = -EINVAL; goto out_unlock; } /* remounting is not allowed for populated hierarchies */ if (root->number_of_cgroups > 1) { ret = -EBUSY; goto out_unlock; } ret = rebind_subsystems(root, added_mask, removed_mask); if (ret) goto out_unlock; if (opts.release_agent) strcpy(root->release_agent_path, opts.release_agent); out_unlock: kfree(opts.release_agent); kfree(opts.name); mutex_unlock(&cgroup_root_mutex); mutex_unlock(&cgroup_mutex); mutex_unlock(&cgrp->dentry->d_inode->i_mutex); return ret; } static const struct super_operations cgroup_ops = { .statfs = simple_statfs, .drop_inode = generic_delete_inode, .show_options = cgroup_show_options, .remount_fs = cgroup_remount, }; static void init_cgroup_housekeeping(struct cgroup *cgrp) { INIT_LIST_HEAD(&cgrp->sibling); INIT_LIST_HEAD(&cgrp->children); INIT_LIST_HEAD(&cgrp->files); INIT_LIST_HEAD(&cgrp->cset_links); INIT_LIST_HEAD(&cgrp->release_list); INIT_LIST_HEAD(&cgrp->pidlists); mutex_init(&cgrp->pidlist_mutex); cgrp->dummy_css.cgroup = cgrp; simple_xattrs_init(&cgrp->xattrs); } static void init_cgroup_root(struct cgroupfs_root *root) { struct cgroup *cgrp = &root->top_cgroup; INIT_LIST_HEAD(&root->root_list); root->number_of_cgroups = 1; cgrp->root = root; RCU_INIT_POINTER(cgrp->name, &root_cgroup_name); init_cgroup_housekeeping(cgrp); idr_init(&root->cgroup_idr); } static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end) { int id; lockdep_assert_held(&cgroup_mutex); lockdep_assert_held(&cgroup_root_mutex); id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end, GFP_KERNEL); if (id < 0) return id; root->hierarchy_id = id; return 0; } static void cgroup_exit_root_id(struct cgroupfs_root *root) { lockdep_assert_held(&cgroup_mutex); lockdep_assert_held(&cgroup_root_mutex); if (root->hierarchy_id) { idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); root->hierarchy_id = 0; } } static int cgroup_test_super(struct super_block *sb, void *data) { struct cgroup_sb_opts *opts = data; struct cgroupfs_root *root = sb->s_fs_info; /* If we asked for a name then it must match */ if (opts->name && strcmp(opts->name, root->name)) return 0; /* * If we asked for subsystems (or explicitly for no * subsystems) then they must match */ if ((opts->subsys_mask || opts->none) && (opts->subsys_mask != root->subsys_mask)) return 0; return 1; } static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts) { struct cgroupfs_root *root; if (!opts->subsys_mask && !opts->none) return NULL; root = kzalloc(sizeof(*root), GFP_KERNEL); if (!root) return ERR_PTR(-ENOMEM); init_cgroup_root(root); /* * We need to set @root->subsys_mask now so that @root can be * matched by cgroup_test_super() before it finishes * initialization; otherwise, competing mounts with the same * options may try to bind the same subsystems instead of waiting * for the first one leading to unexpected mount errors. * SUBSYS_BOUND will be set once actual binding is complete. */ root->subsys_mask = opts->subsys_mask; root->flags = opts->flags; if (opts->release_agent) strcpy(root->release_agent_path, opts->release_agent); if (opts->name) strcpy(root->name, opts->name); if (opts->cpuset_clone_children) set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags); return root; } static void cgroup_free_root(struct cgroupfs_root *root) { if (root) { /* hierarhcy ID shoulid already have been released */ WARN_ON_ONCE(root->hierarchy_id); idr_destroy(&root->cgroup_idr); kfree(root); } } static int cgroup_set_super(struct super_block *sb, void *data) { int ret; struct cgroup_sb_opts *opts = data; /* If we don't have a new root, we can't set up a new sb */ if (!opts->new_root) return -EINVAL; BUG_ON(!opts->subsys_mask && !opts->none); ret = set_anon_super(sb, NULL); if (ret) return ret; sb->s_fs_info = opts->new_root; opts->new_root->sb = sb; sb->s_blocksize = PAGE_CACHE_SIZE; sb->s_blocksize_bits = PAGE_CACHE_SHIFT; sb->s_magic = CGROUP_SUPER_MAGIC; sb->s_op = &cgroup_ops; return 0; } static int cgroup_get_rootdir(struct super_block *sb) { static const struct dentry_operations cgroup_dops = { .d_iput = cgroup_diput, .d_delete = always_delete_dentry, }; struct inode *inode = cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb); if (!inode) return -ENOMEM; inode->i_fop = &simple_dir_operations; inode->i_op = &cgroup_dir_inode_operations; /* directories start off with i_nlink == 2 (for "." entry) */ inc_nlink(inode); sb->s_root = d_make_root(inode); if (!sb->s_root) return -ENOMEM; /* for everything else we want ->d_op set */ sb->s_d_op = &cgroup_dops; return 0; } static struct dentry *cgroup_mount(struct file_system_type *fs_type, int flags, const char *unused_dev_name, void *data) { struct cgroup_sb_opts opts; struct cgroupfs_root *root; int ret = 0; struct super_block *sb; struct cgroupfs_root *new_root; struct list_head tmp_links; struct inode *inode; const struct cred *cred; /* First find the desired set of subsystems */ mutex_lock(&cgroup_mutex); ret = parse_cgroupfs_options(data, &opts); mutex_unlock(&cgroup_mutex); if (ret) goto out_err; /* * Allocate a new cgroup root. We may not need it if we're * reusing an existing hierarchy. */ new_root = cgroup_root_from_opts(&opts); if (IS_ERR(new_root)) { ret = PTR_ERR(new_root); goto out_err; } opts.new_root = new_root; /* Locate an existing or new sb for this hierarchy */ sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts); if (IS_ERR(sb)) { ret = PTR_ERR(sb); cgroup_free_root(opts.new_root); goto out_err; } root = sb->s_fs_info; BUG_ON(!root); if (root == opts.new_root) { /* We used the new root structure, so this is a new hierarchy */ struct cgroup *root_cgrp = &root->top_cgroup; struct cgroupfs_root *existing_root; int i; struct css_set *cset; BUG_ON(sb->s_root != NULL); ret = cgroup_get_rootdir(sb); if (ret) goto drop_new_super; inode = sb->s_root->d_inode; mutex_lock(&inode->i_mutex); mutex_lock(&cgroup_mutex); mutex_lock(&cgroup_root_mutex); root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL); if (root_cgrp->id < 0) goto unlock_drop; /* Check for name clashes with existing mounts */ ret = -EBUSY; if (strlen(root->name)) for_each_active_root(existing_root) if (!strcmp(existing_root->name, root->name)) goto unlock_drop; /* * We're accessing css_set_count without locking * css_set_lock here, but that's OK - it can only be * increased by someone holding cgroup_lock, and * that's us. The worst that can happen is that we * have some link structures left over */ ret = allocate_cgrp_cset_links(css_set_count, &tmp_links); if (ret) goto unlock_drop; /* ID 0 is reserved for dummy root, 1 for unified hierarchy */ ret = cgroup_init_root_id(root, 2, 0); if (ret) goto unlock_drop; sb->s_root->d_fsdata = root_cgrp; root_cgrp->dentry = sb->s_root; /* * We're inside get_sb() and will call lookup_one_len() to * create the root files, which doesn't work if SELinux is * in use. The following cred dancing somehow works around * it. See 2ce9738ba ("cgroupfs: use init_cred when * populating new cgroupfs mount") for more details. */ cred = override_creds(&init_cred); ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true); if (ret) goto rm_base_files; ret = rebind_subsystems(root, root->subsys_mask, 0); if (ret) goto rm_base_files; revert_creds(cred); /* * There must be no failure case after here, since rebinding * takes care of subsystems' refcounts, which are explicitly * dropped in the failure exit path. */ list_add(&root->root_list, &cgroup_roots); cgroup_root_count++; /* Link the top cgroup in this hierarchy into all * the css_set objects */ write_lock(&css_set_lock); hash_for_each(css_set_table, i, cset, hlist) link_css_set(&tmp_links, cset, root_cgrp); write_unlock(&css_set_lock); free_cgrp_cset_links(&tmp_links); BUG_ON(!list_empty(&root_cgrp->children)); BUG_ON(root->number_of_cgroups != 1); mutex_unlock(&cgroup_root_mutex); mutex_unlock(&cgroup_mutex); mutex_unlock(&inode->i_mutex); } else { /* * We re-used an existing hierarchy - the new root (if * any) is not needed */ cgroup_free_root(opts.new_root); if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) { if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) { pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n"); ret = -EINVAL; goto drop_new_super; } else { pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n"); } } } kfree(opts.release_agent); kfree(opts.name); return dget(sb->s_root); rm_base_files: free_cgrp_cset_links(&tmp_links); cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false); revert_creds(cred); unlock_drop: cgroup_exit_root_id(root); mutex_unlock(&cgroup_root_mutex); mutex_unlock(&cgroup_mutex); mutex_unlock(&inode->i_mutex); drop_new_super: deactivate_locked_super(sb); out_err: kfree(opts.release_agent); kfree(opts.name); return ERR_PTR(ret); } static void cgroup_kill_sb(struct super_block *sb) { struct cgroupfs_root *root = sb->s_fs_info; struct cgroup *cgrp = &root->top_cgroup; struct cgrp_cset_link *link, *tmp_link; int ret; BUG_ON(!root); BUG_ON(root->number_of_cgroups != 1); BUG_ON(!list_empty(&cgrp->children)); mutex_lock(&cgrp->dentry->d_inode->i_mutex); mutex_lock(&cgroup_mutex); mutex_lock(&cgroup_root_mutex); /* Rebind all subsystems back to the default hierarchy */ if (root->flags & CGRP_ROOT_SUBSYS_BOUND) { ret = rebind_subsystems(root, 0, root->subsys_mask); /* Shouldn't be able to fail ... */ BUG_ON(ret); } /* * Release all the links from cset_links to this hierarchy's * root cgroup */ write_lock(&css_set_lock); list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { list_del(&link->cset_link); list_del(&link->cgrp_link); kfree(link); } write_unlock(&css_set_lock); if (!list_empty(&root->root_list)) { list_del(&root->root_list); cgroup_root_count--; } cgroup_exit_root_id(root); mutex_unlock(&cgroup_root_mutex); mutex_unlock(&cgroup_mutex); mutex_unlock(&cgrp->dentry->d_inode->i_mutex); simple_xattrs_free(&cgrp->xattrs); kill_litter_super(sb); cgroup_free_root(root); } static struct file_system_type cgroup_fs_type = { .name = "cgroup", .mount = cgroup_mount, .kill_sb = cgroup_kill_sb, }; static struct kobject *cgroup_kobj; /** * cgroup_path - generate the path of a cgroup * @cgrp: the cgroup in question * @buf: the buffer to write the path into * @buflen: the length of the buffer * * Writes path of cgroup into buf. Returns 0 on success, -errno on error. * * We can't generate cgroup path using dentry->d_name, as accessing * dentry->name must be protected by irq-unsafe dentry->d_lock or parent * inode's i_mutex, while on the other hand cgroup_path() can be called * with some irq-safe spinlocks held. */ int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) { int ret = -ENAMETOOLONG; char *start; if (!cgrp->parent) { if (strlcpy(buf, "/", buflen) >= buflen) return -ENAMETOOLONG; return 0; } start = buf + buflen - 1; *start = '\0'; rcu_read_lock(); do { const char *name = cgroup_name(cgrp); int len; len = strlen(name); if ((start -= len) < buf) goto out; memcpy(start, name, len); if (--start < buf) goto out; *start = '/'; cgrp = cgrp->parent; } while (cgrp->parent); ret = 0; memmove(buf, start, buf + buflen - start); out: rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(cgroup_path); /** * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy * @task: target task * @buf: the buffer to write the path into * @buflen: the length of the buffer * * Determine @task's cgroup on the first (the one with the lowest non-zero * hierarchy_id) cgroup hierarchy and copy its path into @buf. This * function grabs cgroup_mutex and shouldn't be used inside locks used by * cgroup controller callbacks. * * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short. */ int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) { struct cgroupfs_root *root; struct cgroup *cgrp; int hierarchy_id = 1, ret = 0; if (buflen < 2) return -ENAMETOOLONG; mutex_lock(&cgroup_mutex); root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); if (root) { cgrp = task_cgroup_from_root(task, root); ret = cgroup_path(cgrp, buf, buflen); } else { /* if no hierarchy exists, everyone is in "/" */ memcpy(buf, "/", 2); } mutex_unlock(&cgroup_mutex); return ret; } EXPORT_SYMBOL_GPL(task_cgroup_path); /* * Control Group taskset */ struct task_and_cgroup { struct task_struct *task; struct cgroup *cgrp; struct css_set *cset; }; struct cgroup_taskset { struct task_and_cgroup single; struct flex_array *tc_array; int tc_array_len; int idx; struct cgroup *cur_cgrp; }; /** * cgroup_taskset_first - reset taskset and return the first task * @tset: taskset of interest * * @tset iteration is initialized and the first task is returned. */ struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset) { if (tset->tc_array) { tset->idx = 0; return cgroup_taskset_next(tset); } else { tset->cur_cgrp = tset->single.cgrp; return tset->single.task; } } EXPORT_SYMBOL_GPL(cgroup_taskset_first); /** * cgroup_taskset_next - iterate to the next task in taskset * @tset: taskset of interest * * Return the next task in @tset. Iteration must have been initialized * with cgroup_taskset_first(). */ struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset) { struct task_and_cgroup *tc; if (!tset->tc_array || tset->idx >= tset->tc_array_len) return NULL; tc = flex_array_get(tset->tc_array, tset->idx++); tset->cur_cgrp = tc->cgrp; return tc->task; } EXPORT_SYMBOL_GPL(cgroup_taskset_next); /** * cgroup_taskset_cur_css - return the matching css for the current task * @tset: taskset of interest * @subsys_id: the ID of the target subsystem * * Return the css for the current (last returned) task of @tset for * subsystem specified by @subsys_id. This function must be preceded by * either cgroup_taskset_first() or cgroup_taskset_next(). */ struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset, int subsys_id) { return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]); } EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css); /** * cgroup_taskset_size - return the number of tasks in taskset * @tset: taskset of interest */ int cgroup_taskset_size(struct cgroup_taskset *tset) { return tset->tc_array ? tset->tc_array_len : 1; } EXPORT_SYMBOL_GPL(cgroup_taskset_size); /* * cgroup_task_migrate - move a task from one cgroup to another. * * Must be called with cgroup_mutex and threadgroup locked. */ static void cgroup_task_migrate(struct cgroup *old_cgrp, struct task_struct *tsk, struct css_set *new_cset) { struct css_set *old_cset; /* * We are synchronized through threadgroup_lock() against PF_EXITING * setting such that we can't race against cgroup_exit() changing the * css_set to init_css_set and dropping the old one. */ WARN_ON_ONCE(tsk->flags & PF_EXITING); old_cset = task_css_set(tsk); task_lock(tsk); rcu_assign_pointer(tsk->cgroups, new_cset); task_unlock(tsk); /* Update the css_set linked lists if we're using them */ write_lock(&css_set_lock); if (!list_empty(&tsk->cg_list)) list_move(&tsk->cg_list, &new_cset->tasks); write_unlock(&css_set_lock); /* * We just gained a reference on old_cset by taking it from the * task. As trading it for new_cset is protected by cgroup_mutex, * we're safe to drop it here; it will be freed under RCU. */ set_bit(CGRP_RELEASABLE, &old_cgrp->flags); put_css_set(old_cset); } /** * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup * @cgrp: the cgroup to attach to * @tsk: the task or the leader of the threadgroup to be attached * @threadgroup: attach the whole threadgroup? * * Call holding cgroup_mutex and the group_rwsem of the leader. Will take * task_lock of @tsk or each thread in the threadgroup individually in turn. */ static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk, bool threadgroup) { int retval, i, group_size; struct cgroupfs_root *root = cgrp->root; struct cgroup_subsys_state *css, *failed_css = NULL; /* threadgroup list cursor and array */ struct task_struct *leader = tsk; struct task_and_cgroup *tc; struct flex_array *group; struct cgroup_taskset tset = { }; /* * step 0: in order to do expensive, possibly blocking operations for * every thread, we cannot iterate the thread group list, since it needs * rcu or tasklist locked. instead, build an array of all threads in the * group - group_rwsem prevents new threads from appearing, and if * threads exit, this will just be an over-estimate. */ if (threadgroup) group_size = get_nr_threads(tsk); else group_size = 1; /* flex_array supports very large thread-groups better than kmalloc. */ group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL); if (!group) return -ENOMEM; /* pre-allocate to guarantee space while iterating in rcu read-side. */ retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL); if (retval) goto out_free_group_list; i = 0; /* * Prevent freeing of tasks while we take a snapshot. Tasks that are * already PF_EXITING could be freed from underneath us unless we * take an rcu_read_lock. */ rcu_read_lock(); do { struct task_and_cgroup ent; /* @tsk either already exited or can't exit until the end */ if (tsk->flags & PF_EXITING) goto next; /* as per above, nr_threads may decrease, but not increase. */ BUG_ON(i >= group_size); ent.task = tsk; ent.cgrp = task_cgroup_from_root(tsk, root); /* nothing to do if this task is already in the cgroup */ if (ent.cgrp == cgrp) goto next; /* * saying GFP_ATOMIC has no effect here because we did prealloc * earlier, but it's good form to communicate our expectations. */ retval = flex_array_put(group, i, &ent, GFP_ATOMIC); BUG_ON(retval != 0); i++; next: if (!threadgroup) break; } while_each_thread(leader, tsk); rcu_read_unlock(); /* remember the number of threads in the array for later. */ group_size = i; tset.tc_array = group; tset.tc_array_len = group_size; /* methods shouldn't be called if no task is actually migrating */ retval = 0; if (!group_size) goto out_free_group_list; /* * step 1: check that we can legitimately attach to the cgroup. */ for_each_css(css, i, cgrp) { if (css->ss->can_attach) { retval = css->ss->can_attach(css, &tset); if (retval) { failed_css = css; goto out_cancel_attach; } } } /* * step 2: make sure css_sets exist for all threads to be migrated. * we use find_css_set, which allocates a new one if necessary. */ for (i = 0; i < group_size; i++) { struct css_set *old_cset; tc = flex_array_get(group, i); old_cset = task_css_set(tc->task); tc->cset = find_css_set(old_cset, cgrp); if (!tc->cset) { retval = -ENOMEM; goto out_put_css_set_refs; } } /* * step 3: now that we're guaranteed success wrt the css_sets, * proceed to move all tasks to the new cgroup. There are no * failure cases after here, so this is the commit point. */ for (i = 0; i < group_size; i++) { tc = flex_array_get(group, i); cgroup_task_migrate(tc->cgrp, tc->task, tc->cset); } /* nothing is sensitive to fork() after this point. */ /* * step 4: do subsystem attach callbacks. */ for_each_css(css, i, cgrp) if (css->ss->attach) css->ss->attach(css, &tset); /* * step 5: success! and cleanup */ retval = 0; out_put_css_set_refs: if (retval) { for (i = 0; i < group_size; i++) { tc = flex_array_get(group, i); if (!tc->cset) break; put_css_set(tc->cset); } } out_cancel_attach: if (retval) { for_each_css(css, i, cgrp) { if (css == failed_css) break; if (css->ss->cancel_attach) css->ss->cancel_attach(css, &tset); } } out_free_group_list: flex_array_free(group); return retval; } /* * Find the task_struct of the task to attach by vpid and pass it along to the * function to attach either it or all tasks in its threadgroup. Will lock * cgroup_mutex and threadgroup; may take task_lock of task. */ static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup) { struct task_struct *tsk; const struct cred *cred = current_cred(), *tcred; int ret; if (!cgroup_lock_live_group(cgrp)) return -ENODEV; retry_find_task: rcu_read_lock(); if (pid) { tsk = find_task_by_vpid(pid); if (!tsk) { rcu_read_unlock(); ret = -ESRCH; goto out_unlock_cgroup; } /* * even if we're attaching all tasks in the thread group, we * only need to check permissions on one of them. */ tcred = __task_cred(tsk); if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && !uid_eq(cred->euid, tcred->uid) && !uid_eq(cred->euid, tcred->suid)) { rcu_read_unlock(); ret = -EACCES; goto out_unlock_cgroup; } } else tsk = current; if (threadgroup) tsk = tsk->group_leader; /* * Workqueue threads may acquire PF_NO_SETAFFINITY and become * trapped in a cpuset, or RT worker may be born in a cgroup * with no rt_runtime allocated. Just say no. */ if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) { ret = -EINVAL; rcu_read_unlock(); goto out_unlock_cgroup; } get_task_struct(tsk); rcu_read_unlock(); threadgroup_lock(tsk); if (threadgroup) { if (!thread_group_leader(tsk)) { /* * a race with de_thread from another thread's exec() * may strip us of our leadership, if this happens, * there is no choice but to throw this task away and * try again; this is * "double-double-toil-and-trouble-check locking". */ threadgroup_unlock(tsk); put_task_struct(tsk); goto retry_find_task; } } ret = cgroup_attach_task(cgrp, tsk, threadgroup); threadgroup_unlock(tsk); put_task_struct(tsk); out_unlock_cgroup: mutex_unlock(&cgroup_mutex); return ret; } /** * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' * @from: attach to all cgroups of a given task * @tsk: the task to be attached */ int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) { struct cgroupfs_root *root; int retval = 0; mutex_lock(&cgroup_mutex); for_each_active_root(root) { struct cgroup *from_cgrp = task_cgroup_from_root(from, root); retval = cgroup_attach_task(from_cgrp, tsk, false); if (retval) break; } mutex_unlock(&cgroup_mutex); return retval; } EXPORT_SYMBOL_GPL(cgroup_attach_task_all); static int cgroup_tasks_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 pid) { return attach_task_by_pid(css->cgroup, pid, false); } static int cgroup_procs_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 tgid) { return attach_task_by_pid(css->cgroup, tgid, true); } static int cgroup_release_agent_write(struct cgroup_subsys_state *css, struct cftype *cft, const char *buffer) { BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX); if (strlen(buffer) >= PATH_MAX) return -EINVAL; if (!cgroup_lock_live_group(css->cgroup)) return -ENODEV; mutex_lock(&cgroup_root_mutex); strcpy(css->cgroup->root->release_agent_path, buffer); mutex_unlock(&cgroup_root_mutex); mutex_unlock(&cgroup_mutex); return 0; } static int cgroup_release_agent_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; if (!cgroup_lock_live_group(cgrp)) return -ENODEV; seq_puts(seq, cgrp->root->release_agent_path); seq_putc(seq, '\n'); mutex_unlock(&cgroup_mutex); return 0; } static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp)); return 0; } /* A buffer size big enough for numbers or short strings */ #define CGROUP_LOCAL_BUFFER_SIZE 64 static ssize_t cgroup_file_write(struct file *file, const char __user *userbuf, size_t nbytes, loff_t *ppos) { struct cfent *cfe = __d_cfe(file->f_dentry); struct cftype *cft = __d_cft(file->f_dentry); struct cgroup_subsys_state *css = cfe->css; size_t max_bytes = cft->max_write_len ?: CGROUP_LOCAL_BUFFER_SIZE - 1; char *buf; int ret; if (nbytes >= max_bytes) return -E2BIG; buf = kmalloc(nbytes + 1, GFP_KERNEL); if (!buf) return -ENOMEM; if (copy_from_user(buf, userbuf, nbytes)) { ret = -EFAULT; goto out_free; } buf[nbytes] = '\0'; if (cft->write_string) { ret = cft->write_string(css, cft, strstrip(buf)); } else if (cft->write_u64) { unsigned long long v; ret = kstrtoull(buf, 0, &v); if (!ret) ret = cft->write_u64(css, cft, v); } else if (cft->write_s64) { long long v; ret = kstrtoll(buf, 0, &v); if (!ret) ret = cft->write_s64(css, cft, v); } else if (cft->trigger) { ret = cft->trigger(css, (unsigned int)cft->private); } else { ret = -EINVAL; } out_free: kfree(buf); return ret ?: nbytes; } /* * seqfile ops/methods for returning structured data. Currently just * supports string->u64 maps, but can be extended in future. */ static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) { struct cftype *cft = seq_cft(seq); if (cft->seq_start) { return cft->seq_start(seq, ppos); } else { /* * The same behavior and code as single_open(). Returns * !NULL if pos is at the beginning; otherwise, NULL. */ return NULL + !*ppos; } } static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) { struct cftype *cft = seq_cft(seq); if (cft->seq_next) { return cft->seq_next(seq, v, ppos); } else { /* * The same behavior and code as single_open(), always * terminate after the initial read. */ ++*ppos; return NULL; } } static void cgroup_seqfile_stop(struct seq_file *seq, void *v) { struct cftype *cft = seq_cft(seq); if (cft->seq_stop) cft->seq_stop(seq, v); } static int cgroup_seqfile_show(struct seq_file *m, void *arg) { struct cftype *cft = seq_cft(m); struct cgroup_subsys_state *css = seq_css(m); if (cft->seq_show) return cft->seq_show(m, arg); if (cft->read_u64) seq_printf(m, "%llu\n", cft->read_u64(css, cft)); else if (cft->read_s64) seq_printf(m, "%lld\n", cft->read_s64(css, cft)); else return -EINVAL; return 0; } static struct seq_operations cgroup_seq_operations = { .start = cgroup_seqfile_start, .next = cgroup_seqfile_next, .stop = cgroup_seqfile_stop, .show = cgroup_seqfile_show, }; static int cgroup_file_open(struct inode *inode, struct file *file) { struct cfent *cfe = __d_cfe(file->f_dentry); struct cftype *cft = __d_cft(file->f_dentry); struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent); struct cgroup_subsys_state *css; struct cgroup_open_file *of; int err; err = generic_file_open(inode, file); if (err) return err; /* * If the file belongs to a subsystem, pin the css. Will be * unpinned either on open failure or release. This ensures that * @css stays alive for all file operations. */ rcu_read_lock(); css = cgroup_css(cgrp, cft->ss); if (cft->ss && !css_tryget(css)) css = NULL; rcu_read_unlock(); if (!css) return -ENODEV; /* * @cfe->css is used by read/write/close to determine the * associated css. @file->private_data would be a better place but * that's already used by seqfile. Multiple accessors may use it * simultaneously which is okay as the association never changes. */ WARN_ON_ONCE(cfe->css && cfe->css != css); cfe->css = css; of = __seq_open_private(file, &cgroup_seq_operations, sizeof(struct cgroup_open_file)); if (of) { of->cfe = cfe; return 0; } if (css->ss) css_put(css); return -ENOMEM; } static int cgroup_file_release(struct inode *inode, struct file *file) { struct cfent *cfe = __d_cfe(file->f_dentry); struct cgroup_subsys_state *css = cfe->css; if (css->ss) css_put(css); return seq_release_private(inode, file); } /* * cgroup_rename - Only allow simple rename of directories in place. */ static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { int ret; struct cgroup_name *name, *old_name; struct cgroup *cgrp; /* * It's convinient to use parent dir's i_mutex to protected * cgrp->name. */ lockdep_assert_held(&old_dir->i_mutex); if (!S_ISDIR(old_dentry->d_inode->i_mode)) return -ENOTDIR; if (new_dentry->d_inode) return -EEXIST; if (old_dir != new_dir) return -EIO; cgrp = __d_cgrp(old_dentry); /* * This isn't a proper migration and its usefulness is very * limited. Disallow if sane_behavior. */ if (cgroup_sane_behavior(cgrp)) return -EPERM; name = cgroup_alloc_name(new_dentry); if (!name) return -ENOMEM; ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry); if (ret) { kfree(name); return ret; } old_name = rcu_dereference_protected(cgrp->name, true); rcu_assign_pointer(cgrp->name, name); kfree_rcu(old_name, rcu_head); return 0; } static struct simple_xattrs *__d_xattrs(struct dentry *dentry) { if (S_ISDIR(dentry->d_inode->i_mode)) return &__d_cgrp(dentry)->xattrs; else return &__d_cfe(dentry)->xattrs; } static inline int xattr_enabled(struct dentry *dentry) { struct cgroupfs_root *root = dentry->d_sb->s_fs_info; return root->flags & CGRP_ROOT_XATTR; } static bool is_valid_xattr(const char *name) { if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) || !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN)) return true; return false; } static int cgroup_setxattr(struct dentry *dentry, const char *name, const void *val, size_t size, int flags) { if (!xattr_enabled(dentry)) return -EOPNOTSUPP; if (!is_valid_xattr(name)) return -EINVAL; return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags); } static int cgroup_removexattr(struct dentry *dentry, const char *name) { if (!xattr_enabled(dentry)) return -EOPNOTSUPP; if (!is_valid_xattr(name)) return -EINVAL; return simple_xattr_remove(__d_xattrs(dentry), name); } static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name, void *buf, size_t size) { if (!xattr_enabled(dentry)) return -EOPNOTSUPP; if (!is_valid_xattr(name)) return -EINVAL; return simple_xattr_get(__d_xattrs(dentry), name, buf, size); } static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size) { if (!xattr_enabled(dentry)) return -EOPNOTSUPP; return simple_xattr_list(__d_xattrs(dentry), buf, size); } static const struct file_operations cgroup_file_operations = { .read = seq_read, .write = cgroup_file_write, .llseek = generic_file_llseek, .open = cgroup_file_open, .release = cgroup_file_release, }; static const struct inode_operations cgroup_file_inode_operations = { .setxattr = cgroup_setxattr, .getxattr = cgroup_getxattr, .listxattr = cgroup_listxattr, .removexattr = cgroup_removexattr, }; static const struct inode_operations cgroup_dir_inode_operations = { .lookup = simple_lookup, .mkdir = cgroup_mkdir, .rmdir = cgroup_rmdir, .rename = cgroup_rename, .setxattr = cgroup_setxattr, .getxattr = cgroup_getxattr, .listxattr = cgroup_listxattr, .removexattr = cgroup_removexattr, }; static int cgroup_create_file(struct dentry *dentry, umode_t mode, struct super_block *sb) { struct inode *inode; if (!dentry) return -ENOENT; if (dentry->d_inode) return -EEXIST; inode = cgroup_new_inode(mode, sb); if (!inode) return -ENOMEM; if (S_ISDIR(mode)) { inode->i_op = &cgroup_dir_inode_operations; inode->i_fop = &simple_dir_operations; /* start off with i_nlink == 2 (for "." entry) */ inc_nlink(inode); inc_nlink(dentry->d_parent->d_inode); /* * Control reaches here with cgroup_mutex held. * @inode->i_mutex should nest outside cgroup_mutex but we * want to populate it immediately without releasing * cgroup_mutex. As @inode isn't visible to anyone else * yet, trylock will always succeed without affecting * lockdep checks. */ WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex)); } else if (S_ISREG(mode)) { inode->i_size = 0; inode->i_fop = &cgroup_file_operations; inode->i_op = &cgroup_file_inode_operations; } d_instantiate(dentry, inode); dget(dentry); /* Extra count - pin the dentry in core */ return 0; } /** * cgroup_file_mode - deduce file mode of a control file * @cft: the control file in question * * returns cft->mode if ->mode is not 0 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler * returns S_IRUGO if it has only a read handler * returns S_IWUSR if it has only a write hander */ static umode_t cgroup_file_mode(const struct cftype *cft) { umode_t mode = 0; if (cft->mode) return cft->mode; if (cft->read_u64 || cft->read_s64 || cft->seq_show) mode |= S_IRUGO; if (cft->write_u64 || cft->write_s64 || cft->write_string || cft->trigger) mode |= S_IWUSR; return mode; } static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft) { struct dentry *dir = cgrp->dentry; struct cgroup *parent = __d_cgrp(dir); struct dentry *dentry; struct cfent *cfe; int error; umode_t mode; char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 }; if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { strcpy(name, cft->ss->name); strcat(name, "."); } strcat(name, cft->name); BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex)); cfe = kzalloc(sizeof(*cfe), GFP_KERNEL); if (!cfe) return -ENOMEM; dentry = lookup_one_len(name, dir, strlen(name)); if (IS_ERR(dentry)) { error = PTR_ERR(dentry); goto out; } cfe->type = (void *)cft; cfe->dentry = dentry; dentry->d_fsdata = cfe; simple_xattrs_init(&cfe->xattrs); mode = cgroup_file_mode(cft); error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb); if (!error) { list_add_tail(&cfe->node, &parent->files); cfe = NULL; } dput(dentry); out: kfree(cfe); return error; } /** * cgroup_addrm_files - add or remove files to a cgroup directory * @cgrp: the target cgroup * @cfts: array of cftypes to be added * @is_add: whether to add or remove * * Depending on @is_add, add or remove files defined by @cfts on @cgrp. * For removals, this function never fails. If addition fails, this * function doesn't remove files already added. The caller is responsible * for cleaning up. */ static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[], bool is_add) { struct cftype *cft; int ret; lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex); lockdep_assert_held(&cgroup_mutex); for (cft = cfts; cft->name[0] != '\0'; cft++) { /* does cft->flags tell us to skip this file on @cgrp? */ if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp)) continue; if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent) continue; if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent) continue; if (is_add) { ret = cgroup_add_file(cgrp, cft); if (ret) { pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n", cft->name, ret); return ret; } } else { cgroup_rm_file(cgrp, cft); } } return 0; } static void cgroup_cfts_prepare(void) __acquires(&cgroup_mutex) { /* * Thanks to the entanglement with vfs inode locking, we can't walk * the existing cgroups under cgroup_mutex and create files. * Instead, we use css_for_each_descendant_pre() and drop RCU read * lock before calling cgroup_addrm_files(). */ mutex_lock(&cgroup_mutex); } static int cgroup_cfts_commit(struct cftype *cfts, bool is_add) __releases(&cgroup_mutex) { LIST_HEAD(pending); struct cgroup_subsys *ss = cfts[0].ss; struct cgroup *root = &ss->root->top_cgroup; struct super_block *sb = ss->root->sb; struct dentry *prev = NULL; struct inode *inode; struct cgroup_subsys_state *css; u64 update_before; int ret = 0; /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */ if (!cfts || ss->root == &cgroup_dummy_root || !atomic_inc_not_zero(&sb->s_active)) { mutex_unlock(&cgroup_mutex); return 0; } /* * All cgroups which are created after we drop cgroup_mutex will * have the updated set of files, so we only need to update the * cgroups created before the current @cgroup_serial_nr_next. */ update_before = cgroup_serial_nr_next; mutex_unlock(&cgroup_mutex); /* add/rm files for all cgroups created before */ rcu_read_lock(); css_for_each_descendant_pre(css, cgroup_css(root, ss)) { struct cgroup *cgrp = css->cgroup; if (cgroup_is_dead(cgrp)) continue; inode = cgrp->dentry->d_inode; dget(cgrp->dentry); rcu_read_unlock(); dput(prev); prev = cgrp->dentry; mutex_lock(&inode->i_mutex); mutex_lock(&cgroup_mutex); if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp)) ret = cgroup_addrm_files(cgrp, cfts, is_add); mutex_unlock(&cgroup_mutex); mutex_unlock(&inode->i_mutex); rcu_read_lock(); if (ret) break; } rcu_read_unlock(); dput(prev); deactivate_super(sb); return ret; } /** * cgroup_add_cftypes - add an array of cftypes to a subsystem * @ss: target cgroup subsystem * @cfts: zero-length name terminated array of cftypes * * Register @cfts to @ss. Files described by @cfts are created for all * existing cgroups to which @ss is attached and all future cgroups will * have them too. This function can be called anytime whether @ss is * attached or not. * * Returns 0 on successful registration, -errno on failure. Note that this * function currently returns 0 as long as @cfts registration is successful * even if some file creation attempts on existing cgroups fail. */ int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { struct cftype_set *set; struct cftype *cft; int ret; set = kzalloc(sizeof(*set), GFP_KERNEL); if (!set) return -ENOMEM; for (cft = cfts; cft->name[0] != '\0'; cft++) cft->ss = ss; cgroup_cfts_prepare(); set->cfts = cfts; list_add_tail(&set->node, &ss->cftsets); ret = cgroup_cfts_commit(cfts, true); if (ret) cgroup_rm_cftypes(cfts); return ret; } EXPORT_SYMBOL_GPL(cgroup_add_cftypes); /** * cgroup_rm_cftypes - remove an array of cftypes from a subsystem * @cfts: zero-length name terminated array of cftypes * * Unregister @cfts. Files described by @cfts are removed from all * existing cgroups and all future cgroups won't have them either. This * function can be called anytime whether @cfts' subsys is attached or not. * * Returns 0 on successful unregistration, -ENOENT if @cfts is not * registered. */ int cgroup_rm_cftypes(struct cftype *cfts) { struct cftype_set *set; if (!cfts || !cfts[0].ss) return -ENOENT; cgroup_cfts_prepare(); list_for_each_entry(set, &cfts[0].ss->cftsets, node) { if (set->cfts == cfts) { list_del(&set->node); kfree(set); cgroup_cfts_commit(cfts, false); return 0; } } cgroup_cfts_commit(NULL, false); return -ENOENT; } /** * cgroup_task_count - count the number of tasks in a cgroup. * @cgrp: the cgroup in question * * Return the number of tasks in the cgroup. */ int cgroup_task_count(const struct cgroup *cgrp) { int count = 0; struct cgrp_cset_link *link; read_lock(&css_set_lock); list_for_each_entry(link, &cgrp->cset_links, cset_link) count += atomic_read(&link->cset->refcount); read_unlock(&css_set_lock); return count; } /* * To reduce the fork() overhead for systems that are not actually using * their cgroups capability, we don't maintain the lists running through * each css_set to its tasks until we see the list actually used - in other * words after the first call to css_task_iter_start(). */ static void cgroup_enable_task_cg_lists(void) { struct task_struct *p, *g; write_lock(&css_set_lock); use_task_css_set_links = 1; /* * We need tasklist_lock because RCU is not safe against * while_each_thread(). Besides, a forking task that has passed * cgroup_post_fork() without seeing use_task_css_set_links = 1 * is not guaranteed to have its child immediately visible in the * tasklist if we walk through it with RCU. */ read_lock(&tasklist_lock); do_each_thread(g, p) { task_lock(p); /* * We should check if the process is exiting, otherwise * it will race with cgroup_exit() in that the list * entry won't be deleted though the process has exited. */ if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list)) list_add(&p->cg_list, &task_css_set(p)->tasks); task_unlock(p); } while_each_thread(g, p); read_unlock(&tasklist_lock); write_unlock(&css_set_lock); } /** * css_next_child - find the next child of a given css * @pos_css: the current position (%NULL to initiate traversal) * @parent_css: css whose children to walk * * This function returns the next child of @parent_css and should be called * under either cgroup_mutex or RCU read lock. The only requirement is * that @parent_css and @pos_css are accessible. The next sibling is * guaranteed to be returned regardless of their states. */ struct cgroup_subsys_state * css_next_child(struct cgroup_subsys_state *pos_css, struct cgroup_subsys_state *parent_css) { struct cgroup *pos = pos_css ? pos_css->cgroup : NULL; struct cgroup *cgrp = parent_css->cgroup; struct cgroup *next; cgroup_assert_mutex_or_rcu_locked(); /* * @pos could already have been removed. Once a cgroup is removed, * its ->sibling.next is no longer updated when its next sibling * changes. As CGRP_DEAD assertion is serialized and happens * before the cgroup is taken off the ->sibling list, if we see it * unasserted, it's guaranteed that the next sibling hasn't * finished its grace period even if it's already removed, and thus * safe to dereference from this RCU critical section. If * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed * to be visible as %true here. * * If @pos is dead, its next pointer can't be dereferenced; * however, as each cgroup is given a monotonically increasing * unique serial number and always appended to the sibling list, * the next one can be found by walking the parent's children until * we see a cgroup with higher serial number than @pos's. While * this path can be slower, it's taken only when either the current * cgroup is removed or iteration and removal race. */ if (!pos) { next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling); } else if (likely(!cgroup_is_dead(pos))) { next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling); } else { list_for_each_entry_rcu(next, &cgrp->children, sibling) if (next->serial_nr > pos->serial_nr) break; } if (&next->sibling == &cgrp->children) return NULL; return cgroup_css(next, parent_css->ss); } EXPORT_SYMBOL_GPL(css_next_child); /** * css_next_descendant_pre - find the next descendant for pre-order walk * @pos: the current position (%NULL to initiate traversal) * @root: css whose descendants to walk * * To be used by css_for_each_descendant_pre(). Find the next descendant * to visit for pre-order traversal of @root's descendants. @root is * included in the iteration and the first node to be visited. * * While this function requires cgroup_mutex or RCU read locking, it * doesn't require the whole traversal to be contained in a single critical * section. This function will return the correct next descendant as long * as both @pos and @root are accessible and @pos is a descendant of @root. */ struct cgroup_subsys_state * css_next_descendant_pre(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *root) { struct cgroup_subsys_state *next; cgroup_assert_mutex_or_rcu_locked(); /* if first iteration, visit @root */ if (!pos) return root; /* visit the first child if exists */ next = css_next_child(NULL, pos); if (next) return next; /* no child, visit my or the closest ancestor's next sibling */ while (pos != root) { next = css_next_child(pos, css_parent(pos)); if (next) return next; pos = css_parent(pos); } return NULL; } EXPORT_SYMBOL_GPL(css_next_descendant_pre); /** * css_rightmost_descendant - return the rightmost descendant of a css * @pos: css of interest * * Return the rightmost descendant of @pos. If there's no descendant, @pos * is returned. This can be used during pre-order traversal to skip * subtree of @pos. * * While this function requires cgroup_mutex or RCU read locking, it * doesn't require the whole traversal to be contained in a single critical * section. This function will return the correct rightmost descendant as * long as @pos is accessible. */ struct cgroup_subsys_state * css_rightmost_descendant(struct cgroup_subsys_state *pos) { struct cgroup_subsys_state *last, *tmp; cgroup_assert_mutex_or_rcu_locked(); do { last = pos; /* ->prev isn't RCU safe, walk ->next till the end */ pos = NULL; css_for_each_child(tmp, last) pos = tmp; } while (pos); return last; } EXPORT_SYMBOL_GPL(css_rightmost_descendant); static struct cgroup_subsys_state * css_leftmost_descendant(struct cgroup_subsys_state *pos) { struct cgroup_subsys_state *last; do { last = pos; pos = css_next_child(NULL, pos); } while (pos); return last; } /** * css_next_descendant_post - find the next descendant for post-order walk * @pos: the current position (%NULL to initiate traversal) * @root: css whose descendants to walk * * To be used by css_for_each_descendant_post(). Find the next descendant * to visit for post-order traversal of @root's descendants. @root is * included in the iteration and the last node to be visited. * * While this function requires cgroup_mutex or RCU read locking, it * doesn't require the whole traversal to be contained in a single critical * section. This function will return the correct next descendant as long * as both @pos and @cgroup are accessible and @pos is a descendant of * @cgroup. */ struct cgroup_subsys_state * css_next_descendant_post(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *root) { struct cgroup_subsys_state *next; cgroup_assert_mutex_or_rcu_locked(); /* if first iteration, visit leftmost descendant which may be @root */ if (!pos) return css_leftmost_descendant(root); /* if we visited @root, we're done */ if (pos == root) return NULL; /* if there's an unvisited sibling, visit its leftmost descendant */ next = css_next_child(pos, css_parent(pos)); if (next) return css_leftmost_descendant(next); /* no sibling left, visit parent */ return css_parent(pos); } EXPORT_SYMBOL_GPL(css_next_descendant_post); /** * css_advance_task_iter - advance a task itererator to the next css_set * @it: the iterator to advance * * Advance @it to the next css_set to walk. */ static void css_advance_task_iter(struct css_task_iter *it) { struct list_head *l = it->cset_link; struct cgrp_cset_link *link; struct css_set *cset; /* Advance to the next non-empty css_set */ do { l = l->next; if (l == &it->origin_css->cgroup->cset_links) { it->cset_link = NULL; return; } link = list_entry(l, struct cgrp_cset_link, cset_link); cset = link->cset; } while (list_empty(&cset->tasks)); it->cset_link = l; it->task = cset->tasks.next; } /** * css_task_iter_start - initiate task iteration * @css: the css to walk tasks of * @it: the task iterator to use * * Initiate iteration through the tasks of @css. The caller can call * css_task_iter_next() to walk through the tasks until the function * returns NULL. On completion of iteration, css_task_iter_end() must be * called. * * Note that this function acquires a lock which is released when the * iteration finishes. The caller can't sleep while iteration is in * progress. */ void css_task_iter_start(struct cgroup_subsys_state *css, struct css_task_iter *it) __acquires(css_set_lock) { /* * The first time anyone tries to iterate across a css, we need to * enable the list linking each css_set to its tasks, and fix up * all existing tasks. */ if (!use_task_css_set_links) cgroup_enable_task_cg_lists(); read_lock(&css_set_lock); it->origin_css = css; it->cset_link = &css->cgroup->cset_links; css_advance_task_iter(it); } /** * css_task_iter_next - return the next task for the iterator * @it: the task iterator being iterated * * The "next" function for task iteration. @it should have been * initialized via css_task_iter_start(). Returns NULL when the iteration * reaches the end. */ struct task_struct *css_task_iter_next(struct css_task_iter *it) { struct task_struct *res; struct list_head *l = it->task; struct cgrp_cset_link *link; /* If the iterator cg is NULL, we have no tasks */ if (!it->cset_link) return NULL; res = list_entry(l, struct task_struct, cg_list); /* Advance iterator to find next entry */ l = l->next; link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link); if (l == &link->cset->tasks) { /* * We reached the end of this task list - move on to the * next cgrp_cset_link. */ css_advance_task_iter(it); } else { it->task = l; } return res; } /** * css_task_iter_end - finish task iteration * @it: the task iterator to finish * * Finish task iteration started by css_task_iter_start(). */ void css_task_iter_end(struct css_task_iter *it) __releases(css_set_lock) { read_unlock(&css_set_lock); } static inline int started_after_time(struct task_struct *t1, struct timespec *time, struct task_struct *t2) { int start_diff = timespec_compare(&t1->start_time, time); if (start_diff > 0) { return 1; } else if (start_diff < 0) { return 0; } else { /* * Arbitrarily, if two processes started at the same * time, we'll say that the lower pointer value * started first. Note that t2 may have exited by now * so this may not be a valid pointer any longer, but * that's fine - it still serves to distinguish * between two tasks started (effectively) simultaneously. */ return t1 > t2; } } /* * This function is a callback from heap_insert() and is used to order * the heap. * In this case we order the heap in descending task start time. */ static inline int started_after(void *p1, void *p2) { struct task_struct *t1 = p1; struct task_struct *t2 = p2; return started_after_time(t1, &t2->start_time, t2); } /** * css_scan_tasks - iterate though all the tasks in a css * @css: the css to iterate tasks of * @test: optional test callback * @process: process callback * @data: data passed to @test and @process * @heap: optional pre-allocated heap used for task iteration * * Iterate through all the tasks in @css, calling @test for each, and if it * returns %true, call @process for it also. * * @test may be NULL, meaning always true (select all tasks), which * effectively duplicates css_task_iter_{start,next,end}() but does not * lock css_set_lock for the call to @process. * * It is guaranteed that @process will act on every task that is a member * of @css for the duration of this call. This function may or may not * call @process for tasks that exit or move to a different css during the * call, or are forked or move into the css during the call. * * Note that @test may be called with locks held, and may in some * situations be called multiple times for the same task, so it should be * cheap. * * If @heap is non-NULL, a heap has been pre-allocated and will be used for * heap operations (and its "gt" member will be overwritten), else a * temporary heap will be used (allocation of which may cause this function * to fail). */ int css_scan_tasks(struct cgroup_subsys_state *css, bool (*test)(struct task_struct *, void *), void (*process)(struct task_struct *, void *), void *data, struct ptr_heap *heap) { int retval, i; struct css_task_iter it; struct task_struct *p, *dropped; /* Never dereference latest_task, since it's not refcounted */ struct task_struct *latest_task = NULL; struct ptr_heap tmp_heap; struct timespec latest_time = { 0, 0 }; if (heap) { /* The caller supplied our heap and pre-allocated its memory */ heap->gt = &started_after; } else { /* We need to allocate our own heap memory */ heap = &tmp_heap; retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after); if (retval) /* cannot allocate the heap */ return retval; } again: /* * Scan tasks in the css, using the @test callback to determine * which are of interest, and invoking @process callback on the * ones which need an update. Since we don't want to hold any * locks during the task updates, gather tasks to be processed in a * heap structure. The heap is sorted by descending task start * time. If the statically-sized heap fills up, we overflow tasks * that started later, and in future iterations only consider tasks * that started after the latest task in the previous pass. This * guarantees forward progress and that we don't miss any tasks. */ heap->size = 0; css_task_iter_start(css, &it); while ((p = css_task_iter_next(&it))) { /* * Only affect tasks that qualify per the caller's callback, * if he provided one */ if (test && !test(p, data)) continue; /* * Only process tasks that started after the last task * we processed */ if (!started_after_time(p, &latest_time, latest_task)) continue; dropped = heap_insert(heap, p); if (dropped == NULL) { /* * The new task was inserted; the heap wasn't * previously full */ get_task_struct(p); } else if (dropped != p) { /* * The new task was inserted, and pushed out a * different task */ get_task_struct(p); put_task_struct(dropped); } /* * Else the new task was newer than anything already in * the heap and wasn't inserted */ } css_task_iter_end(&it); if (heap->size) { for (i = 0; i < heap->size; i++) { struct task_struct *q = heap->ptrs[i]; if (i == 0) { latest_time = q->start_time; latest_task = q; } /* Process the task per the caller's callback */ process(q, data); put_task_struct(q); } /* * If we had to process any tasks at all, scan again * in case some of them were in the middle of forking * children that didn't get processed. * Not the most efficient way to do it, but it avoids * having to take callback_mutex in the fork path */ goto again; } if (heap == &tmp_heap) heap_free(&tmp_heap); return 0; } static void cgroup_transfer_one_task(struct task_struct *task, void *data) { struct cgroup *new_cgroup = data; mutex_lock(&cgroup_mutex); cgroup_attach_task(new_cgroup, task, false); mutex_unlock(&cgroup_mutex); } /** * cgroup_trasnsfer_tasks - move tasks from one cgroup to another * @to: cgroup to which the tasks will be moved * @from: cgroup in which the tasks currently reside */ int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) { return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task, to, NULL); } /* * Stuff for reading the 'tasks'/'procs' files. * * Reading this file can return large amounts of data if a cgroup has * *lots* of attached tasks. So it may need several calls to read(), * but we cannot guarantee that the information we produce is correct * unless we produce it entirely atomically. * */ /* which pidlist file are we talking about? */ enum cgroup_filetype { CGROUP_FILE_PROCS, CGROUP_FILE_TASKS, }; /* * A pidlist is a list of pids that virtually represents the contents of one * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, * a pair (one each for procs, tasks) for each pid namespace that's relevant * to the cgroup. */ struct cgroup_pidlist { /* * used to find which pidlist is wanted. doesn't change as long as * this particular list stays in the list. */ struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; /* array of xids */ pid_t *list; /* how many elements the above list has */ int length; /* each of these stored in a list by its cgroup */ struct list_head links; /* pointer to the cgroup we belong to, for list removal purposes */ struct cgroup *owner; /* for delayed destruction */ struct delayed_work destroy_dwork; }; /* * The following two functions "fix" the issue where there are more pids * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. * TODO: replace with a kernel-wide solution to this problem */ #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) static void *pidlist_allocate(int count) { if (PIDLIST_TOO_LARGE(count)) return vmalloc(count * sizeof(pid_t)); else return kmalloc(count * sizeof(pid_t), GFP_KERNEL); } static void pidlist_free(void *p) { if (is_vmalloc_addr(p)) vfree(p); else kfree(p); } /* * Used to destroy all pidlists lingering waiting for destroy timer. None * should be left afterwards. */ static void cgroup_pidlist_destroy_all(struct cgroup *cgrp) { struct cgroup_pidlist *l, *tmp_l; mutex_lock(&cgrp->pidlist_mutex); list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); mutex_unlock(&cgrp->pidlist_mutex); flush_workqueue(cgroup_pidlist_destroy_wq); BUG_ON(!list_empty(&cgrp->pidlists)); } static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, destroy_dwork); struct cgroup_pidlist *tofree = NULL; mutex_lock(&l->owner->pidlist_mutex); /* * Destroy iff we didn't get queued again. The state won't change * as destroy_dwork can only be queued while locked. */ if (!delayed_work_pending(dwork)) { list_del(&l->links); pidlist_free(l->list); put_pid_ns(l->key.ns); tofree = l; } mutex_unlock(&l->owner->pidlist_mutex); kfree(tofree); } /* * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries * Returns the number of unique elements. */ static int pidlist_uniq(pid_t *list, int length) { int src, dest = 1; /* * we presume the 0th element is unique, so i starts at 1. trivial * edge cases first; no work needs to be done for either */ if (length == 0 || length == 1) return length; /* src and dest walk down the list; dest counts unique elements */ for (src = 1; src < length; src++) { /* find next unique element */ while (list[src] == list[src-1]) { src++; if (src == length) goto after; } /* dest always points to where the next unique element goes */ list[dest] = list[src]; dest++; } after: return dest; } /* * The two pid files - task and cgroup.procs - guaranteed that the result * is sorted, which forced this whole pidlist fiasco. As pid order is * different per namespace, each namespace needs differently sorted list, * making it impossible to use, for example, single rbtree of member tasks * sorted by task pointer. As pidlists can be fairly large, allocating one * per open file is dangerous, so cgroup had to implement shared pool of * pidlists keyed by cgroup and namespace. * * All this extra complexity was caused by the original implementation * committing to an entirely unnecessary property. In the long term, we * want to do away with it. Explicitly scramble sort order if * sane_behavior so that no such expectation exists in the new interface. * * Scrambling is done by swapping every two consecutive bits, which is * non-identity one-to-one mapping which disturbs sort order sufficiently. */ static pid_t pid_fry(pid_t pid) { unsigned a = pid & 0x55555555; unsigned b = pid & 0xAAAAAAAA; return (a << 1) | (b >> 1); } static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid) { if (cgroup_sane_behavior(cgrp)) return pid_fry(pid); else return pid; } static int cmppid(const void *a, const void *b) { return *(pid_t *)a - *(pid_t *)b; } static int fried_cmppid(const void *a, const void *b) { return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b); } static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, enum cgroup_filetype type) { struct cgroup_pidlist *l; /* don't need task_nsproxy() if we're looking at ourself */ struct pid_namespace *ns = task_active_pid_ns(current); lockdep_assert_held(&cgrp->pidlist_mutex); list_for_each_entry(l, &cgrp->pidlists, links) if (l->key.type == type && l->key.ns == ns) return l; return NULL; } /* * find the appropriate pidlist for our purpose (given procs vs tasks) * returns with the lock on that pidlist already held, and takes care * of the use count, or returns NULL with no locks held if we're out of * memory. */ static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, enum cgroup_filetype type) { struct cgroup_pidlist *l; lockdep_assert_held(&cgrp->pidlist_mutex); l = cgroup_pidlist_find(cgrp, type); if (l) return l; /* entry not found; create a new one */ l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); if (!l) return l; INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); l->key.type = type; /* don't need task_nsproxy() if we're looking at ourself */ l->key.ns = get_pid_ns(task_active_pid_ns(current)); l->owner = cgrp; list_add(&l->links, &cgrp->pidlists); return l; } /* * Load a cgroup's pidarray with either procs' tgids or tasks' pids */ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, struct cgroup_pidlist **lp) { pid_t *array; int length; int pid, n = 0; /* used for populating the array */ struct css_task_iter it; struct task_struct *tsk; struct cgroup_pidlist *l; lockdep_assert_held(&cgrp->pidlist_mutex); /* * If cgroup gets more users after we read count, we won't have * enough space - tough. This race is indistinguishable to the * caller from the case that the additional cgroup users didn't * show up until sometime later on. */ length = cgroup_task_count(cgrp); array = pidlist_allocate(length); if (!array) return -ENOMEM; /* now, populate the array */ css_task_iter_start(&cgrp->dummy_css, &it); while ((tsk = css_task_iter_next(&it))) { if (unlikely(n == length)) break; /* get tgid or pid for procs or tasks file respectively */ if (type == CGROUP_FILE_PROCS) pid = task_tgid_vnr(tsk); else pid = task_pid_vnr(tsk); if (pid > 0) /* make sure to only use valid results */ array[n++] = pid; } css_task_iter_end(&it); length = n; /* now sort & (if procs) strip out duplicates */ if (cgroup_sane_behavior(cgrp)) sort(array, length, sizeof(pid_t), fried_cmppid, NULL); else sort(array, length, sizeof(pid_t), cmppid, NULL); if (type == CGROUP_FILE_PROCS) length = pidlist_uniq(array, length); l = cgroup_pidlist_find_create(cgrp, type); if (!l) { mutex_unlock(&cgrp->pidlist_mutex); pidlist_free(array); return -ENOMEM; } /* store array, freeing old if necessary */ pidlist_free(l->list); l->list = array; l->length = length; *lp = l; return 0; } /** * cgroupstats_build - build and fill cgroupstats * @stats: cgroupstats to fill information into * @dentry: A dentry entry belonging to the cgroup for which stats have * been requested. * * Build and fill cgroupstats so that taskstats can export it to user * space. */ int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) { int ret = -EINVAL; struct cgroup *cgrp; struct css_task_iter it; struct task_struct *tsk; /* * Validate dentry by checking the superblock operations, * and make sure it's a directory. */ if (dentry->d_sb->s_op != &cgroup_ops || !S_ISDIR(dentry->d_inode->i_mode)) goto err; ret = 0; cgrp = dentry->d_fsdata; css_task_iter_start(&cgrp->dummy_css, &it); while ((tsk = css_task_iter_next(&it))) { switch (tsk->state) { case TASK_RUNNING: stats->nr_running++; break; case TASK_INTERRUPTIBLE: stats->nr_sleeping++; break; case TASK_UNINTERRUPTIBLE: stats->nr_uninterruptible++; break; case TASK_STOPPED: stats->nr_stopped++; break; default: if (delayacct_is_task_waiting_on_io(tsk)) stats->nr_io_wait++; break; } } css_task_iter_end(&it); err: return ret; } /* * seq_file methods for the tasks/procs files. The seq_file position is the * next pid to display; the seq_file iterator is a pointer to the pid * in the cgroup->l->list array. */ static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) { /* * Initially we receive a position value that corresponds to * one more than the last pid shown (or 0 on the first call or * after a seek to the start). Use a binary-search to find the * next pid to display, if any */ struct cgroup_open_file *of = s->private; struct cgroup *cgrp = seq_css(s)->cgroup; struct cgroup_pidlist *l; enum cgroup_filetype type = seq_cft(s)->private; int index = 0, pid = *pos; int *iter, ret; mutex_lock(&cgrp->pidlist_mutex); /* * !NULL @of->priv indicates that this isn't the first start() * after open. If the matching pidlist is around, we can use that. * Look for it. Note that @of->priv can't be used directly. It * could already have been destroyed. */ if (of->priv) of->priv = cgroup_pidlist_find(cgrp, type); /* * Either this is the first start() after open or the matching * pidlist has been destroyed inbetween. Create a new one. */ if (!of->priv) { ret = pidlist_array_load(cgrp, type, (struct cgroup_pidlist **)&of->priv); if (ret) return ERR_PTR(ret); } l = of->priv; if (pid) { int end = l->length; while (index < end) { int mid = (index + end) / 2; if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) { index = mid; break; } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid) index = mid + 1; else end = mid; } } /* If we're off the end of the array, we're done */ if (index >= l->length) return NULL; /* Update the abstract position to be the actual pid that we found */ iter = l->list + index; *pos = cgroup_pid_fry(cgrp, *iter); return iter; } static void cgroup_pidlist_stop(struct seq_file *s, void *v) { struct cgroup_open_file *of = s->private; struct cgroup_pidlist *l = of->priv; if (l) mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, CGROUP_PIDLIST_DESTROY_DELAY); mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); } static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) { struct cgroup_open_file *of = s->private; struct cgroup_pidlist *l = of->priv; pid_t *p = v; pid_t *end = l->list + l->length; /* * Advance to the next pid in the array. If this goes off the * end, we're done */ p++; if (p >= end) { return NULL; } else { *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p); return p; } } static int cgroup_pidlist_show(struct seq_file *s, void *v) { return seq_printf(s, "%d\n", *(int *)v); } /* * seq_operations functions for iterating on pidlists through seq_file - * independent of whether it's tasks or procs */ static const struct seq_operations cgroup_pidlist_seq_operations = { .start = cgroup_pidlist_start, .stop = cgroup_pidlist_stop, .next = cgroup_pidlist_next, .show = cgroup_pidlist_show, }; static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, struct cftype *cft) { return notify_on_release(css->cgroup); } static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { clear_bit(CGRP_RELEASABLE, &css->cgroup->flags); if (val) set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); else clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); return 0; } /* * When dput() is called asynchronously, if umount has been done and * then deactivate_super() in cgroup_free_fn() kills the superblock, * there's a small window that vfs will see the root dentry with non-zero * refcnt and trigger BUG(). * * That's why we hold a reference before dput() and drop it right after. */ static void cgroup_dput(struct cgroup *cgrp) { struct super_block *sb = cgrp->root->sb; atomic_inc(&sb->s_active); dput(cgrp->dentry); deactivate_super(sb); } static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, struct cftype *cft) { return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); } static int cgroup_clone_children_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { if (val) set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); else clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); return 0; } static struct cftype cgroup_base_files[] = { { .name = "cgroup.procs", .seq_start = cgroup_pidlist_start, .seq_next = cgroup_pidlist_next, .seq_stop = cgroup_pidlist_stop, .seq_show = cgroup_pidlist_show, .private = CGROUP_FILE_PROCS, .write_u64 = cgroup_procs_write, .mode = S_IRUGO | S_IWUSR, }, { .name = "cgroup.clone_children", .flags = CFTYPE_INSANE, .read_u64 = cgroup_clone_children_read, .write_u64 = cgroup_clone_children_write, }, { .name = "cgroup.sane_behavior", .flags = CFTYPE_ONLY_ON_ROOT, .seq_show = cgroup_sane_behavior_show, }, /* * Historical crazy stuff. These don't have "cgroup." prefix and * don't exist if sane_behavior. If you're depending on these, be * prepared to be burned. */ { .name = "tasks", .flags = CFTYPE_INSANE, /* use "procs" instead */ .seq_start = cgroup_pidlist_start, .seq_next = cgroup_pidlist_next, .seq_stop = cgroup_pidlist_stop, .seq_show = cgroup_pidlist_show, .private = CGROUP_FILE_TASKS, .write_u64 = cgroup_tasks_write, .mode = S_IRUGO | S_IWUSR, }, { .name = "notify_on_release", .flags = CFTYPE_INSANE, .read_u64 = cgroup_read_notify_on_release, .write_u64 = cgroup_write_notify_on_release, }, { .name = "release_agent", .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT, .seq_show = cgroup_release_agent_show, .write_string = cgroup_release_agent_write, .max_write_len = PATH_MAX, }, { } /* terminate */ }; /** * cgroup_populate_dir - create subsys files in a cgroup directory * @cgrp: target cgroup * @subsys_mask: mask of the subsystem ids whose files should be added * * On failure, no file is added. */ static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask) { struct cgroup_subsys *ss; int i, ret = 0; /* process cftsets of each subsystem */ for_each_subsys(ss, i) { struct cftype_set *set; if (!test_bit(i, &subsys_mask)) continue; list_for_each_entry(set, &ss->cftsets, node) { ret = cgroup_addrm_files(cgrp, set->cfts, true); if (ret < 0) goto err; } } return 0; err: cgroup_clear_dir(cgrp, subsys_mask); return ret; } /* * css destruction is four-stage process. * * 1. Destruction starts. Killing of the percpu_ref is initiated. * Implemented in kill_css(). * * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs * and thus css_tryget() is guaranteed to fail, the css can be offlined * by invoking offline_css(). After offlining, the base ref is put. * Implemented in css_killed_work_fn(). * * 3. When the percpu_ref reaches zero, the only possible remaining * accessors are inside RCU read sections. css_release() schedules the * RCU callback. * * 4. After the grace period, the css can be freed. Implemented in * css_free_work_fn(). * * It is actually hairier because both step 2 and 4 require process context * and thus involve punting to css->destroy_work adding two additional * steps to the already complex sequence. */ static void css_free_work_fn(struct work_struct *work) { struct cgroup_subsys_state *css = container_of(work, struct cgroup_subsys_state, destroy_work); struct cgroup *cgrp = css->cgroup; if (css->parent) css_put(css->parent); css->ss->css_free(css); cgroup_dput(cgrp); } static void css_free_rcu_fn(struct rcu_head *rcu_head) { struct cgroup_subsys_state *css = container_of(rcu_head, struct cgroup_subsys_state, rcu_head); /* * css holds an extra ref to @cgrp->dentry which is put on the last * css_put(). dput() requires process context which we don't have. */ INIT_WORK(&css->destroy_work, css_free_work_fn); queue_work(cgroup_destroy_wq, &css->destroy_work); } static void css_release(struct percpu_ref *ref) { struct cgroup_subsys_state *css = container_of(ref, struct cgroup_subsys_state, refcnt); rcu_assign_pointer(css->cgroup->subsys[css->ss->subsys_id], NULL); call_rcu(&css->rcu_head, css_free_rcu_fn); } static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss, struct cgroup *cgrp) { css->cgroup = cgrp; css->ss = ss; css->flags = 0; if (cgrp->parent) css->parent = cgroup_css(cgrp->parent, ss); else css->flags |= CSS_ROOT; BUG_ON(cgroup_css(cgrp, ss)); } /* invoke ->css_online() on a new CSS and mark it online if successful */ static int online_css(struct cgroup_subsys_state *css) { struct cgroup_subsys *ss = css->ss; int ret = 0; lockdep_assert_held(&cgroup_mutex); if (ss->css_online) ret = ss->css_online(css); if (!ret) { css->flags |= CSS_ONLINE; css->cgroup->nr_css++; rcu_assign_pointer(css->cgroup->subsys[ss->subsys_id], css); } return ret; } /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ static void offline_css(struct cgroup_subsys_state *css) { struct cgroup_subsys *ss = css->ss; lockdep_assert_held(&cgroup_mutex); if (!(css->flags & CSS_ONLINE)) return; if (ss->css_offline) ss->css_offline(css); css->flags &= ~CSS_ONLINE; css->cgroup->nr_css--; RCU_INIT_POINTER(css->cgroup->subsys[ss->subsys_id], css); } /** * create_css - create a cgroup_subsys_state * @cgrp: the cgroup new css will be associated with * @ss: the subsys of new css * * Create a new css associated with @cgrp - @ss pair. On success, the new * css is online and installed in @cgrp with all interface files created. * Returns 0 on success, -errno on failure. */ static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss) { struct cgroup *parent = cgrp->parent; struct cgroup_subsys_state *css; int err; lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex); lockdep_assert_held(&cgroup_mutex); css = ss->css_alloc(cgroup_css(parent, ss)); if (IS_ERR(css)) return PTR_ERR(css); err = percpu_ref_init(&css->refcnt, css_release); if (err) goto err_free; init_css(css, ss, cgrp); err = cgroup_populate_dir(cgrp, 1 << ss->subsys_id); if (err) goto err_free; err = online_css(css); if (err) goto err_free; dget(cgrp->dentry); css_get(css->parent); if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && parent->parent) { pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", current->comm, current->pid, ss->name); if (!strcmp(ss->name, "memory")) pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n"); ss->warned_broken_hierarchy = true; } return 0; err_free: percpu_ref_cancel_init(&css->refcnt); ss->css_free(css); return err; } /* * cgroup_create - create a cgroup * @parent: cgroup that will be parent of the new cgroup * @dentry: dentry of the new cgroup * @mode: mode to set on new inode * * Must be called with the mutex on the parent inode held */ static long cgroup_create(struct cgroup *parent, struct dentry *dentry, umode_t mode) { struct cgroup *cgrp; struct cgroup_name *name; struct cgroupfs_root *root = parent->root; int ssid, err = 0; struct cgroup_subsys *ss; struct super_block *sb = root->sb; /* allocate the cgroup and its ID, 0 is reserved for the root */ cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL); if (!cgrp) return -ENOMEM; name = cgroup_alloc_name(dentry); if (!name) goto err_free_cgrp; rcu_assign_pointer(cgrp->name, name); /* * Temporarily set the pointer to NULL, so idr_find() won't return * a half-baked cgroup. */ cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL); if (cgrp->id < 0) goto err_free_name; /* * Only live parents can have children. Note that the liveliness * check isn't strictly necessary because cgroup_mkdir() and * cgroup_rmdir() are fully synchronized by i_mutex; however, do it * anyway so that locking is contained inside cgroup proper and we * don't get nasty surprises if we ever grow another caller. */ if (!cgroup_lock_live_group(parent)) { err = -ENODEV; goto err_free_id; } /* Grab a reference on the superblock so the hierarchy doesn't * get deleted on unmount if there are child cgroups. This * can be done outside cgroup_mutex, since the sb can't * disappear while someone has an open control file on the * fs */ atomic_inc(&sb->s_active); init_cgroup_housekeeping(cgrp); dentry->d_fsdata = cgrp; cgrp->dentry = dentry; cgrp->parent = parent; cgrp->dummy_css.parent = &parent->dummy_css; cgrp->root = parent->root; if (notify_on_release(parent)) set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); /* * Create directory. cgroup_create_file() returns with the new * directory locked on success so that it can be populated without * dropping cgroup_mutex. */ err = cgroup_create_file(dentry, S_IFDIR | mode, sb); if (err < 0) goto err_unlock; lockdep_assert_held(&dentry->d_inode->i_mutex); cgrp->serial_nr = cgroup_serial_nr_next++; /* allocation complete, commit to creation */ list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children); root->number_of_cgroups++; /* hold a ref to the parent's dentry */ dget(parent->dentry); /* * @cgrp is now fully operational. If something fails after this * point, it'll be released via the normal destruction path. */ idr_replace(&root->cgroup_idr, cgrp, cgrp->id); err = cgroup_addrm_files(cgrp, cgroup_base_files, true); if (err) goto err_destroy; /* let's create and online css's */ for_each_subsys(ss, ssid) { if (root->subsys_mask & (1 << ssid)) { err = create_css(cgrp, ss); if (err) goto err_destroy; } } mutex_unlock(&cgroup_mutex); mutex_unlock(&cgrp->dentry->d_inode->i_mutex); return 0; err_unlock: mutex_unlock(&cgroup_mutex); /* Release the reference count that we took on the superblock */ deactivate_super(sb); err_free_id: idr_remove(&root->cgroup_idr, cgrp->id); err_free_name: kfree(rcu_dereference_raw(cgrp->name)); err_free_cgrp: kfree(cgrp); return err; err_destroy: cgroup_destroy_locked(cgrp); mutex_unlock(&cgroup_mutex); mutex_unlock(&dentry->d_inode->i_mutex); return err; } static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) { struct cgroup *c_parent = dentry->d_parent->d_fsdata; /* the vfs holds inode->i_mutex already */ return cgroup_create(c_parent, dentry, mode | S_IFDIR); } /* * This is called when the refcnt of a css is confirmed to be killed. * css_tryget() is now guaranteed to fail. */ static void css_killed_work_fn(struct work_struct *work) { struct cgroup_subsys_state *css = container_of(work, struct cgroup_subsys_state, destroy_work); struct cgroup *cgrp = css->cgroup; mutex_lock(&cgroup_mutex); /* * css_tryget() is guaranteed to fail now. Tell subsystems to * initate destruction. */ offline_css(css); /* * If @cgrp is marked dead, it's waiting for refs of all css's to * be disabled before proceeding to the second phase of cgroup * destruction. If we are the last one, kick it off. */ if (!cgrp->nr_css && cgroup_is_dead(cgrp)) cgroup_destroy_css_killed(cgrp); mutex_unlock(&cgroup_mutex); /* * Put the css refs from kill_css(). Each css holds an extra * reference to the cgroup's dentry and cgroup removal proceeds * regardless of css refs. On the last put of each css, whenever * that may be, the extra dentry ref is put so that dentry * destruction happens only after all css's are released. */ css_put(css); } /* css kill confirmation processing requires process context, bounce */ static void css_killed_ref_fn(struct percpu_ref *ref) { struct cgroup_subsys_state *css = container_of(ref, struct cgroup_subsys_state, refcnt); INIT_WORK(&css->destroy_work, css_killed_work_fn); queue_work(cgroup_destroy_wq, &css->destroy_work); } /** * kill_css - destroy a css * @css: css to destroy * * This function initiates destruction of @css by removing cgroup interface * files and putting its base reference. ->css_offline() will be invoked * asynchronously once css_tryget() is guaranteed to fail and when the * reference count reaches zero, @css will be released. */ static void kill_css(struct cgroup_subsys_state *css) { cgroup_clear_dir(css->cgroup, 1 << css->ss->subsys_id); /* * Killing would put the base ref, but we need to keep it alive * until after ->css_offline(). */ css_get(css); /* * cgroup core guarantees that, by the time ->css_offline() is * invoked, no new css reference will be given out via * css_tryget(). We can't simply call percpu_ref_kill() and * proceed to offlining css's because percpu_ref_kill() doesn't * guarantee that the ref is seen as killed on all CPUs on return. * * Use percpu_ref_kill_and_confirm() to get notifications as each * css is confirmed to be seen as killed on all CPUs. */ percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); } /** * cgroup_destroy_locked - the first stage of cgroup destruction * @cgrp: cgroup to be destroyed * * css's make use of percpu refcnts whose killing latency shouldn't be * exposed to userland and are RCU protected. Also, cgroup core needs to * guarantee that css_tryget() won't succeed by the time ->css_offline() is * invoked. To satisfy all the requirements, destruction is implemented in * the following two steps. * * s1. Verify @cgrp can be destroyed and mark it dying. Remove all * userland visible parts and start killing the percpu refcnts of * css's. Set up so that the next stage will be kicked off once all * the percpu refcnts are confirmed to be killed. * * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the * rest of destruction. Once all cgroup references are gone, the * cgroup is RCU-freed. * * This function implements s1. After this step, @cgrp is gone as far as * the userland is concerned and a new cgroup with the same name may be * created. As cgroup doesn't care about the names internally, this * doesn't cause any problem. */ static int cgroup_destroy_locked(struct cgroup *cgrp) __releases(&cgroup_mutex) __acquires(&cgroup_mutex) { struct dentry *d = cgrp->dentry; struct cgroup_subsys_state *css; struct cgroup *child; bool empty; int ssid; lockdep_assert_held(&d->d_inode->i_mutex); lockdep_assert_held(&cgroup_mutex); /* * css_set_lock synchronizes access to ->cset_links and prevents * @cgrp from being removed while __put_css_set() is in progress. */ read_lock(&css_set_lock); empty = list_empty(&cgrp->cset_links); read_unlock(&css_set_lock); if (!empty) return -EBUSY; /* * Make sure there's no live children. We can't test ->children * emptiness as dead children linger on it while being destroyed; * otherwise, "rmdir parent/child parent" may fail with -EBUSY. */ empty = true; rcu_read_lock(); list_for_each_entry_rcu(child, &cgrp->children, sibling) { empty = cgroup_is_dead(child); if (!empty) break; } rcu_read_unlock(); if (!empty) return -EBUSY; /* * Initiate massacre of all css's. cgroup_destroy_css_killed() * will be invoked to perform the rest of destruction once the * percpu refs of all css's are confirmed to be killed. */ for_each_css(css, ssid, cgrp) kill_css(css); /* * Mark @cgrp dead. This prevents further task migration and child * creation by disabling cgroup_lock_live_group(). Note that * CGRP_DEAD assertion is depended upon by css_next_child() to * resume iteration after dropping RCU read lock. See * css_next_child() for details. */ set_bit(CGRP_DEAD, &cgrp->flags); /* CGRP_DEAD is set, remove from ->release_list for the last time */ raw_spin_lock(&release_list_lock); if (!list_empty(&cgrp->release_list)) list_del_init(&cgrp->release_list); raw_spin_unlock(&release_list_lock); /* * If @cgrp has css's attached, the second stage of cgroup * destruction is kicked off from css_killed_work_fn() after the * refs of all attached css's are killed. If @cgrp doesn't have * any css, we kick it off here. */ if (!cgrp->nr_css) cgroup_destroy_css_killed(cgrp); /* * Clear the base files and remove @cgrp directory. The removal * puts the base ref but we aren't quite done with @cgrp yet, so * hold onto it. */ cgroup_addrm_files(cgrp, cgroup_base_files, false); dget(d); cgroup_d_remove_dir(d); return 0; }; /** * cgroup_destroy_css_killed - the second step of cgroup destruction * @work: cgroup->destroy_free_work * * This function is invoked from a work item for a cgroup which is being * destroyed after all css's are offlined and performs the rest of * destruction. This is the second step of destruction described in the * comment above cgroup_destroy_locked(). */ static void cgroup_destroy_css_killed(struct cgroup *cgrp) { struct cgroup *parent = cgrp->parent; struct dentry *d = cgrp->dentry; lockdep_assert_held(&cgroup_mutex); /* delete this cgroup from parent->children */ list_del_rcu(&cgrp->sibling); dput(d); set_bit(CGRP_RELEASABLE, &parent->flags); check_for_release(parent); } static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry) { int ret; mutex_lock(&cgroup_mutex); ret = cgroup_destroy_locked(dentry->d_fsdata); mutex_unlock(&cgroup_mutex); return ret; } static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss) { INIT_LIST_HEAD(&ss->cftsets); /* * base_cftset is embedded in subsys itself, no need to worry about * deregistration. */ if (ss->base_cftypes) { struct cftype *cft; for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++) cft->ss = ss; ss->base_cftset.cfts = ss->base_cftypes; list_add_tail(&ss->base_cftset.node, &ss->cftsets); } } static void __init cgroup_init_subsys(struct cgroup_subsys *ss) { struct cgroup_subsys_state *css; printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name); mutex_lock(&cgroup_mutex); /* init base cftset */ cgroup_init_cftsets(ss); /* Create the top cgroup state for this subsystem */ ss->root = &cgroup_dummy_root; css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss)); /* We don't handle early failures gracefully */ BUG_ON(IS_ERR(css)); init_css(css, ss, cgroup_dummy_top); /* Update the init_css_set to contain a subsys * pointer to this state - since the subsystem is * newly registered, all tasks and hence the * init_css_set is in the subsystem's top cgroup. */ init_css_set.subsys[ss->subsys_id] = css; need_forkexit_callback |= ss->fork || ss->exit; /* At system boot, before all subsystems have been * registered, no tasks have been forked, so we don't * need to invoke fork callbacks here. */ BUG_ON(!list_empty(&init_task.tasks)); BUG_ON(online_css(css)); mutex_unlock(&cgroup_mutex); /* this function shouldn't be used with modular subsystems, since they * need to register a subsys_id, among other things */ BUG_ON(ss->module); } /** * cgroup_load_subsys: load and register a modular subsystem at runtime * @ss: the subsystem to load * * This function should be called in a modular subsystem's initcall. If the * subsystem is built as a module, it will be assigned a new subsys_id and set * up for use. If the subsystem is built-in anyway, work is delegated to the * simpler cgroup_init_subsys. */ int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss) { struct cgroup_subsys_state *css; int i, ret; struct hlist_node *tmp; struct css_set *cset; unsigned long key; /* check name and function validity */ if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN || ss->css_alloc == NULL || ss->css_free == NULL) return -EINVAL; /* * we don't support callbacks in modular subsystems. this check is * before the ss->module check for consistency; a subsystem that could * be a module should still have no callbacks even if the user isn't * compiling it as one. */ if (ss->fork || ss->exit) return -EINVAL; /* * an optionally modular subsystem is built-in: we want to do nothing, * since cgroup_init_subsys will have already taken care of it. */ if (ss->module == NULL) { /* a sanity check */ BUG_ON(cgroup_subsys[ss->subsys_id] != ss); return 0; } /* init base cftset */ cgroup_init_cftsets(ss); mutex_lock(&cgroup_mutex); mutex_lock(&cgroup_root_mutex); cgroup_subsys[ss->subsys_id] = ss; /* * no ss->css_alloc seems to need anything important in the ss * struct, so this can happen first (i.e. before the dummy root * attachment). */ css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss)); if (IS_ERR(css)) { /* failure case - need to deassign the cgroup_subsys[] slot. */ cgroup_subsys[ss->subsys_id] = NULL; mutex_unlock(&cgroup_root_mutex); mutex_unlock(&cgroup_mutex); return PTR_ERR(css); } ss->root = &cgroup_dummy_root; /* our new subsystem will be attached to the dummy hierarchy. */ init_css(css, ss, cgroup_dummy_top); /* * Now we need to entangle the css into the existing css_sets. unlike * in cgroup_init_subsys, there are now multiple css_sets, so each one * will need a new pointer to it; done by iterating the css_set_table. * furthermore, modifying the existing css_sets will corrupt the hash * table state, so each changed css_set will need its hash recomputed. * this is all done under the css_set_lock. */ write_lock(&css_set_lock); hash_for_each_safe(css_set_table, i, tmp, cset, hlist) { /* skip entries that we already rehashed */ if (cset->subsys[ss->subsys_id]) continue; /* remove existing entry */ hash_del(&cset->hlist); /* set new value */ cset->subsys[ss->subsys_id] = css; /* recompute hash and restore entry */ key = css_set_hash(cset->subsys); hash_add(css_set_table, &cset->hlist, key); } write_unlock(&css_set_lock); ret = online_css(css); if (ret) { ss->css_free(css); goto err_unload; } /* success! */ mutex_unlock(&cgroup_root_mutex); mutex_unlock(&cgroup_mutex); return 0; err_unload: mutex_unlock(&cgroup_root_mutex); mutex_unlock(&cgroup_mutex); /* @ss can't be mounted here as try_module_get() would fail */ cgroup_unload_subsys(ss); return ret; } EXPORT_SYMBOL_GPL(cgroup_load_subsys); /** * cgroup_unload_subsys: unload a modular subsystem * @ss: the subsystem to unload * * This function should be called in a modular subsystem's exitcall. When this * function is invoked, the refcount on the subsystem's module will be 0, so * the subsystem will not be attached to any hierarchy. */ void cgroup_unload_subsys(struct cgroup_subsys *ss) { struct cgrp_cset_link *link; struct cgroup_subsys_state *css; BUG_ON(ss->module == NULL); /* * we shouldn't be called if the subsystem is in use, and the use of * try_module_get() in rebind_subsystems() should ensure that it * doesn't start being used while we're killing it off. */ BUG_ON(ss->root != &cgroup_dummy_root); mutex_lock(&cgroup_mutex); mutex_lock(&cgroup_root_mutex); css = cgroup_css(cgroup_dummy_top, ss); if (css) offline_css(css); /* deassign the subsys_id */ cgroup_subsys[ss->subsys_id] = NULL; /* * disentangle the css from all css_sets attached to the dummy * top. as in loading, we need to pay our respects to the hashtable * gods. */ write_lock(&css_set_lock); list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) { struct css_set *cset = link->cset; unsigned long key; hash_del(&cset->hlist); cset->subsys[ss->subsys_id] = NULL; key = css_set_hash(cset->subsys); hash_add(css_set_table, &cset->hlist, key); } write_unlock(&css_set_lock); /* * remove subsystem's css from the cgroup_dummy_top and free it - * need to free before marking as null because ss->css_free needs * the cgrp->subsys pointer to find their state. */ if (css) ss->css_free(css); RCU_INIT_POINTER(cgroup_dummy_top->subsys[ss->subsys_id], NULL); mutex_unlock(&cgroup_root_mutex); mutex_unlock(&cgroup_mutex); } EXPORT_SYMBOL_GPL(cgroup_unload_subsys); /** * cgroup_init_early - cgroup initialization at system boot * * Initialize cgroups at system boot, and initialize any * subsystems that request early init. */ int __init cgroup_init_early(void) { struct cgroup_subsys *ss; int i; atomic_set(&init_css_set.refcount, 1); INIT_LIST_HEAD(&init_css_set.cgrp_links); INIT_LIST_HEAD(&init_css_set.tasks); INIT_HLIST_NODE(&init_css_set.hlist); css_set_count = 1; init_cgroup_root(&cgroup_dummy_root); cgroup_root_count = 1; RCU_INIT_POINTER(init_task.cgroups, &init_css_set); init_cgrp_cset_link.cset = &init_css_set; init_cgrp_cset_link.cgrp = cgroup_dummy_top; list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links); list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links); /* at bootup time, we don't worry about modular subsystems */ for_each_builtin_subsys(ss, i) { BUG_ON(!ss->name); BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN); BUG_ON(!ss->css_alloc); BUG_ON(!ss->css_free); if (ss->subsys_id != i) { printk(KERN_ERR "cgroup: Subsys %s id == %d\n", ss->name, ss->subsys_id); BUG(); } if (ss->early_init) cgroup_init_subsys(ss); } return 0; } /** * cgroup_init - cgroup initialization * * Register cgroup filesystem and /proc file, and initialize * any subsystems that didn't request early init. */ int __init cgroup_init(void) { struct cgroup_subsys *ss; unsigned long key; int i, err; err = bdi_init(&cgroup_backing_dev_info); if (err) return err; for_each_builtin_subsys(ss, i) { if (!ss->early_init) cgroup_init_subsys(ss); } /* allocate id for the dummy hierarchy */ mutex_lock(&cgroup_mutex); mutex_lock(&cgroup_root_mutex); /* Add init_css_set to the hash table */ key = css_set_hash(init_css_set.subsys); hash_add(css_set_table, &init_css_set.hlist, key); BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1)); err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top, 0, 1, GFP_KERNEL); BUG_ON(err < 0); mutex_unlock(&cgroup_root_mutex); mutex_unlock(&cgroup_mutex); cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj); if (!cgroup_kobj) { err = -ENOMEM; goto out; } err = register_filesystem(&cgroup_fs_type); if (err < 0) { kobject_put(cgroup_kobj); goto out; } proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations); out: if (err) bdi_destroy(&cgroup_backing_dev_info); return err; } static int __init cgroup_wq_init(void) { /* * There isn't much point in executing destruction path in * parallel. Good chunk is serialized with cgroup_mutex anyway. * Use 1 for @max_active. * * We would prefer to do this in cgroup_init() above, but that * is called before init_workqueues(): so leave this until after. */ cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); BUG_ON(!cgroup_destroy_wq); /* * Used to destroy pidlists and separate to serve as flush domain. * Cap @max_active to 1 too. */ cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 0, 1); BUG_ON(!cgroup_pidlist_destroy_wq); return 0; } core_initcall(cgroup_wq_init); /* * proc_cgroup_show() * - Print task's cgroup paths into seq_file, one line for each hierarchy * - Used for /proc//cgroup. * - No need to task_lock(tsk) on this tsk->cgroup reference, as it * doesn't really matter if tsk->cgroup changes after we read it, * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it * anyway. No need to check that tsk->cgroup != NULL, thanks to * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks * cgroup to top_cgroup. */ /* TODO: Use a proper seq_file iterator */ int proc_cgroup_show(struct seq_file *m, void *v) { struct pid *pid; struct task_struct *tsk; char *buf; int retval; struct cgroupfs_root *root; retval = -ENOMEM; buf = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!buf) goto out; retval = -ESRCH; pid = m->private; tsk = get_pid_task(pid, PIDTYPE_PID); if (!tsk) goto out_free; retval = 0; mutex_lock(&cgroup_mutex); for_each_active_root(root) { struct cgroup_subsys *ss; struct cgroup *cgrp; int ssid, count = 0; seq_printf(m, "%d:", root->hierarchy_id); for_each_subsys(ss, ssid) if (root->subsys_mask & (1 << ssid)) seq_printf(m, "%s%s", count++ ? "," : "", ss->name); if (strlen(root->name)) seq_printf(m, "%sname=%s", count ? "," : "", root->name); seq_putc(m, ':'); cgrp = task_cgroup_from_root(tsk, root); retval = cgroup_path(cgrp, buf, PAGE_SIZE); if (retval < 0) goto out_unlock; seq_puts(m, buf); seq_putc(m, '\n'); } out_unlock: mutex_unlock(&cgroup_mutex); put_task_struct(tsk); out_free: kfree(buf); out: return retval; } /* Display information about each subsystem and each hierarchy */ static int proc_cgroupstats_show(struct seq_file *m, void *v) { struct cgroup_subsys *ss; int i; seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); /* * ideally we don't want subsystems moving around while we do this. * cgroup_mutex is also necessary to guarantee an atomic snapshot of * subsys/hierarchy state. */ mutex_lock(&cgroup_mutex); for_each_subsys(ss, i) seq_printf(m, "%s\t%d\t%d\t%d\n", ss->name, ss->root->hierarchy_id, ss->root->number_of_cgroups, !ss->disabled); mutex_unlock(&cgroup_mutex); return 0; } static int cgroupstats_open(struct inode *inode, struct file *file) { return single_open(file, proc_cgroupstats_show, NULL); } static const struct file_operations proc_cgroupstats_operations = { .open = cgroupstats_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /** * cgroup_fork - attach newly forked task to its parents cgroup. * @child: pointer to task_struct of forking parent process. * * Description: A task inherits its parent's cgroup at fork(). * * A pointer to the shared css_set was automatically copied in * fork.c by dup_task_struct(). However, we ignore that copy, since * it was not made under the protection of RCU or cgroup_mutex, so * might no longer be a valid cgroup pointer. cgroup_attach_task() might * have already changed current->cgroups, allowing the previously * referenced cgroup group to be removed and freed. * * At the point that cgroup_fork() is called, 'current' is the parent * task, and the passed argument 'child' points to the child task. */ void cgroup_fork(struct task_struct *child) { task_lock(current); get_css_set(task_css_set(current)); child->cgroups = current->cgroups; task_unlock(current); INIT_LIST_HEAD(&child->cg_list); } /** * cgroup_post_fork - called on a new task after adding it to the task list * @child: the task in question * * Adds the task to the list running through its css_set if necessary and * call the subsystem fork() callbacks. Has to be after the task is * visible on the task list in case we race with the first call to * cgroup_task_iter_start() - to guarantee that the new task ends up on its * list. */ void cgroup_post_fork(struct task_struct *child) { struct cgroup_subsys *ss; int i; /* * use_task_css_set_links is set to 1 before we walk the tasklist * under the tasklist_lock and we read it here after we added the child * to the tasklist under the tasklist_lock as well. If the child wasn't * yet in the tasklist when we walked through it from * cgroup_enable_task_cg_lists(), then use_task_css_set_links value * should be visible now due to the paired locking and barriers implied * by LOCK/UNLOCK: it is written before the tasklist_lock unlock * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock * lock on fork. */ if (use_task_css_set_links) { write_lock(&css_set_lock); task_lock(child); if (list_empty(&child->cg_list)) list_add(&child->cg_list, &task_css_set(child)->tasks); task_unlock(child); write_unlock(&css_set_lock); } /* * Call ss->fork(). This must happen after @child is linked on * css_set; otherwise, @child might change state between ->fork() * and addition to css_set. */ if (need_forkexit_callback) { /* * fork/exit callbacks are supported only for builtin * subsystems, and the builtin section of the subsys * array is immutable, so we don't need to lock the * subsys array here. On the other hand, modular section * of the array can be freed at module unload, so we * can't touch that. */ for_each_builtin_subsys(ss, i) if (ss->fork) ss->fork(child); } } /** * cgroup_exit - detach cgroup from exiting task * @tsk: pointer to task_struct of exiting process * @run_callback: run exit callbacks? * * Description: Detach cgroup from @tsk and release it. * * Note that cgroups marked notify_on_release force every task in * them to take the global cgroup_mutex mutex when exiting. * This could impact scaling on very large systems. Be reluctant to * use notify_on_release cgroups where very high task exit scaling * is required on large systems. * * the_top_cgroup_hack: * * Set the exiting tasks cgroup to the root cgroup (top_cgroup). * * We call cgroup_exit() while the task is still competent to * handle notify_on_release(), then leave the task attached to the * root cgroup in each hierarchy for the remainder of its exit. * * To do this properly, we would increment the reference count on * top_cgroup, and near the very end of the kernel/exit.c do_exit() * code we would add a second cgroup function call, to drop that * reference. This would just create an unnecessary hot spot on * the top_cgroup reference count, to no avail. * * Normally, holding a reference to a cgroup without bumping its * count is unsafe. The cgroup could go away, or someone could * attach us to a different cgroup, decrementing the count on * the first cgroup that we never incremented. But in this case, * top_cgroup isn't going away, and either task has PF_EXITING set, * which wards off any cgroup_attach_task() attempts, or task is a failed * fork, never visible to cgroup_attach_task. */ void cgroup_exit(struct task_struct *tsk, int run_callbacks) { struct cgroup_subsys *ss; struct css_set *cset; int i; /* * Unlink from the css_set task list if necessary. * Optimistically check cg_list before taking * css_set_lock */ if (!list_empty(&tsk->cg_list)) { write_lock(&css_set_lock); if (!list_empty(&tsk->cg_list)) list_del_init(&tsk->cg_list); write_unlock(&css_set_lock); } /* Reassign the task to the init_css_set. */ task_lock(tsk); cset = task_css_set(tsk); RCU_INIT_POINTER(tsk->cgroups, &init_css_set); if (run_callbacks && need_forkexit_callback) { /* * fork/exit callbacks are supported only for builtin * subsystems, see cgroup_post_fork() for details. */ for_each_builtin_subsys(ss, i) { if (ss->exit) { struct cgroup_subsys_state *old_css = cset->subsys[i]; struct cgroup_subsys_state *css = task_css(tsk, i); ss->exit(css, old_css, tsk); } } } task_unlock(tsk); put_css_set_taskexit(cset); } static void check_for_release(struct cgroup *cgrp) { if (cgroup_is_releasable(cgrp) && list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) { /* * Control Group is currently removeable. If it's not * already queued for a userspace notification, queue * it now */ int need_schedule_work = 0; raw_spin_lock(&release_list_lock); if (!cgroup_is_dead(cgrp) && list_empty(&cgrp->release_list)) { list_add(&cgrp->release_list, &release_list); need_schedule_work = 1; } raw_spin_unlock(&release_list_lock); if (need_schedule_work) schedule_work(&release_agent_work); } } /* * Notify userspace when a cgroup is released, by running the * configured release agent with the name of the cgroup (path * relative to the root of cgroup file system) as the argument. * * Most likely, this user command will try to rmdir this cgroup. * * This races with the possibility that some other task will be * attached to this cgroup before it is removed, or that some other * user task will 'mkdir' a child cgroup of this cgroup. That's ok. * The presumed 'rmdir' will fail quietly if this cgroup is no longer * unused, and this cgroup will be reprieved from its death sentence, * to continue to serve a useful existence. Next time it's released, * we will get notified again, if it still has 'notify_on_release' set. * * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which * means only wait until the task is successfully execve()'d. The * separate release agent task is forked by call_usermodehelper(), * then control in this thread returns here, without waiting for the * release agent task. We don't bother to wait because the caller of * this routine has no use for the exit status of the release agent * task, so no sense holding our caller up for that. */ static void cgroup_release_agent(struct work_struct *work) { BUG_ON(work != &release_agent_work); mutex_lock(&cgroup_mutex); raw_spin_lock(&release_list_lock); while (!list_empty(&release_list)) { char *argv[3], *envp[3]; int i; char *pathbuf = NULL, *agentbuf = NULL; struct cgroup *cgrp = list_entry(release_list.next, struct cgroup, release_list); list_del_init(&cgrp->release_list); raw_spin_unlock(&release_list_lock); pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!pathbuf) goto continue_free; if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) goto continue_free; agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); if (!agentbuf) goto continue_free; i = 0; argv[i++] = agentbuf; argv[i++] = pathbuf; argv[i] = NULL; i = 0; /* minimal command environment */ envp[i++] = "HOME=/"; envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; envp[i] = NULL; /* Drop the lock while we invoke the usermode helper, * since the exec could involve hitting disk and hence * be a slow process */ mutex_unlock(&cgroup_mutex); call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); mutex_lock(&cgroup_mutex); continue_free: kfree(pathbuf); kfree(agentbuf); raw_spin_lock(&release_list_lock); } raw_spin_unlock(&release_list_lock); mutex_unlock(&cgroup_mutex); } static int __init cgroup_disable(char *str) { struct cgroup_subsys *ss; char *token; int i; while ((token = strsep(&str, ",")) != NULL) { if (!*token) continue; /* * cgroup_disable, being at boot time, can't know about * module subsystems, so we don't worry about them. */ for_each_builtin_subsys(ss, i) { if (!strcmp(token, ss->name)) { ss->disabled = 1; printk(KERN_INFO "Disabling %s control group" " subsystem\n", ss->name); break; } } } return 1; } __setup("cgroup_disable=", cgroup_disable); /** * css_from_dir - get corresponding css from the dentry of a cgroup dir * @dentry: directory dentry of interest * @ss: subsystem of interest * * Must be called under cgroup_mutex or RCU read lock. The caller is * responsible for pinning the returned css if it needs to be accessed * outside the critical section. */ struct cgroup_subsys_state *css_from_dir(struct dentry *dentry, struct cgroup_subsys *ss) { struct cgroup *cgrp; cgroup_assert_mutex_or_rcu_locked(); /* is @dentry a cgroup dir? */ if (!dentry->d_inode || dentry->d_inode->i_op != &cgroup_dir_inode_operations) return ERR_PTR(-EBADF); cgrp = __d_cgrp(dentry); return cgroup_css(cgrp, ss) ?: ERR_PTR(-ENOENT); } /** * css_from_id - lookup css by id * @id: the cgroup id * @ss: cgroup subsys to be looked into * * Returns the css if there's valid one with @id, otherwise returns NULL. * Should be called under rcu_read_lock(). */ struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) { struct cgroup *cgrp; cgroup_assert_mutex_or_rcu_locked(); cgrp = idr_find(&ss->root->cgroup_idr, id); if (cgrp) return cgroup_css(cgrp, ss); return NULL; } #ifdef CONFIG_CGROUP_DEBUG static struct cgroup_subsys_state * debug_css_alloc(struct cgroup_subsys_state *parent_css) { struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); if (!css) return ERR_PTR(-ENOMEM); return css; } static void debug_css_free(struct cgroup_subsys_state *css) { kfree(css); } static u64 debug_taskcount_read(struct cgroup_subsys_state *css, struct cftype *cft) { return cgroup_task_count(css->cgroup); } static u64 current_css_set_read(struct cgroup_subsys_state *css, struct cftype *cft) { return (u64)(unsigned long)current->cgroups; } static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css, struct cftype *cft) { u64 count; rcu_read_lock(); count = atomic_read(&task_css_set(current)->refcount); rcu_read_unlock(); return count; } static int current_css_set_cg_links_read(struct seq_file *seq, void *v) { struct cgrp_cset_link *link; struct css_set *cset; read_lock(&css_set_lock); rcu_read_lock(); cset = rcu_dereference(current->cgroups); list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; const char *name; if (c->dentry) name = c->dentry->d_name.name; else name = "?"; seq_printf(seq, "Root %d group %s\n", c->root->hierarchy_id, name); } rcu_read_unlock(); read_unlock(&css_set_lock); return 0; } #define MAX_TASKS_SHOWN_PER_CSS 25 static int cgroup_css_links_read(struct seq_file *seq, void *v) { struct cgroup_subsys_state *css = seq_css(seq); struct cgrp_cset_link *link; read_lock(&css_set_lock); list_for_each_entry(link, &css->cgroup->cset_links, cset_link) { struct css_set *cset = link->cset; struct task_struct *task; int count = 0; seq_printf(seq, "css_set %p\n", cset); list_for_each_entry(task, &cset->tasks, cg_list) { if (count++ > MAX_TASKS_SHOWN_PER_CSS) { seq_puts(seq, " ...\n"); break; } else { seq_printf(seq, " task %d\n", task_pid_vnr(task)); } } } read_unlock(&css_set_lock); return 0; } static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft) { return test_bit(CGRP_RELEASABLE, &css->cgroup->flags); } static struct cftype debug_files[] = { { .name = "taskcount", .read_u64 = debug_taskcount_read, }, { .name = "current_css_set", .read_u64 = current_css_set_read, }, { .name = "current_css_set_refcount", .read_u64 = current_css_set_refcount_read, }, { .name = "current_css_set_cg_links", .seq_show = current_css_set_cg_links_read, }, { .name = "cgroup_css_links", .seq_show = cgroup_css_links_read, }, { .name = "releasable", .read_u64 = releasable_read, }, { } /* terminate */ }; struct cgroup_subsys debug_subsys = { .name = "debug", .css_alloc = debug_css_alloc, .css_free = debug_css_free, .subsys_id = debug_subsys_id, .base_cftypes = debug_files, }; #endif /* CONFIG_CGROUP_DEBUG */