/* * Copyright (c) 2014-2016, Fuzhou Rockchip Electronics Co., Ltd * Caesar Wang * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** * If the temperature over a period of time High, * the resulting TSHUT gave CRU module,let it reset the entire chip, * or via GPIO give PMIC. */ enum tshut_mode { TSHUT_MODE_CRU = 0, TSHUT_MODE_GPIO, }; /** * The system Temperature Sensors tshut(tshut) polarity * the bit 8 is tshut polarity. * 0: low active, 1: high active */ enum tshut_polarity { TSHUT_LOW_ACTIVE = 0, TSHUT_HIGH_ACTIVE, }; /** * The system has two Temperature Sensors. * sensor0 is for CPU, and sensor1 is for GPU. */ enum sensor_id { SENSOR_CPU = 0, SENSOR_GPU, }; /** * The conversion table has the adc value and temperature. * ADC_DECREMENT: the adc value is of diminishing.(e.g. rk3288_code_table) * ADC_INCREMENT: the adc value is incremental.(e.g. rk3368_code_table) */ enum adc_sort_mode { ADC_DECREMENT = 0, ADC_INCREMENT, }; /** * The max sensors is two in rockchip SoCs. * Two sensors: CPU and GPU sensor. */ #define SOC_MAX_SENSORS 2 /** * struct chip_tsadc_table - hold information about chip-specific differences * @id: conversion table * @length: size of conversion table * @data_mask: mask to apply on data inputs * @mode: sort mode of this adc variant (incrementing or decrementing) */ struct chip_tsadc_table { const struct tsadc_table *id; unsigned int length; u32 data_mask; enum adc_sort_mode mode; }; /** * struct rockchip_tsadc_chip - hold the private data of tsadc chip * @chn_id[SOC_MAX_SENSORS]: the sensor id of chip correspond to the channel * @chn_num: the channel number of tsadc chip * @tshut_temp: the hardware-controlled shutdown temperature value * @tshut_mode: the hardware-controlled shutdown mode (0:CRU 1:GPIO) * @tshut_polarity: the hardware-controlled active polarity (0:LOW 1:HIGH) * @initialize: SoC special initialize tsadc controller method * @irq_ack: clear the interrupt * @get_temp: get the temperature * @set_alarm_temp: set the high temperature interrupt * @set_tshut_temp: set the hardware-controlled shutdown temperature * @set_tshut_mode: set the hardware-controlled shutdown mode * @table: the chip-specific conversion table */ struct rockchip_tsadc_chip { /* The sensor id of chip correspond to the ADC channel */ int chn_id[SOC_MAX_SENSORS]; int chn_num; /* The hardware-controlled tshut property */ int tshut_temp; enum tshut_mode tshut_mode; enum tshut_polarity tshut_polarity; /* Chip-wide methods */ void (*initialize)(struct regmap *grf, void __iomem *reg, enum tshut_polarity p); void (*irq_ack)(void __iomem *reg); void (*control)(void __iomem *reg, bool on); /* Per-sensor methods */ int (*get_temp)(const struct chip_tsadc_table *table, int chn, void __iomem *reg, int *temp); int (*set_alarm_temp)(const struct chip_tsadc_table *table, int chn, void __iomem *reg, int temp); int (*set_tshut_temp)(const struct chip_tsadc_table *table, int chn, void __iomem *reg, int temp); void (*set_tshut_mode)(int chn, void __iomem *reg, enum tshut_mode m); /* Per-table methods */ struct chip_tsadc_table table; }; /** * struct rockchip_thermal_sensor - hold the information of thermal sensor * @thermal: pointer to the platform/configuration data * @tzd: pointer to a thermal zone * @id: identifier of the thermal sensor */ struct rockchip_thermal_sensor { struct rockchip_thermal_data *thermal; struct thermal_zone_device *tzd; int id; }; /** * struct rockchip_thermal_data - hold the private data of thermal driver * @chip: pointer to the platform/configuration data * @pdev: platform device of thermal * @reset: the reset controller of tsadc * @sensors[SOC_MAX_SENSORS]: the thermal sensor * @clk: the controller clock is divided by the exteral 24MHz * @pclk: the advanced peripherals bus clock * @grf: the general register file will be used to do static set by software * @regs: the base address of tsadc controller * @tshut_temp: the hardware-controlled shutdown temperature value * @tshut_mode: the hardware-controlled shutdown mode (0:CRU 1:GPIO) * @tshut_polarity: the hardware-controlled active polarity (0:LOW 1:HIGH) */ struct rockchip_thermal_data { const struct rockchip_tsadc_chip *chip; struct platform_device *pdev; struct reset_control *reset; struct rockchip_thermal_sensor sensors[SOC_MAX_SENSORS]; struct clk *clk; struct clk *pclk; struct regmap *grf; void __iomem *regs; int tshut_temp; enum tshut_mode tshut_mode; enum tshut_polarity tshut_polarity; }; /** * TSADC Sensor Register description: * * TSADCV2_* are used for RK3288 SoCs, the other chips can reuse it. * TSADCV3_* are used for newer SoCs than RK3288. (e.g: RK3228, RK3399) * */ #define TSADCV2_USER_CON 0x00 #define TSADCV2_AUTO_CON 0x04 #define TSADCV2_INT_EN 0x08 #define TSADCV2_INT_PD 0x0c #define TSADCV2_DATA(chn) (0x20 + (chn) * 0x04) #define TSADCV2_COMP_INT(chn) (0x30 + (chn) * 0x04) #define TSADCV2_COMP_SHUT(chn) (0x40 + (chn) * 0x04) #define TSADCV2_HIGHT_INT_DEBOUNCE 0x60 #define TSADCV2_HIGHT_TSHUT_DEBOUNCE 0x64 #define TSADCV2_AUTO_PERIOD 0x68 #define TSADCV2_AUTO_PERIOD_HT 0x6c #define TSADCV2_AUTO_EN BIT(0) #define TSADCV2_AUTO_SRC_EN(chn) BIT(4 + (chn)) #define TSADCV2_AUTO_TSHUT_POLARITY_HIGH BIT(8) #define TSADCV3_AUTO_Q_SEL_EN BIT(1) #define TSADCV2_INT_SRC_EN(chn) BIT(chn) #define TSADCV2_SHUT_2GPIO_SRC_EN(chn) BIT(4 + (chn)) #define TSADCV2_SHUT_2CRU_SRC_EN(chn) BIT(8 + (chn)) #define TSADCV2_INT_PD_CLEAR_MASK ~BIT(8) #define TSADCV3_INT_PD_CLEAR_MASK ~BIT(16) #define TSADCV2_DATA_MASK 0xfff #define TSADCV3_DATA_MASK 0x3ff #define TSADCV2_HIGHT_INT_DEBOUNCE_COUNT 4 #define TSADCV2_HIGHT_TSHUT_DEBOUNCE_COUNT 4 #define TSADCV2_AUTO_PERIOD_TIME 250 /* 250ms */ #define TSADCV2_AUTO_PERIOD_HT_TIME 50 /* 50ms */ #define TSADCV3_AUTO_PERIOD_TIME 1875 /* 2.5ms */ #define TSADCV3_AUTO_PERIOD_HT_TIME 1875 /* 2.5ms */ #define TSADCV2_USER_INTER_PD_SOC 0x340 /* 13 clocks */ #define GRF_SARADC_TESTBIT 0x0e644 #define GRF_TSADC_TESTBIT_L 0x0e648 #define GRF_TSADC_TESTBIT_H 0x0e64c #define PX30_GRF_SOC_CON2 0x0408 #define GRF_SARADC_TESTBIT_ON (0x10001 << 2) #define GRF_TSADC_TESTBIT_H_ON (0x10001 << 2) #define GRF_TSADC_VCM_EN_L (0x10001 << 7) #define GRF_TSADC_VCM_EN_H (0x10001 << 7) #define GRF_CON_TSADC_CH_INV (0x10001 << 1) /** * struct tsadc_table - code to temperature conversion table * @code: the value of adc channel * @temp: the temperature * Note: * code to temperature mapping of the temperature sensor is a piece wise linear * curve.Any temperature, code faling between to 2 give temperatures can be * linearly interpolated. * Code to Temperature mapping should be updated based on manufacturer results. */ struct tsadc_table { u32 code; int temp; }; static const struct tsadc_table rv1108_table[] = { {0, -40000}, {374, -40000}, {382, -35000}, {389, -30000}, {397, -25000}, {405, -20000}, {413, -15000}, {421, -10000}, {429, -5000}, {436, 0}, {444, 5000}, {452, 10000}, {460, 15000}, {468, 20000}, {476, 25000}, {483, 30000}, {491, 35000}, {499, 40000}, {507, 45000}, {515, 50000}, {523, 55000}, {531, 60000}, {539, 65000}, {547, 70000}, {555, 75000}, {562, 80000}, {570, 85000}, {578, 90000}, {586, 95000}, {594, 100000}, {602, 105000}, {610, 110000}, {618, 115000}, {626, 120000}, {634, 125000}, {TSADCV2_DATA_MASK, 125000}, }; static const struct tsadc_table rk3228_code_table[] = { {0, -40000}, {588, -40000}, {593, -35000}, {598, -30000}, {603, -25000}, {608, -20000}, {613, -15000}, {618, -10000}, {623, -5000}, {629, 0}, {634, 5000}, {639, 10000}, {644, 15000}, {649, 20000}, {654, 25000}, {660, 30000}, {665, 35000}, {670, 40000}, {675, 45000}, {681, 50000}, {686, 55000}, {691, 60000}, {696, 65000}, {702, 70000}, {707, 75000}, {712, 80000}, {717, 85000}, {723, 90000}, {728, 95000}, {733, 100000}, {738, 105000}, {744, 110000}, {749, 115000}, {754, 120000}, {760, 125000}, {TSADCV2_DATA_MASK, 125000}, }; static const struct tsadc_table rk3288_code_table[] = { {TSADCV2_DATA_MASK, -40000}, {3800, -40000}, {3792, -35000}, {3783, -30000}, {3774, -25000}, {3765, -20000}, {3756, -15000}, {3747, -10000}, {3737, -5000}, {3728, 0}, {3718, 5000}, {3708, 10000}, {3698, 15000}, {3688, 20000}, {3678, 25000}, {3667, 30000}, {3656, 35000}, {3645, 40000}, {3634, 45000}, {3623, 50000}, {3611, 55000}, {3600, 60000}, {3588, 65000}, {3575, 70000}, {3563, 75000}, {3550, 80000}, {3537, 85000}, {3524, 90000}, {3510, 95000}, {3496, 100000}, {3482, 105000}, {3467, 110000}, {3452, 115000}, {3437, 120000}, {3421, 125000}, {0, 125000}, }; static const struct tsadc_table rk3328_code_table[] = { {0, -40000}, {296, -40000}, {304, -35000}, {313, -30000}, {331, -20000}, {340, -15000}, {349, -10000}, {359, -5000}, {368, 0}, {378, 5000}, {388, 10000}, {398, 15000}, {408, 20000}, {418, 25000}, {429, 30000}, {440, 35000}, {451, 40000}, {462, 45000}, {473, 50000}, {485, 55000}, {496, 60000}, {508, 65000}, {521, 70000}, {533, 75000}, {546, 80000}, {559, 85000}, {572, 90000}, {586, 95000}, {600, 100000}, {614, 105000}, {629, 110000}, {644, 115000}, {659, 120000}, {675, 125000}, {TSADCV2_DATA_MASK, 125000}, }; static const struct tsadc_table rk3368_code_table[] = { {0, -40000}, {106, -40000}, {108, -35000}, {110, -30000}, {112, -25000}, {114, -20000}, {116, -15000}, {118, -10000}, {120, -5000}, {122, 0}, {124, 5000}, {126, 10000}, {128, 15000}, {130, 20000}, {132, 25000}, {134, 30000}, {136, 35000}, {138, 40000}, {140, 45000}, {142, 50000}, {144, 55000}, {146, 60000}, {148, 65000}, {150, 70000}, {152, 75000}, {154, 80000}, {156, 85000}, {158, 90000}, {160, 95000}, {162, 100000}, {163, 105000}, {165, 110000}, {167, 115000}, {169, 120000}, {171, 125000}, {TSADCV3_DATA_MASK, 125000}, }; static const struct tsadc_table rk3399_code_table[] = { {0, -40000}, {402, -40000}, {410, -35000}, {419, -30000}, {427, -25000}, {436, -20000}, {444, -15000}, {453, -10000}, {461, -5000}, {470, 0}, {478, 5000}, {487, 10000}, {496, 15000}, {504, 20000}, {513, 25000}, {521, 30000}, {530, 35000}, {538, 40000}, {547, 45000}, {555, 50000}, {564, 55000}, {573, 60000}, {581, 65000}, {590, 70000}, {599, 75000}, {607, 80000}, {616, 85000}, {624, 90000}, {633, 95000}, {642, 100000}, {650, 105000}, {659, 110000}, {668, 115000}, {677, 120000}, {685, 125000}, {TSADCV3_DATA_MASK, 125000}, }; static u32 rk_tsadcv2_temp_to_code(const struct chip_tsadc_table *table, int temp) { int high, low, mid; unsigned long num; unsigned int denom; u32 error = table->data_mask; low = 0; high = (table->length - 1) - 1; /* ignore the last check for table */ mid = (high + low) / 2; /* Return mask code data when the temp is over table range */ if (temp < table->id[low].temp || temp > table->id[high].temp) goto exit; while (low <= high) { if (temp == table->id[mid].temp) return table->id[mid].code; else if (temp < table->id[mid].temp) high = mid - 1; else low = mid + 1; mid = (low + high) / 2; } /* * The conversion code granularity provided by the table. Let's * assume that the relationship between temperature and * analog value between 2 table entries is linear and interpolate * to produce less granular result. */ num = abs(table->id[mid + 1].code - table->id[mid].code); num *= temp - table->id[mid].temp; denom = table->id[mid + 1].temp - table->id[mid].temp; switch (table->mode) { case ADC_DECREMENT: return table->id[mid].code - (num / denom); case ADC_INCREMENT: return table->id[mid].code + (num / denom); default: pr_err("%s: unknown table mode: %d\n", __func__, table->mode); return error; } exit: pr_err("%s: invalid temperature, temp=%d error=%d\n", __func__, temp, error); return error; } static int rk_tsadcv2_code_to_temp(const struct chip_tsadc_table *table, u32 code, int *temp) { unsigned int low = 1; unsigned int high = table->length - 1; unsigned int mid = (low + high) / 2; unsigned int num; unsigned long denom; WARN_ON(table->length < 2); switch (table->mode) { case ADC_DECREMENT: code &= table->data_mask; if (code <= table->id[high].code) return -EAGAIN; /* Incorrect reading */ while (low <= high) { if (code >= table->id[mid].code && code < table->id[mid - 1].code) break; else if (code < table->id[mid].code) low = mid + 1; else high = mid - 1; mid = (low + high) / 2; } break; case ADC_INCREMENT: code &= table->data_mask; if (code < table->id[low].code) return -EAGAIN; /* Incorrect reading */ while (low <= high) { if (code <= table->id[mid].code && code > table->id[mid - 1].code) break; else if (code > table->id[mid].code) low = mid + 1; else high = mid - 1; mid = (low + high) / 2; } break; default: pr_err("%s: unknown table mode: %d\n", __func__, table->mode); return -EINVAL; } /* * The 5C granularity provided by the table is too much. Let's * assume that the relationship between sensor readings and * temperature between 2 table entries is linear and interpolate * to produce less granular result. */ num = table->id[mid].temp - table->id[mid - 1].temp; num *= abs(table->id[mid - 1].code - code); denom = abs(table->id[mid - 1].code - table->id[mid].code); *temp = table->id[mid - 1].temp + (num / denom); return 0; } /** * rk_tsadcv2_initialize - initialize TASDC Controller. * * (1) Set TSADC_V2_AUTO_PERIOD: * Configure the interleave between every two accessing of * TSADC in normal operation. * * (2) Set TSADCV2_AUTO_PERIOD_HT: * Configure the interleave between every two accessing of * TSADC after the temperature is higher than COM_SHUT or COM_INT. * * (3) Set TSADCV2_HIGH_INT_DEBOUNCE and TSADC_HIGHT_TSHUT_DEBOUNCE: * If the temperature is higher than COMP_INT or COMP_SHUT for * "debounce" times, TSADC controller will generate interrupt or TSHUT. */ static void rk_tsadcv2_initialize(struct regmap *grf, void __iomem *regs, enum tshut_polarity tshut_polarity) { if (tshut_polarity == TSHUT_HIGH_ACTIVE) writel_relaxed(0U | TSADCV2_AUTO_TSHUT_POLARITY_HIGH, regs + TSADCV2_AUTO_CON); else writel_relaxed(0U & ~TSADCV2_AUTO_TSHUT_POLARITY_HIGH, regs + TSADCV2_AUTO_CON); writel_relaxed(TSADCV2_AUTO_PERIOD_TIME, regs + TSADCV2_AUTO_PERIOD); writel_relaxed(TSADCV2_HIGHT_INT_DEBOUNCE_COUNT, regs + TSADCV2_HIGHT_INT_DEBOUNCE); writel_relaxed(TSADCV2_AUTO_PERIOD_HT_TIME, regs + TSADCV2_AUTO_PERIOD_HT); writel_relaxed(TSADCV2_HIGHT_TSHUT_DEBOUNCE_COUNT, regs + TSADCV2_HIGHT_TSHUT_DEBOUNCE); } /** * rk_tsadcv3_initialize - initialize TASDC Controller. * * (1) The tsadc control power sequence. * * (2) Set TSADC_V2_AUTO_PERIOD: * Configure the interleave between every two accessing of * TSADC in normal operation. * * (2) Set TSADCV2_AUTO_PERIOD_HT: * Configure the interleave between every two accessing of * TSADC after the temperature is higher than COM_SHUT or COM_INT. * * (3) Set TSADCV2_HIGH_INT_DEBOUNCE and TSADC_HIGHT_TSHUT_DEBOUNCE: * If the temperature is higher than COMP_INT or COMP_SHUT for * "debounce" times, TSADC controller will generate interrupt or TSHUT. */ static void rk_tsadcv3_initialize(struct regmap *grf, void __iomem *regs, enum tshut_polarity tshut_polarity) { /* The tsadc control power sequence */ if (IS_ERR(grf)) { /* Set interleave value to workround ic time sync issue */ writel_relaxed(TSADCV2_USER_INTER_PD_SOC, regs + TSADCV2_USER_CON); writel_relaxed(TSADCV2_AUTO_PERIOD_TIME, regs + TSADCV2_AUTO_PERIOD); writel_relaxed(TSADCV2_HIGHT_INT_DEBOUNCE_COUNT, regs + TSADCV2_HIGHT_INT_DEBOUNCE); writel_relaxed(TSADCV2_AUTO_PERIOD_HT_TIME, regs + TSADCV2_AUTO_PERIOD_HT); writel_relaxed(TSADCV2_HIGHT_TSHUT_DEBOUNCE_COUNT, regs + TSADCV2_HIGHT_TSHUT_DEBOUNCE); } else { /* Enable the voltage common mode feature */ regmap_write(grf, GRF_TSADC_TESTBIT_L, GRF_TSADC_VCM_EN_L); regmap_write(grf, GRF_TSADC_TESTBIT_H, GRF_TSADC_VCM_EN_H); usleep_range(15, 100); /* The spec note says at least 15 us */ regmap_write(grf, GRF_SARADC_TESTBIT, GRF_SARADC_TESTBIT_ON); regmap_write(grf, GRF_TSADC_TESTBIT_H, GRF_TSADC_TESTBIT_H_ON); usleep_range(90, 200); /* The spec note says at least 90 us */ writel_relaxed(TSADCV3_AUTO_PERIOD_TIME, regs + TSADCV2_AUTO_PERIOD); writel_relaxed(TSADCV2_HIGHT_INT_DEBOUNCE_COUNT, regs + TSADCV2_HIGHT_INT_DEBOUNCE); writel_relaxed(TSADCV3_AUTO_PERIOD_HT_TIME, regs + TSADCV2_AUTO_PERIOD_HT); writel_relaxed(TSADCV2_HIGHT_TSHUT_DEBOUNCE_COUNT, regs + TSADCV2_HIGHT_TSHUT_DEBOUNCE); } if (tshut_polarity == TSHUT_HIGH_ACTIVE) writel_relaxed(0U | TSADCV2_AUTO_TSHUT_POLARITY_HIGH, regs + TSADCV2_AUTO_CON); else writel_relaxed(0U & ~TSADCV2_AUTO_TSHUT_POLARITY_HIGH, regs + TSADCV2_AUTO_CON); } static void rk_tsadcv4_initialize(struct regmap *grf, void __iomem *regs, enum tshut_polarity tshut_polarity) { rk_tsadcv2_initialize(grf, regs, tshut_polarity); regmap_write(grf, PX30_GRF_SOC_CON2, GRF_CON_TSADC_CH_INV); } static void rk_tsadcv2_irq_ack(void __iomem *regs) { u32 val; val = readl_relaxed(regs + TSADCV2_INT_PD); writel_relaxed(val & TSADCV2_INT_PD_CLEAR_MASK, regs + TSADCV2_INT_PD); } static void rk_tsadcv3_irq_ack(void __iomem *regs) { u32 val; val = readl_relaxed(regs + TSADCV2_INT_PD); writel_relaxed(val & TSADCV3_INT_PD_CLEAR_MASK, regs + TSADCV2_INT_PD); } static void rk_tsadcv2_control(void __iomem *regs, bool enable) { u32 val; val = readl_relaxed(regs + TSADCV2_AUTO_CON); if (enable) val |= TSADCV2_AUTO_EN; else val &= ~TSADCV2_AUTO_EN; writel_relaxed(val, regs + TSADCV2_AUTO_CON); } /** * rk_tsadcv3_control - the tsadc controller is enabled or disabled. * * NOTE: TSADC controller works at auto mode, and some SoCs need set the * tsadc_q_sel bit on TSADCV2_AUTO_CON[1]. The (1024 - tsadc_q) as output * adc value if setting this bit to enable. */ static void rk_tsadcv3_control(void __iomem *regs, bool enable) { u32 val; val = readl_relaxed(regs + TSADCV2_AUTO_CON); if (enable) val |= TSADCV2_AUTO_EN | TSADCV3_AUTO_Q_SEL_EN; else val &= ~TSADCV2_AUTO_EN; writel_relaxed(val, regs + TSADCV2_AUTO_CON); } static int rk_tsadcv2_get_temp(const struct chip_tsadc_table *table, int chn, void __iomem *regs, int *temp) { u32 val; val = readl_relaxed(regs + TSADCV2_DATA(chn)); return rk_tsadcv2_code_to_temp(table, val, temp); } static int rk_tsadcv2_alarm_temp(const struct chip_tsadc_table *table, int chn, void __iomem *regs, int temp) { u32 alarm_value; u32 int_en, int_clr; /* * In some cases, some sensors didn't need the trip points, the * set_trips will pass {-INT_MAX, INT_MAX} to trigger tsadc alarm * in the end, ignore this case and disable the high temperature * interrupt. */ if (temp == INT_MAX) { int_clr = readl_relaxed(regs + TSADCV2_INT_EN); int_clr &= ~TSADCV2_INT_SRC_EN(chn); writel_relaxed(int_clr, regs + TSADCV2_INT_EN); return 0; } /* Make sure the value is valid */ alarm_value = rk_tsadcv2_temp_to_code(table, temp); if (alarm_value == table->data_mask) return -ERANGE; writel_relaxed(alarm_value & table->data_mask, regs + TSADCV2_COMP_INT(chn)); int_en = readl_relaxed(regs + TSADCV2_INT_EN); int_en |= TSADCV2_INT_SRC_EN(chn); writel_relaxed(int_en, regs + TSADCV2_INT_EN); return 0; } static int rk_tsadcv2_tshut_temp(const struct chip_tsadc_table *table, int chn, void __iomem *regs, int temp) { u32 tshut_value, val; /* Make sure the value is valid */ tshut_value = rk_tsadcv2_temp_to_code(table, temp); if (tshut_value == table->data_mask) return -ERANGE; writel_relaxed(tshut_value, regs + TSADCV2_COMP_SHUT(chn)); /* TSHUT will be valid */ val = readl_relaxed(regs + TSADCV2_AUTO_CON); writel_relaxed(val | TSADCV2_AUTO_SRC_EN(chn), regs + TSADCV2_AUTO_CON); return 0; } static void rk_tsadcv2_tshut_mode(int chn, void __iomem *regs, enum tshut_mode mode) { u32 val; val = readl_relaxed(regs + TSADCV2_INT_EN); if (mode == TSHUT_MODE_GPIO) { val &= ~TSADCV2_SHUT_2CRU_SRC_EN(chn); val |= TSADCV2_SHUT_2GPIO_SRC_EN(chn); } else { val &= ~TSADCV2_SHUT_2GPIO_SRC_EN(chn); val |= TSADCV2_SHUT_2CRU_SRC_EN(chn); } writel_relaxed(val, regs + TSADCV2_INT_EN); } static const struct rockchip_tsadc_chip px30_tsadc_data = { .chn_id[SENSOR_CPU] = 0, /* cpu sensor is channel 0 */ .chn_id[SENSOR_GPU] = 1, /* gpu sensor is channel 1 */ .chn_num = 2, /* 2 channels for tsadc */ .tshut_mode = TSHUT_MODE_CRU, /* default TSHUT via CRU */ .tshut_temp = 95000, .initialize = rk_tsadcv4_initialize, .irq_ack = rk_tsadcv3_irq_ack, .control = rk_tsadcv3_control, .get_temp = rk_tsadcv2_get_temp, .set_alarm_temp = rk_tsadcv2_alarm_temp, .set_tshut_temp = rk_tsadcv2_tshut_temp, .set_tshut_mode = rk_tsadcv2_tshut_mode, .table = { .id = rk3328_code_table, .length = ARRAY_SIZE(rk3328_code_table), .data_mask = TSADCV2_DATA_MASK, .mode = ADC_INCREMENT, }, }; static const struct rockchip_tsadc_chip rv1108_tsadc_data = { .chn_id[SENSOR_CPU] = 0, /* cpu sensor is channel 0 */ .chn_num = 1, /* one channel for tsadc */ .tshut_mode = TSHUT_MODE_GPIO, /* default TSHUT via GPIO give PMIC */ .tshut_polarity = TSHUT_LOW_ACTIVE, /* default TSHUT LOW ACTIVE */ .tshut_temp = 95000, .initialize = rk_tsadcv2_initialize, .irq_ack = rk_tsadcv3_irq_ack, .control = rk_tsadcv3_control, .get_temp = rk_tsadcv2_get_temp, .set_alarm_temp = rk_tsadcv2_alarm_temp, .set_tshut_temp = rk_tsadcv2_tshut_temp, .set_tshut_mode = rk_tsadcv2_tshut_mode, .table = { .id = rv1108_table, .length = ARRAY_SIZE(rv1108_table), .data_mask = TSADCV2_DATA_MASK, .mode = ADC_INCREMENT, }, }; static const struct rockchip_tsadc_chip rk3228_tsadc_data = { .chn_id[SENSOR_CPU] = 0, /* cpu sensor is channel 0 */ .chn_num = 1, /* one channel for tsadc */ .tshut_mode = TSHUT_MODE_GPIO, /* default TSHUT via GPIO give PMIC */ .tshut_polarity = TSHUT_LOW_ACTIVE, /* default TSHUT LOW ACTIVE */ .tshut_temp = 95000, .initialize = rk_tsadcv2_initialize, .irq_ack = rk_tsadcv3_irq_ack, .control = rk_tsadcv3_control, .get_temp = rk_tsadcv2_get_temp, .set_alarm_temp = rk_tsadcv2_alarm_temp, .set_tshut_temp = rk_tsadcv2_tshut_temp, .set_tshut_mode = rk_tsadcv2_tshut_mode, .table = { .id = rk3228_code_table, .length = ARRAY_SIZE(rk3228_code_table), .data_mask = TSADCV3_DATA_MASK, .mode = ADC_INCREMENT, }, }; static const struct rockchip_tsadc_chip rk3288_tsadc_data = { .chn_id[SENSOR_CPU] = 1, /* cpu sensor is channel 1 */ .chn_id[SENSOR_GPU] = 2, /* gpu sensor is channel 2 */ .chn_num = 2, /* two channels for tsadc */ .tshut_mode = TSHUT_MODE_GPIO, /* default TSHUT via GPIO give PMIC */ .tshut_polarity = TSHUT_LOW_ACTIVE, /* default TSHUT LOW ACTIVE */ .tshut_temp = 95000, .initialize = rk_tsadcv2_initialize, .irq_ack = rk_tsadcv2_irq_ack, .control = rk_tsadcv2_control, .get_temp = rk_tsadcv2_get_temp, .set_alarm_temp = rk_tsadcv2_alarm_temp, .set_tshut_temp = rk_tsadcv2_tshut_temp, .set_tshut_mode = rk_tsadcv2_tshut_mode, .table = { .id = rk3288_code_table, .length = ARRAY_SIZE(rk3288_code_table), .data_mask = TSADCV2_DATA_MASK, .mode = ADC_DECREMENT, }, }; static const struct rockchip_tsadc_chip rk3328_tsadc_data = { .chn_id[SENSOR_CPU] = 0, /* cpu sensor is channel 0 */ .chn_num = 1, /* one channels for tsadc */ .tshut_mode = TSHUT_MODE_CRU, /* default TSHUT via CRU */ .tshut_temp = 95000, .initialize = rk_tsadcv2_initialize, .irq_ack = rk_tsadcv3_irq_ack, .control = rk_tsadcv3_control, .get_temp = rk_tsadcv2_get_temp, .set_alarm_temp = rk_tsadcv2_alarm_temp, .set_tshut_temp = rk_tsadcv2_tshut_temp, .set_tshut_mode = rk_tsadcv2_tshut_mode, .table = { .id = rk3328_code_table, .length = ARRAY_SIZE(rk3328_code_table), .data_mask = TSADCV2_DATA_MASK, .mode = ADC_INCREMENT, }, }; static const struct rockchip_tsadc_chip rk3366_tsadc_data = { .chn_id[SENSOR_CPU] = 0, /* cpu sensor is channel 0 */ .chn_id[SENSOR_GPU] = 1, /* gpu sensor is channel 1 */ .chn_num = 2, /* two channels for tsadc */ .tshut_mode = TSHUT_MODE_GPIO, /* default TSHUT via GPIO give PMIC */ .tshut_polarity = TSHUT_LOW_ACTIVE, /* default TSHUT LOW ACTIVE */ .tshut_temp = 95000, .initialize = rk_tsadcv3_initialize, .irq_ack = rk_tsadcv3_irq_ack, .control = rk_tsadcv3_control, .get_temp = rk_tsadcv2_get_temp, .set_alarm_temp = rk_tsadcv2_alarm_temp, .set_tshut_temp = rk_tsadcv2_tshut_temp, .set_tshut_mode = rk_tsadcv2_tshut_mode, .table = { .id = rk3228_code_table, .length = ARRAY_SIZE(rk3228_code_table), .data_mask = TSADCV3_DATA_MASK, .mode = ADC_INCREMENT, }, }; static const struct rockchip_tsadc_chip rk3368_tsadc_data = { .chn_id[SENSOR_CPU] = 0, /* cpu sensor is channel 0 */ .chn_id[SENSOR_GPU] = 1, /* gpu sensor is channel 1 */ .chn_num = 2, /* two channels for tsadc */ .tshut_mode = TSHUT_MODE_GPIO, /* default TSHUT via GPIO give PMIC */ .tshut_polarity = TSHUT_LOW_ACTIVE, /* default TSHUT LOW ACTIVE */ .tshut_temp = 95000, .initialize = rk_tsadcv2_initialize, .irq_ack = rk_tsadcv2_irq_ack, .control = rk_tsadcv2_control, .get_temp = rk_tsadcv2_get_temp, .set_alarm_temp = rk_tsadcv2_alarm_temp, .set_tshut_temp = rk_tsadcv2_tshut_temp, .set_tshut_mode = rk_tsadcv2_tshut_mode, .table = { .id = rk3368_code_table, .length = ARRAY_SIZE(rk3368_code_table), .data_mask = TSADCV3_DATA_MASK, .mode = ADC_INCREMENT, }, }; static const struct rockchip_tsadc_chip rk3399_tsadc_data = { .chn_id[SENSOR_CPU] = 0, /* cpu sensor is channel 0 */ .chn_id[SENSOR_GPU] = 1, /* gpu sensor is channel 1 */ .chn_num = 2, /* two channels for tsadc */ .tshut_mode = TSHUT_MODE_GPIO, /* default TSHUT via GPIO give PMIC */ .tshut_polarity = TSHUT_LOW_ACTIVE, /* default TSHUT LOW ACTIVE */ .tshut_temp = 95000, .initialize = rk_tsadcv3_initialize, .irq_ack = rk_tsadcv3_irq_ack, .control = rk_tsadcv3_control, .get_temp = rk_tsadcv2_get_temp, .set_alarm_temp = rk_tsadcv2_alarm_temp, .set_tshut_temp = rk_tsadcv2_tshut_temp, .set_tshut_mode = rk_tsadcv2_tshut_mode, .table = { .id = rk3399_code_table, .length = ARRAY_SIZE(rk3399_code_table), .data_mask = TSADCV3_DATA_MASK, .mode = ADC_INCREMENT, }, }; static const struct of_device_id of_rockchip_thermal_match[] = { { .compatible = "rockchip,px30-tsadc", .data = (void *)&px30_tsadc_data, }, { .compatible = "rockchip,rv1108-tsadc", .data = (void *)&rv1108_tsadc_data, }, { .compatible = "rockchip,rk3228-tsadc", .data = (void *)&rk3228_tsadc_data, }, { .compatible = "rockchip,rk3288-tsadc", .data = (void *)&rk3288_tsadc_data, }, { .compatible = "rockchip,rk3328-tsadc", .data = (void *)&rk3328_tsadc_data, }, { .compatible = "rockchip,rk3366-tsadc", .data = (void *)&rk3366_tsadc_data, }, { .compatible = "rockchip,rk3368-tsadc", .data = (void *)&rk3368_tsadc_data, }, { .compatible = "rockchip,rk3399-tsadc", .data = (void *)&rk3399_tsadc_data, }, { /* end */ }, }; MODULE_DEVICE_TABLE(of, of_rockchip_thermal_match); static void rockchip_thermal_toggle_sensor(struct rockchip_thermal_sensor *sensor, bool on) { struct thermal_zone_device *tzd = sensor->tzd; tzd->ops->set_mode(tzd, on ? THERMAL_DEVICE_ENABLED : THERMAL_DEVICE_DISABLED); } static irqreturn_t rockchip_thermal_alarm_irq_thread(int irq, void *dev) { struct rockchip_thermal_data *thermal = dev; int i; dev_dbg(&thermal->pdev->dev, "thermal alarm\n"); thermal->chip->irq_ack(thermal->regs); for (i = 0; i < thermal->chip->chn_num; i++) thermal_zone_device_update(thermal->sensors[i].tzd, THERMAL_EVENT_UNSPECIFIED); return IRQ_HANDLED; } static int rockchip_thermal_set_trips(void *_sensor, int low, int high) { struct rockchip_thermal_sensor *sensor = _sensor; struct rockchip_thermal_data *thermal = sensor->thermal; const struct rockchip_tsadc_chip *tsadc = thermal->chip; dev_dbg(&thermal->pdev->dev, "%s: sensor %d: low: %d, high %d\n", __func__, sensor->id, low, high); return tsadc->set_alarm_temp(&tsadc->table, sensor->id, thermal->regs, high); } static int rockchip_thermal_get_temp(void *_sensor, int *out_temp) { struct rockchip_thermal_sensor *sensor = _sensor; struct rockchip_thermal_data *thermal = sensor->thermal; const struct rockchip_tsadc_chip *tsadc = sensor->thermal->chip; int retval; retval = tsadc->get_temp(&tsadc->table, sensor->id, thermal->regs, out_temp); dev_dbg(&thermal->pdev->dev, "sensor %d - temp: %d, retval: %d\n", sensor->id, *out_temp, retval); return retval; } static const struct thermal_zone_of_device_ops rockchip_of_thermal_ops = { .get_temp = rockchip_thermal_get_temp, .set_trips = rockchip_thermal_set_trips, }; static int rockchip_configure_from_dt(struct device *dev, struct device_node *np, struct rockchip_thermal_data *thermal) { u32 shut_temp, tshut_mode, tshut_polarity; if (of_property_read_u32(np, "rockchip,hw-tshut-temp", &shut_temp)) { dev_warn(dev, "Missing tshut temp property, using default %d\n", thermal->chip->tshut_temp); thermal->tshut_temp = thermal->chip->tshut_temp; } else { if (shut_temp > INT_MAX) { dev_err(dev, "Invalid tshut temperature specified: %d\n", shut_temp); return -ERANGE; } thermal->tshut_temp = shut_temp; } if (of_property_read_u32(np, "rockchip,hw-tshut-mode", &tshut_mode)) { dev_warn(dev, "Missing tshut mode property, using default (%s)\n", thermal->chip->tshut_mode == TSHUT_MODE_GPIO ? "gpio" : "cru"); thermal->tshut_mode = thermal->chip->tshut_mode; } else { thermal->tshut_mode = tshut_mode; } if (thermal->tshut_mode > 1) { dev_err(dev, "Invalid tshut mode specified: %d\n", thermal->tshut_mode); return -EINVAL; } if (of_property_read_u32(np, "rockchip,hw-tshut-polarity", &tshut_polarity)) { dev_warn(dev, "Missing tshut-polarity property, using default (%s)\n", thermal->chip->tshut_polarity == TSHUT_LOW_ACTIVE ? "low" : "high"); thermal->tshut_polarity = thermal->chip->tshut_polarity; } else { thermal->tshut_polarity = tshut_polarity; } if (thermal->tshut_polarity > 1) { dev_err(dev, "Invalid tshut-polarity specified: %d\n", thermal->tshut_polarity); return -EINVAL; } /* The tsadc wont to handle the error in here since some SoCs didn't * need this property. */ thermal->grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf"); if (IS_ERR(thermal->grf)) dev_warn(dev, "Missing rockchip,grf property\n"); return 0; } static int rockchip_thermal_register_sensor(struct platform_device *pdev, struct rockchip_thermal_data *thermal, struct rockchip_thermal_sensor *sensor, int id) { const struct rockchip_tsadc_chip *tsadc = thermal->chip; int error; tsadc->set_tshut_mode(id, thermal->regs, thermal->tshut_mode); error = tsadc->set_tshut_temp(&tsadc->table, id, thermal->regs, thermal->tshut_temp); if (error) dev_err(&pdev->dev, "%s: invalid tshut=%d, error=%d\n", __func__, thermal->tshut_temp, error); sensor->thermal = thermal; sensor->id = id; sensor->tzd = devm_thermal_zone_of_sensor_register(&pdev->dev, id, sensor, &rockchip_of_thermal_ops); if (IS_ERR(sensor->tzd)) { error = PTR_ERR(sensor->tzd); dev_err(&pdev->dev, "failed to register sensor %d: %d\n", id, error); return error; } return 0; } /** * Reset TSADC Controller, reset all tsadc registers. */ static void rockchip_thermal_reset_controller(struct reset_control *reset) { reset_control_assert(reset); usleep_range(10, 20); reset_control_deassert(reset); } static int rockchip_thermal_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct rockchip_thermal_data *thermal; const struct of_device_id *match; struct resource *res; int irq; int i; int error; match = of_match_node(of_rockchip_thermal_match, np); if (!match) return -ENXIO; irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "no irq resource?\n"); return -EINVAL; } thermal = devm_kzalloc(&pdev->dev, sizeof(struct rockchip_thermal_data), GFP_KERNEL); if (!thermal) return -ENOMEM; thermal->pdev = pdev; thermal->chip = (const struct rockchip_tsadc_chip *)match->data; if (!thermal->chip) return -EINVAL; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); thermal->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(thermal->regs)) return PTR_ERR(thermal->regs); thermal->reset = devm_reset_control_get(&pdev->dev, "tsadc-apb"); if (IS_ERR(thermal->reset)) { error = PTR_ERR(thermal->reset); dev_err(&pdev->dev, "failed to get tsadc reset: %d\n", error); return error; } thermal->clk = devm_clk_get(&pdev->dev, "tsadc"); if (IS_ERR(thermal->clk)) { error = PTR_ERR(thermal->clk); dev_err(&pdev->dev, "failed to get tsadc clock: %d\n", error); return error; } thermal->pclk = devm_clk_get(&pdev->dev, "apb_pclk"); if (IS_ERR(thermal->pclk)) { error = PTR_ERR(thermal->pclk); dev_err(&pdev->dev, "failed to get apb_pclk clock: %d\n", error); return error; } error = clk_prepare_enable(thermal->clk); if (error) { dev_err(&pdev->dev, "failed to enable converter clock: %d\n", error); return error; } error = clk_prepare_enable(thermal->pclk); if (error) { dev_err(&pdev->dev, "failed to enable pclk: %d\n", error); goto err_disable_clk; } rockchip_thermal_reset_controller(thermal->reset); error = rockchip_configure_from_dt(&pdev->dev, np, thermal); if (error) { dev_err(&pdev->dev, "failed to parse device tree data: %d\n", error); goto err_disable_pclk; } thermal->chip->initialize(thermal->grf, thermal->regs, thermal->tshut_polarity); for (i = 0; i < thermal->chip->chn_num; i++) { error = rockchip_thermal_register_sensor(pdev, thermal, &thermal->sensors[i], thermal->chip->chn_id[i]); if (error) { dev_err(&pdev->dev, "failed to register sensor[%d] : error = %d\n", i, error); goto err_disable_pclk; } } error = devm_request_threaded_irq(&pdev->dev, irq, NULL, &rockchip_thermal_alarm_irq_thread, IRQF_ONESHOT, "rockchip_thermal", thermal); if (error) { dev_err(&pdev->dev, "failed to request tsadc irq: %d\n", error); goto err_disable_pclk; } thermal->chip->control(thermal->regs, true); for (i = 0; i < thermal->chip->chn_num; i++) rockchip_thermal_toggle_sensor(&thermal->sensors[i], true); platform_set_drvdata(pdev, thermal); return 0; err_disable_pclk: clk_disable_unprepare(thermal->pclk); err_disable_clk: clk_disable_unprepare(thermal->clk); return error; } static int rockchip_thermal_remove(struct platform_device *pdev) { struct rockchip_thermal_data *thermal = platform_get_drvdata(pdev); int i; for (i = 0; i < thermal->chip->chn_num; i++) { struct rockchip_thermal_sensor *sensor = &thermal->sensors[i]; rockchip_thermal_toggle_sensor(sensor, false); } thermal->chip->control(thermal->regs, false); clk_disable_unprepare(thermal->pclk); clk_disable_unprepare(thermal->clk); return 0; } static int __maybe_unused rockchip_thermal_suspend(struct device *dev) { struct rockchip_thermal_data *thermal = dev_get_drvdata(dev); int i; for (i = 0; i < thermal->chip->chn_num; i++) rockchip_thermal_toggle_sensor(&thermal->sensors[i], false); thermal->chip->control(thermal->regs, false); clk_disable(thermal->pclk); clk_disable(thermal->clk); pinctrl_pm_select_sleep_state(dev); return 0; } static int __maybe_unused rockchip_thermal_resume(struct device *dev) { struct rockchip_thermal_data *thermal = dev_get_drvdata(dev); int i; int error; error = clk_enable(thermal->clk); if (error) return error; error = clk_enable(thermal->pclk); if (error) { clk_disable(thermal->clk); return error; } rockchip_thermal_reset_controller(thermal->reset); thermal->chip->initialize(thermal->grf, thermal->regs, thermal->tshut_polarity); for (i = 0; i < thermal->chip->chn_num; i++) { int id = thermal->sensors[i].id; thermal->chip->set_tshut_mode(id, thermal->regs, thermal->tshut_mode); error = thermal->chip->set_tshut_temp(&thermal->chip->table, id, thermal->regs, thermal->tshut_temp); if (error) dev_err(dev, "%s: invalid tshut=%d, error=%d\n", __func__, thermal->tshut_temp, error); } thermal->chip->control(thermal->regs, true); for (i = 0; i < thermal->chip->chn_num; i++) rockchip_thermal_toggle_sensor(&thermal->sensors[i], true); pinctrl_pm_select_default_state(dev); return 0; } static SIMPLE_DEV_PM_OPS(rockchip_thermal_pm_ops, rockchip_thermal_suspend, rockchip_thermal_resume); static struct platform_driver rockchip_thermal_driver = { .driver = { .name = "rockchip-thermal", .pm = &rockchip_thermal_pm_ops, .of_match_table = of_rockchip_thermal_match, }, .probe = rockchip_thermal_probe, .remove = rockchip_thermal_remove, }; module_platform_driver(rockchip_thermal_driver); MODULE_DESCRIPTION("ROCKCHIP THERMAL Driver"); MODULE_AUTHOR("Rockchip, Inc."); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:rockchip-thermal");