/* * Freescale eSPI controller driver. * * Copyright 2010 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "spi-fsl-lib.h" /* eSPI Controller registers */ struct fsl_espi_reg { __be32 mode; /* 0x000 - eSPI mode register */ __be32 event; /* 0x004 - eSPI event register */ __be32 mask; /* 0x008 - eSPI mask register */ __be32 command; /* 0x00c - eSPI command register */ __be32 transmit; /* 0x010 - eSPI transmit FIFO access register*/ __be32 receive; /* 0x014 - eSPI receive FIFO access register*/ u8 res[8]; /* 0x018 - 0x01c reserved */ __be32 csmode[4]; /* 0x020 - 0x02c eSPI cs mode register */ }; struct fsl_espi_transfer { const void *tx_buf; void *rx_buf; unsigned len; unsigned n_tx; unsigned n_rx; unsigned actual_length; int status; }; /* eSPI Controller mode register definitions */ #define SPMODE_ENABLE (1 << 31) #define SPMODE_LOOP (1 << 30) #define SPMODE_TXTHR(x) ((x) << 8) #define SPMODE_RXTHR(x) ((x) << 0) /* eSPI Controller CS mode register definitions */ #define CSMODE_CI_INACTIVEHIGH (1 << 31) #define CSMODE_CP_BEGIN_EDGECLK (1 << 30) #define CSMODE_REV (1 << 29) #define CSMODE_DIV16 (1 << 28) #define CSMODE_PM(x) ((x) << 24) #define CSMODE_POL_1 (1 << 20) #define CSMODE_LEN(x) ((x) << 16) #define CSMODE_BEF(x) ((x) << 12) #define CSMODE_AFT(x) ((x) << 8) #define CSMODE_CG(x) ((x) << 3) /* Default mode/csmode for eSPI controller */ #define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(3)) #define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \ | CSMODE_AFT(0) | CSMODE_CG(1)) /* SPIE register values */ #define SPIE_NE 0x00000200 /* Not empty */ #define SPIE_NF 0x00000100 /* Not full */ /* SPIM register values */ #define SPIM_NE 0x00000200 /* Not empty */ #define SPIM_NF 0x00000100 /* Not full */ #define SPIE_RXCNT(reg) ((reg >> 24) & 0x3F) #define SPIE_TXCNT(reg) ((reg >> 16) & 0x3F) /* SPCOM register values */ #define SPCOM_CS(x) ((x) << 30) #define SPCOM_TRANLEN(x) ((x) << 0) #define SPCOM_TRANLEN_MAX 0x10000 /* Max transaction length */ #define AUTOSUSPEND_TIMEOUT 2000 static void fsl_espi_change_mode(struct spi_device *spi) { struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master); struct spi_mpc8xxx_cs *cs = spi->controller_state; struct fsl_espi_reg *reg_base = mspi->reg_base; __be32 __iomem *mode = ®_base->csmode[spi->chip_select]; __be32 __iomem *espi_mode = ®_base->mode; u32 tmp; unsigned long flags; /* Turn off IRQs locally to minimize time that SPI is disabled. */ local_irq_save(flags); /* Turn off SPI unit prior changing mode */ tmp = mpc8xxx_spi_read_reg(espi_mode); mpc8xxx_spi_write_reg(espi_mode, tmp & ~SPMODE_ENABLE); mpc8xxx_spi_write_reg(mode, cs->hw_mode); mpc8xxx_spi_write_reg(espi_mode, tmp); local_irq_restore(flags); } static u32 fsl_espi_tx_buf_lsb(struct mpc8xxx_spi *mpc8xxx_spi) { u32 data; u16 data_h; u16 data_l; const u32 *tx = mpc8xxx_spi->tx; if (!tx) return 0; data = *tx++ << mpc8xxx_spi->tx_shift; data_l = data & 0xffff; data_h = (data >> 16) & 0xffff; swab16s(&data_l); swab16s(&data_h); data = data_h | data_l; mpc8xxx_spi->tx = tx; return data; } static int fsl_espi_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master); int bits_per_word = 0; u8 pm; u32 hz = 0; struct spi_mpc8xxx_cs *cs = spi->controller_state; if (t) { bits_per_word = t->bits_per_word; hz = t->speed_hz; } /* spi_transfer level calls that work per-word */ if (!bits_per_word) bits_per_word = spi->bits_per_word; if (!hz) hz = spi->max_speed_hz; cs->rx_shift = 0; cs->tx_shift = 0; cs->get_rx = mpc8xxx_spi_rx_buf_u32; cs->get_tx = mpc8xxx_spi_tx_buf_u32; if (bits_per_word <= 8) { cs->rx_shift = 8 - bits_per_word; } else { cs->rx_shift = 16 - bits_per_word; if (spi->mode & SPI_LSB_FIRST) cs->get_tx = fsl_espi_tx_buf_lsb; } mpc8xxx_spi->rx_shift = cs->rx_shift; mpc8xxx_spi->tx_shift = cs->tx_shift; mpc8xxx_spi->get_rx = cs->get_rx; mpc8xxx_spi->get_tx = cs->get_tx; bits_per_word = bits_per_word - 1; /* mask out bits we are going to set */ cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF)); cs->hw_mode |= CSMODE_LEN(bits_per_word); if ((mpc8xxx_spi->spibrg / hz) > 64) { cs->hw_mode |= CSMODE_DIV16; pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 16 * 4); WARN_ONCE(pm > 33, "%s: Requested speed is too low: %d Hz. " "Will use %d Hz instead.\n", dev_name(&spi->dev), hz, mpc8xxx_spi->spibrg / (4 * 16 * (32 + 1))); if (pm > 33) pm = 33; } else { pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 4); } if (pm) pm--; if (pm < 2) pm = 2; cs->hw_mode |= CSMODE_PM(pm); fsl_espi_change_mode(spi); return 0; } static int fsl_espi_cpu_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t, unsigned int len) { u32 word; struct fsl_espi_reg *reg_base = mspi->reg_base; mspi->count = len; /* enable rx ints */ mpc8xxx_spi_write_reg(®_base->mask, SPIM_NE); /* transmit word */ word = mspi->get_tx(mspi); mpc8xxx_spi_write_reg(®_base->transmit, word); return 0; } static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t) { struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master); struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base; unsigned int len = t->len; int ret; mpc8xxx_spi->len = t->len; len = roundup(len, 4) / 4; mpc8xxx_spi->tx = t->tx_buf; mpc8xxx_spi->rx = t->rx_buf; reinit_completion(&mpc8xxx_spi->done); /* Set SPCOM[CS] and SPCOM[TRANLEN] field */ if (t->len > SPCOM_TRANLEN_MAX) { dev_err(mpc8xxx_spi->dev, "Transaction length (%d)" " beyond the SPCOM[TRANLEN] field\n", t->len); return -EINVAL; } mpc8xxx_spi_write_reg(®_base->command, (SPCOM_CS(spi->chip_select) | SPCOM_TRANLEN(t->len - 1))); ret = fsl_espi_cpu_bufs(mpc8xxx_spi, t, len); if (ret) return ret; /* Won't hang up forever, SPI bus sometimes got lost interrupts... */ ret = wait_for_completion_timeout(&mpc8xxx_spi->done, 2 * HZ); if (ret == 0) dev_err(mpc8xxx_spi->dev, "Transaction hanging up (left %d bytes)\n", mpc8xxx_spi->count); /* disable rx ints */ mpc8xxx_spi_write_reg(®_base->mask, 0); return mpc8xxx_spi->count; } static inline void fsl_espi_addr2cmd(unsigned int addr, u8 *cmd) { if (cmd) { cmd[1] = (u8)(addr >> 16); cmd[2] = (u8)(addr >> 8); cmd[3] = (u8)(addr >> 0); } } static inline unsigned int fsl_espi_cmd2addr(u8 *cmd) { if (cmd) return cmd[1] << 16 | cmd[2] << 8 | cmd[3] << 0; return 0; } static void fsl_espi_do_trans(struct spi_message *m, struct fsl_espi_transfer *tr) { struct spi_device *spi = m->spi; struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master); struct fsl_espi_transfer *espi_trans = tr; struct spi_message message; struct spi_transfer *t, *first, trans; int status = 0; spi_message_init(&message); memset(&trans, 0, sizeof(trans)); first = list_first_entry(&m->transfers, struct spi_transfer, transfer_list); list_for_each_entry(t, &m->transfers, transfer_list) { if ((first->bits_per_word != t->bits_per_word) || (first->speed_hz != t->speed_hz)) { espi_trans->status = -EINVAL; dev_err(mspi->dev, "bits_per_word/speed_hz should be same for the same SPI transfer\n"); return; } trans.speed_hz = t->speed_hz; trans.bits_per_word = t->bits_per_word; trans.delay_usecs = max(first->delay_usecs, t->delay_usecs); } trans.len = espi_trans->len; trans.tx_buf = espi_trans->tx_buf; trans.rx_buf = espi_trans->rx_buf; spi_message_add_tail(&trans, &message); list_for_each_entry(t, &message.transfers, transfer_list) { if (t->bits_per_word || t->speed_hz) { status = -EINVAL; status = fsl_espi_setup_transfer(spi, t); if (status < 0) break; } if (t->len) status = fsl_espi_bufs(spi, t); if (status) { status = -EMSGSIZE; break; } if (t->delay_usecs) udelay(t->delay_usecs); } espi_trans->status = status; fsl_espi_setup_transfer(spi, NULL); } static void fsl_espi_cmd_trans(struct spi_message *m, struct fsl_espi_transfer *trans, u8 *rx_buff) { struct spi_transfer *t; u8 *local_buf; int i = 0; struct fsl_espi_transfer *espi_trans = trans; local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL); if (!local_buf) { espi_trans->status = -ENOMEM; return; } list_for_each_entry(t, &m->transfers, transfer_list) { if (t->tx_buf) { memcpy(local_buf + i, t->tx_buf, t->len); i += t->len; } } espi_trans->tx_buf = local_buf; espi_trans->rx_buf = local_buf; fsl_espi_do_trans(m, espi_trans); espi_trans->actual_length = espi_trans->len; kfree(local_buf); } static void fsl_espi_rw_trans(struct spi_message *m, struct fsl_espi_transfer *trans, u8 *rx_buff) { struct fsl_espi_transfer *espi_trans = trans; unsigned int total_len = espi_trans->len; struct spi_transfer *t; u8 *local_buf; u8 *rx_buf = rx_buff; unsigned int trans_len; unsigned int addr; unsigned int tx_only; unsigned int rx_pos = 0; unsigned int pos; int i, loop; local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL); if (!local_buf) { espi_trans->status = -ENOMEM; return; } for (pos = 0, loop = 0; pos < total_len; pos += trans_len, loop++) { trans_len = total_len - pos; i = 0; tx_only = 0; list_for_each_entry(t, &m->transfers, transfer_list) { if (t->tx_buf) { memcpy(local_buf + i, t->tx_buf, t->len); i += t->len; if (!t->rx_buf) tx_only += t->len; } } /* Add additional TX bytes to compensate SPCOM_TRANLEN_MAX */ if (loop > 0) trans_len += tx_only; if (trans_len > SPCOM_TRANLEN_MAX) trans_len = SPCOM_TRANLEN_MAX; /* Update device offset */ if (pos > 0) { addr = fsl_espi_cmd2addr(local_buf); addr += rx_pos; fsl_espi_addr2cmd(addr, local_buf); } espi_trans->len = trans_len; espi_trans->tx_buf = local_buf; espi_trans->rx_buf = local_buf; fsl_espi_do_trans(m, espi_trans); /* If there is at least one RX byte then copy it to rx_buf */ if (tx_only < SPCOM_TRANLEN_MAX) memcpy(rx_buf + rx_pos, espi_trans->rx_buf + tx_only, trans_len - tx_only); rx_pos += trans_len - tx_only; if (loop > 0) espi_trans->actual_length += espi_trans->len - tx_only; else espi_trans->actual_length += espi_trans->len; } kfree(local_buf); } static int fsl_espi_do_one_msg(struct spi_master *master, struct spi_message *m) { struct spi_transfer *t; u8 *rx_buf = NULL; unsigned int n_tx = 0; unsigned int n_rx = 0; unsigned int xfer_len = 0; struct fsl_espi_transfer espi_trans; list_for_each_entry(t, &m->transfers, transfer_list) { if (t->tx_buf) n_tx += t->len; if (t->rx_buf) { n_rx += t->len; rx_buf = t->rx_buf; } if ((t->tx_buf) || (t->rx_buf)) xfer_len += t->len; } espi_trans.n_tx = n_tx; espi_trans.n_rx = n_rx; espi_trans.len = xfer_len; espi_trans.actual_length = 0; espi_trans.status = 0; if (!rx_buf) fsl_espi_cmd_trans(m, &espi_trans, NULL); else fsl_espi_rw_trans(m, &espi_trans, rx_buf); m->actual_length = espi_trans.actual_length; m->status = espi_trans.status; spi_finalize_current_message(master); return 0; } static int fsl_espi_setup(struct spi_device *spi) { struct mpc8xxx_spi *mpc8xxx_spi; struct fsl_espi_reg *reg_base; int retval; u32 hw_mode; u32 loop_mode; struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi); if (!spi->max_speed_hz) return -EINVAL; if (!cs) { cs = kzalloc(sizeof(*cs), GFP_KERNEL); if (!cs) return -ENOMEM; spi_set_ctldata(spi, cs); } mpc8xxx_spi = spi_master_get_devdata(spi->master); reg_base = mpc8xxx_spi->reg_base; pm_runtime_get_sync(mpc8xxx_spi->dev); hw_mode = cs->hw_mode; /* Save original settings */ cs->hw_mode = mpc8xxx_spi_read_reg( ®_base->csmode[spi->chip_select]); /* mask out bits we are going to set */ cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH | CSMODE_REV); if (spi->mode & SPI_CPHA) cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK; if (spi->mode & SPI_CPOL) cs->hw_mode |= CSMODE_CI_INACTIVEHIGH; if (!(spi->mode & SPI_LSB_FIRST)) cs->hw_mode |= CSMODE_REV; /* Handle the loop mode */ loop_mode = mpc8xxx_spi_read_reg(®_base->mode); loop_mode &= ~SPMODE_LOOP; if (spi->mode & SPI_LOOP) loop_mode |= SPMODE_LOOP; mpc8xxx_spi_write_reg(®_base->mode, loop_mode); retval = fsl_espi_setup_transfer(spi, NULL); pm_runtime_mark_last_busy(mpc8xxx_spi->dev); pm_runtime_put_autosuspend(mpc8xxx_spi->dev); if (retval < 0) { cs->hw_mode = hw_mode; /* Restore settings */ return retval; } return 0; } static void fsl_espi_cleanup(struct spi_device *spi) { struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi); kfree(cs); spi_set_ctldata(spi, NULL); } void fsl_espi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events) { struct fsl_espi_reg *reg_base = mspi->reg_base; /* We need handle RX first */ if (events & SPIE_NE) { u32 rx_data, tmp; u8 rx_data_8; int rx_nr_bytes = 4; int ret; /* Spin until RX is done */ if (SPIE_RXCNT(events) < min(4, mspi->len)) { ret = spin_event_timeout( !(SPIE_RXCNT(events = mpc8xxx_spi_read_reg(®_base->event)) < min(4, mspi->len)), 10000, 0); /* 10 msec */ if (!ret) dev_err(mspi->dev, "tired waiting for SPIE_RXCNT\n"); } if (mspi->len >= 4) { rx_data = mpc8xxx_spi_read_reg(®_base->receive); } else if (mspi->len <= 0) { dev_err(mspi->dev, "unexpected RX(SPIE_NE) interrupt occurred,\n" "(local rxlen %d bytes, reg rxlen %d bytes)\n", min(4, mspi->len), SPIE_RXCNT(events)); rx_nr_bytes = 0; } else { rx_nr_bytes = mspi->len; tmp = mspi->len; rx_data = 0; while (tmp--) { rx_data_8 = in_8((u8 *)®_base->receive); rx_data |= (rx_data_8 << (tmp * 8)); } rx_data <<= (4 - mspi->len) * 8; } mspi->len -= rx_nr_bytes; if (mspi->rx) mspi->get_rx(rx_data, mspi); } if (!(events & SPIE_NF)) { int ret; /* spin until TX is done */ ret = spin_event_timeout(((events = mpc8xxx_spi_read_reg( ®_base->event)) & SPIE_NF), 1000, 0); if (!ret) { dev_err(mspi->dev, "tired waiting for SPIE_NF\n"); /* Clear the SPIE bits */ mpc8xxx_spi_write_reg(®_base->event, events); complete(&mspi->done); return; } } /* Clear the events */ mpc8xxx_spi_write_reg(®_base->event, events); mspi->count -= 1; if (mspi->count) { u32 word = mspi->get_tx(mspi); mpc8xxx_spi_write_reg(®_base->transmit, word); } else { complete(&mspi->done); } } static irqreturn_t fsl_espi_irq(s32 irq, void *context_data) { struct mpc8xxx_spi *mspi = context_data; struct fsl_espi_reg *reg_base = mspi->reg_base; irqreturn_t ret = IRQ_NONE; u32 events; /* Get interrupt events(tx/rx) */ events = mpc8xxx_spi_read_reg(®_base->event); if (events) ret = IRQ_HANDLED; dev_vdbg(mspi->dev, "%s: events %x\n", __func__, events); fsl_espi_cpu_irq(mspi, events); return ret; } #ifdef CONFIG_PM static int fsl_espi_runtime_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master); struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base; u32 regval; regval = mpc8xxx_spi_read_reg(®_base->mode); regval &= ~SPMODE_ENABLE; mpc8xxx_spi_write_reg(®_base->mode, regval); return 0; } static int fsl_espi_runtime_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master); struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base; u32 regval; regval = mpc8xxx_spi_read_reg(®_base->mode); regval |= SPMODE_ENABLE; mpc8xxx_spi_write_reg(®_base->mode, regval); return 0; } #endif static size_t fsl_espi_max_transfer_size(struct spi_device *spi) { return SPCOM_TRANLEN_MAX; } static struct spi_master * fsl_espi_probe(struct device *dev, struct resource *mem, unsigned int irq) { struct fsl_spi_platform_data *pdata = dev_get_platdata(dev); struct spi_master *master; struct mpc8xxx_spi *mpc8xxx_spi; struct fsl_espi_reg *reg_base; struct device_node *nc; const __be32 *prop; u32 regval, csmode; int i, len, ret = 0; master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi)); if (!master) { ret = -ENOMEM; goto err; } dev_set_drvdata(dev, master); mpc8xxx_spi_probe(dev, mem, irq); master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); master->setup = fsl_espi_setup; master->cleanup = fsl_espi_cleanup; master->transfer_one_message = fsl_espi_do_one_msg; master->auto_runtime_pm = true; master->max_transfer_size = fsl_espi_max_transfer_size; mpc8xxx_spi = spi_master_get_devdata(master); mpc8xxx_spi->reg_base = devm_ioremap_resource(dev, mem); if (IS_ERR(mpc8xxx_spi->reg_base)) { ret = PTR_ERR(mpc8xxx_spi->reg_base); goto err_probe; } reg_base = mpc8xxx_spi->reg_base; /* Register for SPI Interrupt */ ret = devm_request_irq(dev, mpc8xxx_spi->irq, fsl_espi_irq, 0, "fsl_espi", mpc8xxx_spi); if (ret) goto err_probe; if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) { mpc8xxx_spi->rx_shift = 16; mpc8xxx_spi->tx_shift = 24; } /* SPI controller initializations */ mpc8xxx_spi_write_reg(®_base->mode, 0); mpc8xxx_spi_write_reg(®_base->mask, 0); mpc8xxx_spi_write_reg(®_base->command, 0); mpc8xxx_spi_write_reg(®_base->event, 0xffffffff); /* Init eSPI CS mode register */ for_each_available_child_of_node(master->dev.of_node, nc) { /* get chip select */ prop = of_get_property(nc, "reg", &len); if (!prop || len < sizeof(*prop)) continue; i = be32_to_cpup(prop); if (i < 0 || i >= pdata->max_chipselect) continue; csmode = CSMODE_INIT_VAL; /* check if CSBEF is set in device tree */ prop = of_get_property(nc, "fsl,csbef", &len); if (prop && len >= sizeof(*prop)) { csmode &= ~(CSMODE_BEF(0xf)); csmode |= CSMODE_BEF(be32_to_cpup(prop)); } /* check if CSAFT is set in device tree */ prop = of_get_property(nc, "fsl,csaft", &len); if (prop && len >= sizeof(*prop)) { csmode &= ~(CSMODE_AFT(0xf)); csmode |= CSMODE_AFT(be32_to_cpup(prop)); } mpc8xxx_spi_write_reg(®_base->csmode[i], csmode); dev_info(dev, "cs=%d, init_csmode=0x%x\n", i, csmode); } /* Enable SPI interface */ regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE; mpc8xxx_spi_write_reg(®_base->mode, regval); pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT); pm_runtime_use_autosuspend(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); pm_runtime_get_sync(dev); ret = devm_spi_register_master(dev, master); if (ret < 0) goto err_pm; dev_info(dev, "at 0x%p (irq = %d)\n", reg_base, mpc8xxx_spi->irq); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return master; err_pm: pm_runtime_put_noidle(dev); pm_runtime_disable(dev); pm_runtime_set_suspended(dev); err_probe: spi_master_put(master); err: return ERR_PTR(ret); } static int of_fsl_espi_get_chipselects(struct device *dev) { struct device_node *np = dev->of_node; struct fsl_spi_platform_data *pdata = dev_get_platdata(dev); const u32 *prop; int len; prop = of_get_property(np, "fsl,espi-num-chipselects", &len); if (!prop || len < sizeof(*prop)) { dev_err(dev, "No 'fsl,espi-num-chipselects' property\n"); return -EINVAL; } pdata->max_chipselect = *prop; pdata->cs_control = NULL; return 0; } static int of_fsl_espi_probe(struct platform_device *ofdev) { struct device *dev = &ofdev->dev; struct device_node *np = ofdev->dev.of_node; struct spi_master *master; struct resource mem; unsigned int irq; int ret = -ENOMEM; ret = of_mpc8xxx_spi_probe(ofdev); if (ret) return ret; ret = of_fsl_espi_get_chipselects(dev); if (ret) goto err; ret = of_address_to_resource(np, 0, &mem); if (ret) goto err; irq = irq_of_parse_and_map(np, 0); if (!irq) { ret = -EINVAL; goto err; } master = fsl_espi_probe(dev, &mem, irq); if (IS_ERR(master)) { ret = PTR_ERR(master); goto err; } return 0; err: return ret; } static int of_fsl_espi_remove(struct platform_device *dev) { pm_runtime_disable(&dev->dev); return 0; } #ifdef CONFIG_PM_SLEEP static int of_fsl_espi_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); int ret; ret = spi_master_suspend(master); if (ret) { dev_warn(dev, "cannot suspend master\n"); return ret; } ret = pm_runtime_force_suspend(dev); if (ret < 0) return ret; return 0; } static int of_fsl_espi_resume(struct device *dev) { struct fsl_spi_platform_data *pdata = dev_get_platdata(dev); struct spi_master *master = dev_get_drvdata(dev); struct mpc8xxx_spi *mpc8xxx_spi; struct fsl_espi_reg *reg_base; u32 regval; int i, ret; mpc8xxx_spi = spi_master_get_devdata(master); reg_base = mpc8xxx_spi->reg_base; /* SPI controller initializations */ mpc8xxx_spi_write_reg(®_base->mode, 0); mpc8xxx_spi_write_reg(®_base->mask, 0); mpc8xxx_spi_write_reg(®_base->command, 0); mpc8xxx_spi_write_reg(®_base->event, 0xffffffff); /* Init eSPI CS mode register */ for (i = 0; i < pdata->max_chipselect; i++) mpc8xxx_spi_write_reg(®_base->csmode[i], CSMODE_INIT_VAL); /* Enable SPI interface */ regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE; mpc8xxx_spi_write_reg(®_base->mode, regval); ret = pm_runtime_force_resume(dev); if (ret < 0) return ret; return spi_master_resume(master); } #endif /* CONFIG_PM_SLEEP */ static const struct dev_pm_ops espi_pm = { SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend, fsl_espi_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume) }; static const struct of_device_id of_fsl_espi_match[] = { { .compatible = "fsl,mpc8536-espi" }, {} }; MODULE_DEVICE_TABLE(of, of_fsl_espi_match); static struct platform_driver fsl_espi_driver = { .driver = { .name = "fsl_espi", .of_match_table = of_fsl_espi_match, .pm = &espi_pm, }, .probe = of_fsl_espi_probe, .remove = of_fsl_espi_remove, }; module_platform_driver(fsl_espi_driver); MODULE_AUTHOR("Mingkai Hu"); MODULE_DESCRIPTION("Enhanced Freescale SPI Driver"); MODULE_LICENSE("GPL");