/* * Driver for Broadcom BCM2835 SPI Controllers * * Copyright (C) 2012 Chris Boot * Copyright (C) 2013 Stephen Warren * Copyright (C) 2015 Martin Sperl * * This driver is inspired by: * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos * spi-atmel.c, Copyright (C) 2006 Atmel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* SPI register offsets */ #define BCM2835_SPI_CS 0x00 #define BCM2835_SPI_FIFO 0x04 #define BCM2835_SPI_CLK 0x08 #define BCM2835_SPI_DLEN 0x0c #define BCM2835_SPI_LTOH 0x10 #define BCM2835_SPI_DC 0x14 /* Bitfields in CS */ #define BCM2835_SPI_CS_LEN_LONG 0x02000000 #define BCM2835_SPI_CS_DMA_LEN 0x01000000 #define BCM2835_SPI_CS_CSPOL2 0x00800000 #define BCM2835_SPI_CS_CSPOL1 0x00400000 #define BCM2835_SPI_CS_CSPOL0 0x00200000 #define BCM2835_SPI_CS_RXF 0x00100000 #define BCM2835_SPI_CS_RXR 0x00080000 #define BCM2835_SPI_CS_TXD 0x00040000 #define BCM2835_SPI_CS_RXD 0x00020000 #define BCM2835_SPI_CS_DONE 0x00010000 #define BCM2835_SPI_CS_LEN 0x00002000 #define BCM2835_SPI_CS_REN 0x00001000 #define BCM2835_SPI_CS_ADCS 0x00000800 #define BCM2835_SPI_CS_INTR 0x00000400 #define BCM2835_SPI_CS_INTD 0x00000200 #define BCM2835_SPI_CS_DMAEN 0x00000100 #define BCM2835_SPI_CS_TA 0x00000080 #define BCM2835_SPI_CS_CSPOL 0x00000040 #define BCM2835_SPI_CS_CLEAR_RX 0x00000020 #define BCM2835_SPI_CS_CLEAR_TX 0x00000010 #define BCM2835_SPI_CS_CPOL 0x00000008 #define BCM2835_SPI_CS_CPHA 0x00000004 #define BCM2835_SPI_CS_CS_10 0x00000002 #define BCM2835_SPI_CS_CS_01 0x00000001 #define BCM2835_SPI_FIFO_SIZE 64 #define BCM2835_SPI_FIFO_SIZE_3_4 48 #define BCM2835_SPI_POLLING_LIMIT_US 30 #define BCM2835_SPI_POLLING_JIFFIES 2 #define BCM2835_SPI_DMA_MIN_LENGTH 96 #define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \ | SPI_NO_CS | SPI_3WIRE) #define DRV_NAME "spi-bcm2835" /** * struct bcm2835_spi - BCM2835 SPI controller * @regs: base address of register map * @clk: core clock, divided to calculate serial clock * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full * @tfr: SPI transfer currently processed * @tx_buf: pointer whence next transmitted byte is read * @rx_buf: pointer where next received byte is written * @tx_len: remaining bytes to transmit * @rx_len: remaining bytes to receive * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's * length is not a multiple of 4 (to overcome hardware limitation) * @rx_prologue: bytes received without DMA if first RX sglist entry's * length is not a multiple of 4 (to overcome hardware limitation) * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry * @dma_pending: whether a DMA transfer is in progress */ struct bcm2835_spi { void __iomem *regs; struct clk *clk; int irq; struct spi_transfer *tfr; const u8 *tx_buf; u8 *rx_buf; int tx_len; int rx_len; int tx_prologue; int rx_prologue; unsigned int tx_spillover; unsigned int dma_pending; }; static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg) { return readl(bs->regs + reg); } static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val) { writel(val, bs->regs + reg); } static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs) { u8 byte; while ((bs->rx_len) && (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) { byte = bcm2835_rd(bs, BCM2835_SPI_FIFO); if (bs->rx_buf) *bs->rx_buf++ = byte; bs->rx_len--; } } static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs) { u8 byte; while ((bs->tx_len) && (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) { byte = bs->tx_buf ? *bs->tx_buf++ : 0; bcm2835_wr(bs, BCM2835_SPI_FIFO, byte); bs->tx_len--; } } /** * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO * @bs: BCM2835 SPI controller * @count: bytes to read from RX FIFO * * The caller must ensure that @bs->rx_len is greater than or equal to @count, * that the RX FIFO contains at least @count bytes and that the DMA Enable flag * in the CS register is set (such that a read from the FIFO register receives * 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL. */ static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count) { u32 val; int len; bs->rx_len -= count; while (count > 0) { val = bcm2835_rd(bs, BCM2835_SPI_FIFO); len = min(count, 4); memcpy(bs->rx_buf, &val, len); bs->rx_buf += len; count -= 4; } } /** * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO * @bs: BCM2835 SPI controller * @count: bytes to write to TX FIFO * * The caller must ensure that @bs->tx_len is greater than or equal to @count, * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag * in the CS register is set (such that a write to the FIFO register transmits * 32-bit instead of just 8-bit). */ static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count) { u32 val; int len; bs->tx_len -= count; while (count > 0) { if (bs->tx_buf) { len = min(count, 4); memcpy(&val, bs->tx_buf, len); bs->tx_buf += len; } else { val = 0; } bcm2835_wr(bs, BCM2835_SPI_FIFO, val); count -= 4; } } /** * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty * @bs: BCM2835 SPI controller * * The caller must ensure that the RX FIFO can accommodate as many bytes * as have been written to the TX FIFO: Transmission is halted once the * RX FIFO is full, causing this function to spin forever. */ static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs) { while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE)) cpu_relax(); } /** * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO * @bs: BCM2835 SPI controller * @count: bytes available for reading in RX FIFO */ static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count) { u8 val; count = min(count, bs->rx_len); bs->rx_len -= count; while (count) { val = bcm2835_rd(bs, BCM2835_SPI_FIFO); if (bs->rx_buf) *bs->rx_buf++ = val; count--; } } /** * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO * @bs: BCM2835 SPI controller * @count: bytes available for writing in TX FIFO */ static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count) { u8 val; count = min(count, bs->tx_len); bs->tx_len -= count; while (count) { val = bs->tx_buf ? *bs->tx_buf++ : 0; bcm2835_wr(bs, BCM2835_SPI_FIFO, val); count--; } } static void bcm2835_spi_reset_hw(struct spi_master *master) { struct bcm2835_spi *bs = spi_master_get_devdata(master); u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); /* Disable SPI interrupts and transfer */ cs &= ~(BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_DMAEN | BCM2835_SPI_CS_TA); /* and reset RX/TX FIFOS */ cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX; /* and reset the SPI_HW */ bcm2835_wr(bs, BCM2835_SPI_CS, cs); /* as well as DLEN */ bcm2835_wr(bs, BCM2835_SPI_DLEN, 0); } static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id) { struct spi_master *master = dev_id; struct bcm2835_spi *bs = spi_master_get_devdata(master); u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); /* * An interrupt is signaled either if DONE is set (TX FIFO empty) * or if RXR is set (RX FIFO >= ¾ full). */ if (cs & BCM2835_SPI_CS_RXF) bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); else if (cs & BCM2835_SPI_CS_RXR) bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4); if (bs->tx_len && cs & BCM2835_SPI_CS_DONE) bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); /* Read as many bytes as possible from FIFO */ bcm2835_rd_fifo(bs); /* Write as many bytes as possible to FIFO */ bcm2835_wr_fifo(bs); if (!bs->rx_len) { /* Transfer complete - reset SPI HW */ bcm2835_spi_reset_hw(master); /* wake up the framework */ complete(&master->xfer_completion); } return IRQ_HANDLED; } static int bcm2835_spi_transfer_one_irq(struct spi_master *master, struct spi_device *spi, struct spi_transfer *tfr, u32 cs, bool fifo_empty) { struct bcm2835_spi *bs = spi_master_get_devdata(master); /* * Enable HW block, but with interrupts still disabled. * Otherwise the empty TX FIFO would immediately trigger an interrupt. */ bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA); /* fill TX FIFO as much as possible */ if (fifo_empty) bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); bcm2835_wr_fifo(bs); /* enable interrupts */ cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA; bcm2835_wr(bs, BCM2835_SPI_CS, cs); /* signal that we need to wait for completion */ return 1; } /** * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA * @master: SPI master * @tfr: SPI transfer * @bs: BCM2835 SPI controller * @cs: CS register * * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks. * Only the final write access is permitted to transmit less than 4 bytes, the * SPI controller deduces its intended size from the DLEN register. * * If a TX or RX sglist contains multiple entries, one per page, and the first * entry starts in the middle of a page, that first entry's length may not be * a multiple of 4. Subsequent entries are fine because they span an entire * page, hence do have a length that's a multiple of 4. * * This cannot happen with kmalloc'ed buffers (which is what most clients use) * because they are contiguous in physical memory and therefore not split on * page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed * buffers. * * The DMA engine is incapable of combining sglist entries into a continuous * stream of 4 byte chunks, it treats every entry separately: A TX entry is * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX * entry is rounded up by throwing away received bytes. * * Overcome this limitation by transferring the first few bytes without DMA: * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42, * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO. * The residue of 1 byte in the RX FIFO is picked up by DMA. Together with * the rest of the first RX sglist entry it makes up a multiple of 4 bytes. * * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1, * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO. * Caution, the additional 4 bytes spill over to the second TX sglist entry * if the length of the first is *exactly* 1. * * At most 6 bytes are written and at most 3 bytes read. Do we know the * transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH. * * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width * by the DMA engine. Toggling the DMA Enable flag in the CS register switches * the width but also garbles the FIFO's contents. The prologue must therefore * be transmitted in 32-bit width to ensure that the following DMA transfer can * pick up the residue in the RX FIFO in ungarbled form. */ static void bcm2835_spi_transfer_prologue(struct spi_master *master, struct spi_transfer *tfr, struct bcm2835_spi *bs, u32 cs) { int tx_remaining; bs->tfr = tfr; bs->tx_prologue = 0; bs->rx_prologue = 0; bs->tx_spillover = false; if (!sg_is_last(&tfr->tx_sg.sgl[0])) bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3; if (!sg_is_last(&tfr->rx_sg.sgl[0])) { bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3; if (bs->rx_prologue > bs->tx_prologue) { if (sg_is_last(&tfr->tx_sg.sgl[0])) { bs->tx_prologue = bs->rx_prologue; } else { bs->tx_prologue += 4; bs->tx_spillover = !(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3); } } } /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */ if (!bs->tx_prologue) return; /* Write and read RX prologue. Adjust first entry in RX sglist. */ if (bs->rx_prologue) { bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue); bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN); bcm2835_wr_fifo_count(bs, bs->rx_prologue); bcm2835_wait_tx_fifo_empty(bs); bcm2835_rd_fifo_count(bs, bs->rx_prologue); bcm2835_spi_reset_hw(master); dma_sync_single_for_device(master->dma_rx->device->dev, sg_dma_address(&tfr->rx_sg.sgl[0]), bs->rx_prologue, DMA_FROM_DEVICE); sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue; sg_dma_len(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue; } /* * Write remaining TX prologue. Adjust first entry in TX sglist. * Also adjust second entry if prologue spills over to it. */ tx_remaining = bs->tx_prologue - bs->rx_prologue; if (tx_remaining) { bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining); bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN); bcm2835_wr_fifo_count(bs, tx_remaining); bcm2835_wait_tx_fifo_empty(bs); bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX); } if (likely(!bs->tx_spillover)) { sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue; sg_dma_len(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue; } else { sg_dma_len(&tfr->tx_sg.sgl[0]) = 0; sg_dma_address(&tfr->tx_sg.sgl[1]) += 4; sg_dma_len(&tfr->tx_sg.sgl[1]) -= 4; } } /** * bcm2835_spi_undo_prologue() - reconstruct original sglist state * @bs: BCM2835 SPI controller * * Undo changes which were made to an SPI transfer's sglist when transmitting * the prologue. This is necessary to ensure the same memory ranges are * unmapped that were originally mapped. */ static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs) { struct spi_transfer *tfr = bs->tfr; if (!bs->tx_prologue) return; if (bs->rx_prologue) { sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue; sg_dma_len(&tfr->rx_sg.sgl[0]) += bs->rx_prologue; } if (likely(!bs->tx_spillover)) { sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue; sg_dma_len(&tfr->tx_sg.sgl[0]) += bs->tx_prologue; } else { sg_dma_len(&tfr->tx_sg.sgl[0]) = bs->tx_prologue - 4; sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4; sg_dma_len(&tfr->tx_sg.sgl[1]) += 4; } } static void bcm2835_spi_dma_done(void *data) { struct spi_master *master = data; struct bcm2835_spi *bs = spi_master_get_devdata(master); /* reset fifo and HW */ bcm2835_spi_reset_hw(master); /* and terminate tx-dma as we do not have an irq for it * because when the rx dma will terminate and this callback * is called the tx-dma must have finished - can't get to this * situation otherwise... */ if (cmpxchg(&bs->dma_pending, true, false)) { dmaengine_terminate_async(master->dma_tx); bcm2835_spi_undo_prologue(bs); } /* and mark as completed */; complete(&master->xfer_completion); } static int bcm2835_spi_prepare_sg(struct spi_master *master, struct spi_transfer *tfr, bool is_tx) { struct dma_chan *chan; struct scatterlist *sgl; unsigned int nents; enum dma_transfer_direction dir; unsigned long flags; struct dma_async_tx_descriptor *desc; dma_cookie_t cookie; if (is_tx) { dir = DMA_MEM_TO_DEV; chan = master->dma_tx; nents = tfr->tx_sg.nents; sgl = tfr->tx_sg.sgl; flags = 0 /* no tx interrupt */; } else { dir = DMA_DEV_TO_MEM; chan = master->dma_rx; nents = tfr->rx_sg.nents; sgl = tfr->rx_sg.sgl; flags = DMA_PREP_INTERRUPT; } /* prepare the channel */ desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags); if (!desc) return -EINVAL; /* set callback for rx */ if (!is_tx) { desc->callback = bcm2835_spi_dma_done; desc->callback_param = master; } /* submit it to DMA-engine */ cookie = dmaengine_submit(desc); return dma_submit_error(cookie); } static int bcm2835_spi_transfer_one_dma(struct spi_master *master, struct spi_device *spi, struct spi_transfer *tfr, u32 cs) { struct bcm2835_spi *bs = spi_master_get_devdata(master); int ret; /* * Transfer first few bytes without DMA if length of first TX or RX * sglist entry is not a multiple of 4 bytes (hardware limitation). */ bcm2835_spi_transfer_prologue(master, tfr, bs, cs); /* setup tx-DMA */ ret = bcm2835_spi_prepare_sg(master, tfr, true); if (ret) goto err_reset_hw; /* start TX early */ dma_async_issue_pending(master->dma_tx); /* mark as dma pending */ bs->dma_pending = 1; /* set the DMA length */ bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len); /* start the HW */ bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN); /* setup rx-DMA late - to run transfers while * mapping of the rx buffers still takes place * this saves 10us or more. */ ret = bcm2835_spi_prepare_sg(master, tfr, false); if (ret) { /* need to reset on errors */ dmaengine_terminate_sync(master->dma_tx); bs->dma_pending = false; goto err_reset_hw; } /* start rx dma late */ dma_async_issue_pending(master->dma_rx); /* wait for wakeup in framework */ return 1; err_reset_hw: bcm2835_spi_reset_hw(master); bcm2835_spi_undo_prologue(bs); return ret; } static bool bcm2835_spi_can_dma(struct spi_master *master, struct spi_device *spi, struct spi_transfer *tfr) { /* we start DMA efforts only on bigger transfers */ if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH) return false; /* return OK */ return true; } static void bcm2835_dma_release(struct spi_master *master) { if (master->dma_tx) { dmaengine_terminate_sync(master->dma_tx); dma_release_channel(master->dma_tx); master->dma_tx = NULL; } if (master->dma_rx) { dmaengine_terminate_sync(master->dma_rx); dma_release_channel(master->dma_rx); master->dma_rx = NULL; } } static void bcm2835_dma_init(struct spi_master *master, struct device *dev) { struct dma_slave_config slave_config; const __be32 *addr; dma_addr_t dma_reg_base; int ret; /* base address in dma-space */ addr = of_get_address(master->dev.of_node, 0, NULL, NULL); if (!addr) { dev_err(dev, "could not get DMA-register address - not using dma mode\n"); goto err; } dma_reg_base = be32_to_cpup(addr); /* get tx/rx dma */ master->dma_tx = dma_request_slave_channel(dev, "tx"); if (!master->dma_tx) { dev_err(dev, "no tx-dma configuration found - not using dma mode\n"); goto err; } master->dma_rx = dma_request_slave_channel(dev, "rx"); if (!master->dma_rx) { dev_err(dev, "no rx-dma configuration found - not using dma mode\n"); goto err_release; } /* configure DMAs */ slave_config.direction = DMA_MEM_TO_DEV; slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO); slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; ret = dmaengine_slave_config(master->dma_tx, &slave_config); if (ret) goto err_config; slave_config.direction = DMA_DEV_TO_MEM; slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO); slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; ret = dmaengine_slave_config(master->dma_rx, &slave_config); if (ret) goto err_config; /* all went well, so set can_dma */ master->can_dma = bcm2835_spi_can_dma; /* need to do TX AND RX DMA, so we need dummy buffers */ master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX; return; err_config: dev_err(dev, "issue configuring dma: %d - not using DMA mode\n", ret); err_release: bcm2835_dma_release(master); err: return; } static int bcm2835_spi_transfer_one_poll(struct spi_master *master, struct spi_device *spi, struct spi_transfer *tfr, u32 cs, unsigned long long xfer_time_us) { struct bcm2835_spi *bs = spi_master_get_devdata(master); unsigned long timeout; /* enable HW block without interrupts */ bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA); /* fill in the fifo before timeout calculations * if we are interrupted here, then the data is * getting transferred by the HW while we are interrupted */ bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); /* set the timeout */ timeout = jiffies + BCM2835_SPI_POLLING_JIFFIES; /* loop until finished the transfer */ while (bs->rx_len) { /* fill in tx fifo with remaining data */ bcm2835_wr_fifo(bs); /* read from fifo as much as possible */ bcm2835_rd_fifo(bs); /* if there is still data pending to read * then check the timeout */ if (bs->rx_len && time_after(jiffies, timeout)) { dev_dbg_ratelimited(&spi->dev, "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n", jiffies - timeout, bs->tx_len, bs->rx_len); /* fall back to interrupt mode */ return bcm2835_spi_transfer_one_irq(master, spi, tfr, cs, false); } } /* Transfer complete - reset SPI HW */ bcm2835_spi_reset_hw(master); /* and return without waiting for completion */ return 0; } static int bcm2835_spi_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *tfr) { struct bcm2835_spi *bs = spi_master_get_devdata(master); unsigned long spi_hz, clk_hz, cdiv; unsigned long spi_used_hz; unsigned long long xfer_time_us; u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); /* set clock */ spi_hz = tfr->speed_hz; clk_hz = clk_get_rate(bs->clk); if (spi_hz >= clk_hz / 2) { cdiv = 2; /* clk_hz/2 is the fastest we can go */ } else if (spi_hz) { /* CDIV must be a multiple of two */ cdiv = DIV_ROUND_UP(clk_hz, spi_hz); cdiv += (cdiv % 2); if (cdiv >= 65536) cdiv = 0; /* 0 is the slowest we can go */ } else { cdiv = 0; /* 0 is the slowest we can go */ } spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536); bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv); /* handle all the 3-wire mode */ if ((spi->mode & SPI_3WIRE) && (tfr->rx_buf)) cs |= BCM2835_SPI_CS_REN; else cs &= ~BCM2835_SPI_CS_REN; /* * The driver always uses software-controlled GPIO Chip Select. * Set the hardware-controlled native Chip Select to an invalid * value to prevent it from interfering. */ cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01; /* set transmit buffers and length */ bs->tx_buf = tfr->tx_buf; bs->rx_buf = tfr->rx_buf; bs->tx_len = tfr->len; bs->rx_len = tfr->len; /* calculate the estimated time in us the transfer runs */ xfer_time_us = (unsigned long long)tfr->len * 9 /* clocks/byte - SPI-HW waits 1 clock after each byte */ * 1000000; do_div(xfer_time_us, spi_used_hz); /* for short requests run polling*/ if (xfer_time_us <= BCM2835_SPI_POLLING_LIMIT_US) return bcm2835_spi_transfer_one_poll(master, spi, tfr, cs, xfer_time_us); /* run in dma mode if conditions are right */ if (master->can_dma && bcm2835_spi_can_dma(master, spi, tfr)) return bcm2835_spi_transfer_one_dma(master, spi, tfr, cs); /* run in interrupt-mode */ return bcm2835_spi_transfer_one_irq(master, spi, tfr, cs, true); } static int bcm2835_spi_prepare_message(struct spi_master *master, struct spi_message *msg) { struct spi_device *spi = msg->spi; struct bcm2835_spi *bs = spi_master_get_devdata(master); u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); int ret; /* * DMA transfers are limited to 16 bit (0 to 65535 bytes) by the SPI HW * due to DLEN. Split up transfers (32-bit FIFO aligned) if the limit is * exceeded. */ ret = spi_split_transfers_maxsize(master, msg, 65532, GFP_KERNEL | GFP_DMA); if (ret) return ret; cs &= ~(BCM2835_SPI_CS_CPOL | BCM2835_SPI_CS_CPHA); if (spi->mode & SPI_CPOL) cs |= BCM2835_SPI_CS_CPOL; if (spi->mode & SPI_CPHA) cs |= BCM2835_SPI_CS_CPHA; bcm2835_wr(bs, BCM2835_SPI_CS, cs); return 0; } static void bcm2835_spi_handle_err(struct spi_master *master, struct spi_message *msg) { struct bcm2835_spi *bs = spi_master_get_devdata(master); /* if an error occurred and we have an active dma, then terminate */ if (cmpxchg(&bs->dma_pending, true, false)) { dmaengine_terminate_sync(master->dma_tx); dmaengine_terminate_sync(master->dma_rx); bcm2835_spi_undo_prologue(bs); } /* and reset */ bcm2835_spi_reset_hw(master); } static int chip_match_name(struct gpio_chip *chip, void *data) { return !strcmp(chip->label, data); } static int bcm2835_spi_setup(struct spi_device *spi) { int err; struct gpio_chip *chip; /* * sanity checking the native-chipselects */ if (spi->mode & SPI_NO_CS) return 0; if (gpio_is_valid(spi->cs_gpio)) return 0; if (spi->chip_select > 1) { /* error in the case of native CS requested with CS > 1 * officially there is a CS2, but it is not documented * which GPIO is connected with that... */ dev_err(&spi->dev, "setup: only two native chip-selects are supported\n"); return -EINVAL; } /* now translate native cs to GPIO */ /* get the gpio chip for the base */ chip = gpiochip_find("pinctrl-bcm2835", chip_match_name); if (!chip) return 0; /* and calculate the real CS */ spi->cs_gpio = chip->base + 8 - spi->chip_select; /* and set up the "mode" and level */ dev_info(&spi->dev, "setting up native-CS%i as GPIO %i\n", spi->chip_select, spi->cs_gpio); /* set up GPIO as output and pull to the correct level */ err = gpio_direction_output(spi->cs_gpio, (spi->mode & SPI_CS_HIGH) ? 0 : 1); if (err) { dev_err(&spi->dev, "could not set CS%i gpio %i as output: %i", spi->chip_select, spi->cs_gpio, err); return err; } return 0; } static int bcm2835_spi_probe(struct platform_device *pdev) { struct spi_master *master; struct bcm2835_spi *bs; struct resource *res; int err; master = spi_alloc_master(&pdev->dev, sizeof(*bs)); if (!master) { dev_err(&pdev->dev, "spi_alloc_master() failed\n"); return -ENOMEM; } platform_set_drvdata(pdev, master); master->mode_bits = BCM2835_SPI_MODE_BITS; master->bits_per_word_mask = SPI_BPW_MASK(8); master->num_chipselect = 3; master->setup = bcm2835_spi_setup; master->transfer_one = bcm2835_spi_transfer_one; master->handle_err = bcm2835_spi_handle_err; master->prepare_message = bcm2835_spi_prepare_message; master->dev.of_node = pdev->dev.of_node; bs = spi_master_get_devdata(master); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); bs->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(bs->regs)) { err = PTR_ERR(bs->regs); goto out_master_put; } bs->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(bs->clk)) { err = PTR_ERR(bs->clk); dev_err(&pdev->dev, "could not get clk: %d\n", err); goto out_master_put; } bs->irq = platform_get_irq(pdev, 0); if (bs->irq <= 0) { dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq); err = bs->irq ? bs->irq : -ENODEV; goto out_master_put; } clk_prepare_enable(bs->clk); bcm2835_dma_init(master, &pdev->dev); /* initialise the hardware with the default polarities */ bcm2835_wr(bs, BCM2835_SPI_CS, BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX); err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0, dev_name(&pdev->dev), master); if (err) { dev_err(&pdev->dev, "could not request IRQ: %d\n", err); goto out_clk_disable; } err = devm_spi_register_master(&pdev->dev, master); if (err) { dev_err(&pdev->dev, "could not register SPI master: %d\n", err); goto out_clk_disable; } return 0; out_clk_disable: clk_disable_unprepare(bs->clk); out_master_put: spi_master_put(master); return err; } static int bcm2835_spi_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); struct bcm2835_spi *bs = spi_master_get_devdata(master); /* Clear FIFOs, and disable the HW block */ bcm2835_wr(bs, BCM2835_SPI_CS, BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX); clk_disable_unprepare(bs->clk); bcm2835_dma_release(master); return 0; } static const struct of_device_id bcm2835_spi_match[] = { { .compatible = "brcm,bcm2835-spi", }, {} }; MODULE_DEVICE_TABLE(of, bcm2835_spi_match); static struct platform_driver bcm2835_spi_driver = { .driver = { .name = DRV_NAME, .of_match_table = bcm2835_spi_match, }, .probe = bcm2835_spi_probe, .remove = bcm2835_spi_remove, }; module_platform_driver(bcm2835_spi_driver); MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835"); MODULE_AUTHOR("Chris Boot "); MODULE_LICENSE("GPL");