/* * Adaptec AAC series RAID controller driver * (c) Copyright 2001 Red Hat Inc. * * based on the old aacraid driver that is.. * Adaptec aacraid device driver for Linux. * * Copyright (c) 2000-2010 Adaptec, Inc. * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * Module Name: * commctrl.c * * Abstract: Contains all routines for control of the AFA comm layer * */ #include #include #include #include #include #include #include #include #include #include /* ssleep prototype */ #include #include #include #include "aacraid.h" /** * ioctl_send_fib - send a FIB from userspace * @dev: adapter is being processed * @arg: arguments to the ioctl call * * This routine sends a fib to the adapter on behalf of a user level * program. */ # define AAC_DEBUG_PREAMBLE KERN_INFO # define AAC_DEBUG_POSTAMBLE static int ioctl_send_fib(struct aac_dev * dev, void __user *arg) { struct hw_fib * kfib; struct fib *fibptr; struct hw_fib * hw_fib = (struct hw_fib *)0; dma_addr_t hw_fib_pa = (dma_addr_t)0LL; unsigned int size, osize; int retval; if (dev->in_reset) { return -EBUSY; } fibptr = aac_fib_alloc(dev); if(fibptr == NULL) { return -ENOMEM; } kfib = fibptr->hw_fib_va; /* * First copy in the header so that we can check the size field. */ if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) { aac_fib_free(fibptr); return -EFAULT; } /* * Since we copy based on the fib header size, make sure that we * will not overrun the buffer when we copy the memory. Return * an error if we would. */ osize = size = le16_to_cpu(kfib->header.Size) + sizeof(struct aac_fibhdr); if (size < le16_to_cpu(kfib->header.SenderSize)) size = le16_to_cpu(kfib->header.SenderSize); if (size > dev->max_fib_size) { dma_addr_t daddr; if (size > 2048) { retval = -EINVAL; goto cleanup; } kfib = dma_alloc_coherent(&dev->pdev->dev, size, &daddr, GFP_KERNEL); if (!kfib) { retval = -ENOMEM; goto cleanup; } /* Highjack the hw_fib */ hw_fib = fibptr->hw_fib_va; hw_fib_pa = fibptr->hw_fib_pa; fibptr->hw_fib_va = kfib; fibptr->hw_fib_pa = daddr; memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size); memcpy(kfib, hw_fib, dev->max_fib_size); } if (copy_from_user(kfib, arg, size)) { retval = -EFAULT; goto cleanup; } /* Sanity check the second copy */ if ((osize != le16_to_cpu(kfib->header.Size) + sizeof(struct aac_fibhdr)) || (size < le16_to_cpu(kfib->header.SenderSize))) { retval = -EINVAL; goto cleanup; } if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) { aac_adapter_interrupt(dev); /* * Since we didn't really send a fib, zero out the state to allow * cleanup code not to assert. */ kfib->header.XferState = 0; } else { retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr, le16_to_cpu(kfib->header.Size) , FsaNormal, 1, 1, NULL, NULL); if (retval) { goto cleanup; } if (aac_fib_complete(fibptr) != 0) { retval = -EINVAL; goto cleanup; } } /* * Make sure that the size returned by the adapter (which includes * the header) is less than or equal to the size of a fib, so we * don't corrupt application data. Then copy that size to the user * buffer. (Don't try to add the header information again, since it * was already included by the adapter.) */ retval = 0; if (copy_to_user(arg, (void *)kfib, size)) retval = -EFAULT; cleanup: if (hw_fib) { dma_free_coherent(&dev->pdev->dev, size, kfib, fibptr->hw_fib_pa); fibptr->hw_fib_pa = hw_fib_pa; fibptr->hw_fib_va = hw_fib; } if (retval != -ERESTARTSYS) aac_fib_free(fibptr); return retval; } /** * open_getadapter_fib - Get the next fib * * This routine will get the next Fib, if available, from the AdapterFibContext * passed in from the user. */ static int open_getadapter_fib(struct aac_dev * dev, void __user *arg) { struct aac_fib_context * fibctx; int status; fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL); if (fibctx == NULL) { status = -ENOMEM; } else { unsigned long flags; struct list_head * entry; struct aac_fib_context * context; fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT; fibctx->size = sizeof(struct aac_fib_context); /* * Yes yes, I know this could be an index, but we have a * better guarantee of uniqueness for the locked loop below. * Without the aid of a persistent history, this also helps * reduce the chance that the opaque context would be reused. */ fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF); /* * Initialize the mutex used to wait for the next AIF. */ init_completion(&fibctx->completion); fibctx->wait = 0; /* * Initialize the fibs and set the count of fibs on * the list to 0. */ fibctx->count = 0; INIT_LIST_HEAD(&fibctx->fib_list); fibctx->jiffies = jiffies/HZ; /* * Now add this context onto the adapter's * AdapterFibContext list. */ spin_lock_irqsave(&dev->fib_lock, flags); /* Ensure that we have a unique identifier */ entry = dev->fib_list.next; while (entry != &dev->fib_list) { context = list_entry(entry, struct aac_fib_context, next); if (context->unique == fibctx->unique) { /* Not unique (32 bits) */ fibctx->unique++; entry = dev->fib_list.next; } else { entry = entry->next; } } list_add_tail(&fibctx->next, &dev->fib_list); spin_unlock_irqrestore(&dev->fib_lock, flags); if (copy_to_user(arg, &fibctx->unique, sizeof(fibctx->unique))) { status = -EFAULT; } else { status = 0; } } return status; } /** * next_getadapter_fib - get the next fib * @dev: adapter to use * @arg: ioctl argument * * This routine will get the next Fib, if available, from the AdapterFibContext * passed in from the user. */ static int next_getadapter_fib(struct aac_dev * dev, void __user *arg) { struct fib_ioctl f; struct fib *fib; struct aac_fib_context *fibctx; int status; struct list_head * entry; unsigned long flags; if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl))) return -EFAULT; /* * Verify that the HANDLE passed in was a valid AdapterFibContext * * Search the list of AdapterFibContext addresses on the adapter * to be sure this is a valid address */ spin_lock_irqsave(&dev->fib_lock, flags); entry = dev->fib_list.next; fibctx = NULL; while (entry != &dev->fib_list) { fibctx = list_entry(entry, struct aac_fib_context, next); /* * Extract the AdapterFibContext from the Input parameters. */ if (fibctx->unique == f.fibctx) { /* We found a winner */ break; } entry = entry->next; fibctx = NULL; } if (!fibctx) { spin_unlock_irqrestore(&dev->fib_lock, flags); dprintk ((KERN_INFO "Fib Context not found\n")); return -EINVAL; } if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) || (fibctx->size != sizeof(struct aac_fib_context))) { spin_unlock_irqrestore(&dev->fib_lock, flags); dprintk ((KERN_INFO "Fib Context corrupt?\n")); return -EINVAL; } status = 0; /* * If there are no fibs to send back, then either wait or return * -EAGAIN */ return_fib: if (!list_empty(&fibctx->fib_list)) { /* * Pull the next fib from the fibs */ entry = fibctx->fib_list.next; list_del(entry); fib = list_entry(entry, struct fib, fiblink); fibctx->count--; spin_unlock_irqrestore(&dev->fib_lock, flags); if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) { kfree(fib->hw_fib_va); kfree(fib); return -EFAULT; } /* * Free the space occupied by this copy of the fib. */ kfree(fib->hw_fib_va); kfree(fib); status = 0; } else { spin_unlock_irqrestore(&dev->fib_lock, flags); /* If someone killed the AIF aacraid thread, restart it */ status = !dev->aif_thread; if (status && !dev->in_reset && dev->queues && dev->fsa_dev) { /* Be paranoid, be very paranoid! */ kthread_stop(dev->thread); ssleep(1); dev->aif_thread = 0; dev->thread = kthread_run(aac_command_thread, dev, "%s", dev->name); ssleep(1); } if (f.wait) { if (wait_for_completion_interruptible(&fibctx->completion) < 0) { status = -ERESTARTSYS; } else { /* Lock again and retry */ spin_lock_irqsave(&dev->fib_lock, flags); goto return_fib; } } else { status = -EAGAIN; } } fibctx->jiffies = jiffies/HZ; return status; } int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx) { struct fib *fib; /* * First free any FIBs that have not been consumed. */ while (!list_empty(&fibctx->fib_list)) { struct list_head * entry; /* * Pull the next fib from the fibs */ entry = fibctx->fib_list.next; list_del(entry); fib = list_entry(entry, struct fib, fiblink); fibctx->count--; /* * Free the space occupied by this copy of the fib. */ kfree(fib->hw_fib_va); kfree(fib); } /* * Remove the Context from the AdapterFibContext List */ list_del(&fibctx->next); /* * Invalidate context */ fibctx->type = 0; /* * Free the space occupied by the Context */ kfree(fibctx); return 0; } /** * close_getadapter_fib - close down user fib context * @dev: adapter * @arg: ioctl arguments * * This routine will close down the fibctx passed in from the user. */ static int close_getadapter_fib(struct aac_dev * dev, void __user *arg) { struct aac_fib_context *fibctx; int status; unsigned long flags; struct list_head * entry; /* * Verify that the HANDLE passed in was a valid AdapterFibContext * * Search the list of AdapterFibContext addresses on the adapter * to be sure this is a valid address */ entry = dev->fib_list.next; fibctx = NULL; while(entry != &dev->fib_list) { fibctx = list_entry(entry, struct aac_fib_context, next); /* * Extract the fibctx from the input parameters */ if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */ break; entry = entry->next; fibctx = NULL; } if (!fibctx) return 0; /* Already gone */ if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) || (fibctx->size != sizeof(struct aac_fib_context))) return -EINVAL; spin_lock_irqsave(&dev->fib_lock, flags); status = aac_close_fib_context(dev, fibctx); spin_unlock_irqrestore(&dev->fib_lock, flags); return status; } /** * check_revision - close down user fib context * @dev: adapter * @arg: ioctl arguments * * This routine returns the driver version. * Under Linux, there have been no version incompatibilities, so this is * simple! */ static int check_revision(struct aac_dev *dev, void __user *arg) { struct revision response; char *driver_version = aac_driver_version; u32 version; response.compat = 1; version = (simple_strtol(driver_version, &driver_version, 10) << 24) | 0x00000400; version += simple_strtol(driver_version + 1, &driver_version, 10) << 16; version += simple_strtol(driver_version + 1, NULL, 10); response.version = cpu_to_le32(version); # ifdef AAC_DRIVER_BUILD response.build = cpu_to_le32(AAC_DRIVER_BUILD); # else response.build = cpu_to_le32(9999); # endif if (copy_to_user(arg, &response, sizeof(response))) return -EFAULT; return 0; } /** * * aac_send_raw_scb * */ static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg) { struct fib* srbfib; int status; struct aac_srb *srbcmd = NULL; struct aac_hba_cmd_req *hbacmd = NULL; struct user_aac_srb *user_srbcmd = NULL; struct user_aac_srb __user *user_srb = arg; struct aac_srb_reply __user *user_reply; u32 chn; u32 fibsize = 0; u32 flags = 0; s32 rcode = 0; u32 data_dir; void __user *sg_user[HBA_MAX_SG_EMBEDDED]; void *sg_list[HBA_MAX_SG_EMBEDDED]; u32 sg_count[HBA_MAX_SG_EMBEDDED]; u32 sg_indx = 0; u32 byte_count = 0; u32 actual_fibsize64, actual_fibsize = 0; int i; int is_native_device; u64 address; if (dev->in_reset) { dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n")); return -EBUSY; } if (!capable(CAP_SYS_ADMIN)){ dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n")); return -EPERM; } /* * Allocate and initialize a Fib then setup a SRB command */ if (!(srbfib = aac_fib_alloc(dev))) { return -ENOMEM; } memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */ if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){ dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n")); rcode = -EFAULT; goto cleanup; } if ((fibsize < (sizeof(struct user_aac_srb) - sizeof(struct user_sgentry))) || (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))) { rcode = -EINVAL; goto cleanup; } user_srbcmd = kmalloc(fibsize, GFP_KERNEL); if (!user_srbcmd) { dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n")); rcode = -ENOMEM; goto cleanup; } if(copy_from_user(user_srbcmd, user_srb,fibsize)){ dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n")); rcode = -EFAULT; goto cleanup; } flags = user_srbcmd->flags; /* from user in cpu order */ switch (flags & (SRB_DataIn | SRB_DataOut)) { case SRB_DataOut: data_dir = DMA_TO_DEVICE; break; case (SRB_DataIn | SRB_DataOut): data_dir = DMA_BIDIRECTIONAL; break; case SRB_DataIn: data_dir = DMA_FROM_DEVICE; break; default: data_dir = DMA_NONE; } if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) { dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n", user_srbcmd->sg.count)); rcode = -EINVAL; goto cleanup; } if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) { dprintk((KERN_DEBUG"aacraid:SG with no direction specified\n")); rcode = -EINVAL; goto cleanup; } actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) + ((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry)); actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) * (sizeof(struct sgentry64) - sizeof(struct sgentry)); /* User made a mistake - should not continue */ if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) { dprintk((KERN_DEBUG"aacraid: Bad Size specified in " "Raw SRB command calculated fibsize=%lu;%lu " "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu " "issued fibsize=%d\n", actual_fibsize, actual_fibsize64, user_srbcmd->sg.count, sizeof(struct aac_srb), sizeof(struct sgentry), sizeof(struct sgentry64), fibsize)); rcode = -EINVAL; goto cleanup; } chn = user_srbcmd->channel; if (chn < AAC_MAX_BUSES && user_srbcmd->id < AAC_MAX_TARGETS && dev->hba_map[chn][user_srbcmd->id].devtype == AAC_DEVTYPE_NATIVE_RAW) { is_native_device = 1; hbacmd = (struct aac_hba_cmd_req *)srbfib->hw_fib_va; memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */ /* iu_type is a parameter of aac_hba_send */ switch (data_dir) { case DMA_TO_DEVICE: hbacmd->byte1 = 2; break; case DMA_FROM_DEVICE: case DMA_BIDIRECTIONAL: hbacmd->byte1 = 1; break; case DMA_NONE: default: break; } hbacmd->lun[1] = cpu_to_le32(user_srbcmd->lun); hbacmd->it_nexus = dev->hba_map[chn][user_srbcmd->id].rmw_nexus; /* * we fill in reply_qid later in aac_src_deliver_message * we fill in iu_type, request_id later in aac_hba_send * we fill in emb_data_desc_count, data_length later * in sg list build */ memcpy(hbacmd->cdb, user_srbcmd->cdb, sizeof(hbacmd->cdb)); address = (u64)srbfib->hw_error_pa; hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); hbacmd->emb_data_desc_count = cpu_to_le32(user_srbcmd->sg.count); srbfib->hbacmd_size = 64 + user_srbcmd->sg.count * sizeof(struct aac_hba_sgl); } else { is_native_device = 0; aac_fib_init(srbfib); /* raw_srb FIB is not FastResponseCapable */ srbfib->hw_fib_va->header.XferState &= ~cpu_to_le32(FastResponseCapable); srbcmd = (struct aac_srb *) fib_data(srbfib); // Fix up srb for endian and force some values srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this srbcmd->channel = cpu_to_le32(user_srbcmd->channel); srbcmd->id = cpu_to_le32(user_srbcmd->id); srbcmd->lun = cpu_to_le32(user_srbcmd->lun); srbcmd->timeout = cpu_to_le32(user_srbcmd->timeout); srbcmd->flags = cpu_to_le32(flags); srbcmd->retry_limit = 0; // Obsolete parameter srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size); memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb)); } byte_count = 0; if (is_native_device) { struct user_sgmap *usg32 = &user_srbcmd->sg; struct user_sgmap64 *usg64 = (struct user_sgmap64 *)&user_srbcmd->sg; for (i = 0; i < usg32->count; i++) { void *p; u64 addr; sg_count[i] = (actual_fibsize64 == fibsize) ? usg64->sg[i].count : usg32->sg[i].count; if (sg_count[i] > (dev->scsi_host_ptr->max_sectors << 9)) { pr_err("aacraid: upsg->sg[%d].count=%u>%u\n", i, sg_count[i], dev->scsi_host_ptr->max_sectors << 9); rcode = -EINVAL; goto cleanup; } p = kmalloc(sg_count[i], GFP_KERNEL); if (!p) { rcode = -ENOMEM; goto cleanup; } if (actual_fibsize64 == fibsize) { addr = (u64)usg64->sg[i].addr[0]; addr += ((u64)usg64->sg[i].addr[1]) << 32; } else { addr = (u64)usg32->sg[i].addr; } sg_user[i] = (void __user *)(uintptr_t)addr; sg_list[i] = p; // save so we can clean up later sg_indx = i; if (flags & SRB_DataOut) { if (copy_from_user(p, sg_user[i], sg_count[i])) { rcode = -EFAULT; goto cleanup; } } addr = pci_map_single(dev->pdev, p, sg_count[i], data_dir); hbacmd->sge[i].addr_hi = cpu_to_le32((u32)(addr>>32)); hbacmd->sge[i].addr_lo = cpu_to_le32( (u32)(addr & 0xffffffff)); hbacmd->sge[i].len = cpu_to_le32(sg_count[i]); hbacmd->sge[i].flags = 0; byte_count += sg_count[i]; } if (usg32->count > 0) /* embedded sglist */ hbacmd->sge[usg32->count-1].flags = cpu_to_le32(0x40000000); hbacmd->data_length = cpu_to_le32(byte_count); status = aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, srbfib, NULL, NULL); } else if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) { struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg; struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg; /* * This should also catch if user used the 32 bit sgmap */ if (actual_fibsize64 == fibsize) { actual_fibsize = actual_fibsize64; for (i = 0; i < upsg->count; i++) { u64 addr; void* p; sg_count[i] = upsg->sg[i].count; if (sg_count[i] > ((dev->adapter_info.options & AAC_OPT_NEW_COMM) ? (dev->scsi_host_ptr->max_sectors << 9) : 65536)) { rcode = -EINVAL; goto cleanup; } p = kmalloc(sg_count[i], GFP_KERNEL); if(!p) { dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", sg_count[i], i, upsg->count)); rcode = -ENOMEM; goto cleanup; } addr = (u64)upsg->sg[i].addr[0]; addr += ((u64)upsg->sg[i].addr[1]) << 32; sg_user[i] = (void __user *)(uintptr_t)addr; sg_list[i] = p; // save so we can clean up later sg_indx = i; if (flags & SRB_DataOut) { if (copy_from_user(p, sg_user[i], sg_count[i])){ dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); rcode = -EFAULT; goto cleanup; } } addr = pci_map_single(dev->pdev, p, sg_count[i], data_dir); psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); psg->sg[i].addr[1] = cpu_to_le32(addr>>32); byte_count += sg_count[i]; psg->sg[i].count = cpu_to_le32(sg_count[i]); } } else { struct user_sgmap* usg; usg = kmemdup(upsg, actual_fibsize - sizeof(struct aac_srb) + sizeof(struct sgmap), GFP_KERNEL); if (!usg) { dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n")); rcode = -ENOMEM; goto cleanup; } actual_fibsize = actual_fibsize64; for (i = 0; i < usg->count; i++) { u64 addr; void* p; sg_count[i] = usg->sg[i].count; if (sg_count[i] > ((dev->adapter_info.options & AAC_OPT_NEW_COMM) ? (dev->scsi_host_ptr->max_sectors << 9) : 65536)) { kfree(usg); rcode = -EINVAL; goto cleanup; } p = kmalloc(sg_count[i], GFP_KERNEL); if(!p) { dprintk((KERN_DEBUG "aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", sg_count[i], i, usg->count)); kfree(usg); rcode = -ENOMEM; goto cleanup; } sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr; sg_list[i] = p; // save so we can clean up later sg_indx = i; if (flags & SRB_DataOut) { if (copy_from_user(p, sg_user[i], sg_count[i])) { kfree (usg); dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); rcode = -EFAULT; goto cleanup; } } addr = pci_map_single(dev->pdev, p, sg_count[i], data_dir); psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); psg->sg[i].addr[1] = cpu_to_le32(addr>>32); byte_count += sg_count[i]; psg->sg[i].count = cpu_to_le32(sg_count[i]); } kfree (usg); } srbcmd->count = cpu_to_le32(byte_count); if (user_srbcmd->sg.count) psg->count = cpu_to_le32(sg_indx+1); else psg->count = 0; status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL); } else { struct user_sgmap* upsg = &user_srbcmd->sg; struct sgmap* psg = &srbcmd->sg; if (actual_fibsize64 == fibsize) { struct user_sgmap64* usg = (struct user_sgmap64 *)upsg; for (i = 0; i < upsg->count; i++) { uintptr_t addr; void* p; sg_count[i] = usg->sg[i].count; if (sg_count[i] > ((dev->adapter_info.options & AAC_OPT_NEW_COMM) ? (dev->scsi_host_ptr->max_sectors << 9) : 65536)) { rcode = -EINVAL; goto cleanup; } p = kmalloc(sg_count[i], GFP_KERNEL); if (!p) { dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", sg_count[i], i, usg->count)); rcode = -ENOMEM; goto cleanup; } addr = (u64)usg->sg[i].addr[0]; addr += ((u64)usg->sg[i].addr[1]) << 32; sg_user[i] = (void __user *)addr; sg_list[i] = p; // save so we can clean up later sg_indx = i; if (flags & SRB_DataOut) { if (copy_from_user(p, sg_user[i], sg_count[i])){ dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); rcode = -EFAULT; goto cleanup; } } addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir); psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff); byte_count += usg->sg[i].count; psg->sg[i].count = cpu_to_le32(sg_count[i]); } } else { for (i = 0; i < upsg->count; i++) { dma_addr_t addr; void* p; sg_count[i] = upsg->sg[i].count; if (sg_count[i] > ((dev->adapter_info.options & AAC_OPT_NEW_COMM) ? (dev->scsi_host_ptr->max_sectors << 9) : 65536)) { rcode = -EINVAL; goto cleanup; } p = kmalloc(sg_count[i], GFP_KERNEL); if (!p) { dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", sg_count[i], i, upsg->count)); rcode = -ENOMEM; goto cleanup; } sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr; sg_list[i] = p; // save so we can clean up later sg_indx = i; if (flags & SRB_DataOut) { if (copy_from_user(p, sg_user[i], sg_count[i])) { dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); rcode = -EFAULT; goto cleanup; } } addr = pci_map_single(dev->pdev, p, sg_count[i], data_dir); psg->sg[i].addr = cpu_to_le32(addr); byte_count += sg_count[i]; psg->sg[i].count = cpu_to_le32(sg_count[i]); } } srbcmd->count = cpu_to_le32(byte_count); if (user_srbcmd->sg.count) psg->count = cpu_to_le32(sg_indx+1); else psg->count = 0; status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL); } if (status == -ERESTARTSYS) { rcode = -ERESTARTSYS; goto cleanup; } if (status != 0) { dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n")); rcode = -ENXIO; goto cleanup; } if (flags & SRB_DataIn) { for(i = 0 ; i <= sg_indx; i++){ if (copy_to_user(sg_user[i], sg_list[i], sg_count[i])) { dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n")); rcode = -EFAULT; goto cleanup; } } } user_reply = arg + fibsize; if (is_native_device) { struct aac_hba_resp *err = &((struct aac_native_hba *)srbfib->hw_fib_va)->resp.err; struct aac_srb_reply reply; memset(&reply, 0, sizeof(reply)); reply.status = ST_OK; if (srbfib->flags & FIB_CONTEXT_FLAG_FASTRESP) { /* fast response */ reply.srb_status = SRB_STATUS_SUCCESS; reply.scsi_status = 0; reply.data_xfer_length = byte_count; reply.sense_data_size = 0; memset(reply.sense_data, 0, AAC_SENSE_BUFFERSIZE); } else { reply.srb_status = err->service_response; reply.scsi_status = err->status; reply.data_xfer_length = byte_count - le32_to_cpu(err->residual_count); reply.sense_data_size = err->sense_response_data_len; memcpy(reply.sense_data, err->sense_response_buf, AAC_SENSE_BUFFERSIZE); } if (copy_to_user(user_reply, &reply, sizeof(struct aac_srb_reply))) { dprintk((KERN_DEBUG"aacraid: Copy to user failed\n")); rcode = -EFAULT; goto cleanup; } } else { struct aac_srb_reply *reply; reply = (struct aac_srb_reply *) fib_data(srbfib); if (copy_to_user(user_reply, reply, sizeof(struct aac_srb_reply))) { dprintk((KERN_DEBUG"aacraid: Copy to user failed\n")); rcode = -EFAULT; goto cleanup; } } cleanup: kfree(user_srbcmd); if (rcode != -ERESTARTSYS) { for (i = 0; i <= sg_indx; i++) kfree(sg_list[i]); aac_fib_complete(srbfib); aac_fib_free(srbfib); } return rcode; } struct aac_pci_info { u32 bus; u32 slot; }; static int aac_get_pci_info(struct aac_dev* dev, void __user *arg) { struct aac_pci_info pci_info; pci_info.bus = dev->pdev->bus->number; pci_info.slot = PCI_SLOT(dev->pdev->devfn); if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) { dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n")); return -EFAULT; } return 0; } static int aac_get_hba_info(struct aac_dev *dev, void __user *arg) { struct aac_hba_info hbainfo; memset(&hbainfo, 0, sizeof(hbainfo)); hbainfo.adapter_number = (u8) dev->id; hbainfo.system_io_bus_number = dev->pdev->bus->number; hbainfo.device_number = (dev->pdev->devfn >> 3); hbainfo.function_number = (dev->pdev->devfn & 0x0007); hbainfo.vendor_id = dev->pdev->vendor; hbainfo.device_id = dev->pdev->device; hbainfo.sub_vendor_id = dev->pdev->subsystem_vendor; hbainfo.sub_system_id = dev->pdev->subsystem_device; if (copy_to_user(arg, &hbainfo, sizeof(struct aac_hba_info))) { dprintk((KERN_DEBUG "aacraid: Could not copy hba info\n")); return -EFAULT; } return 0; } struct aac_reset_iop { u8 reset_type; }; static int aac_send_reset_adapter(struct aac_dev *dev, void __user *arg) { struct aac_reset_iop reset; int retval; if (copy_from_user((void *)&reset, arg, sizeof(struct aac_reset_iop))) return -EFAULT; dev->adapter_shutdown = 1; mutex_unlock(&dev->ioctl_mutex); retval = aac_reset_adapter(dev, 0, reset.reset_type); mutex_lock(&dev->ioctl_mutex); return retval; } int aac_do_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg) { int status; mutex_lock(&dev->ioctl_mutex); if (dev->adapter_shutdown) { status = -EACCES; goto cleanup; } /* * HBA gets first crack */ status = aac_dev_ioctl(dev, cmd, arg); if (status != -ENOTTY) goto cleanup; switch (cmd) { case FSACTL_MINIPORT_REV_CHECK: status = check_revision(dev, arg); break; case FSACTL_SEND_LARGE_FIB: case FSACTL_SENDFIB: status = ioctl_send_fib(dev, arg); break; case FSACTL_OPEN_GET_ADAPTER_FIB: status = open_getadapter_fib(dev, arg); break; case FSACTL_GET_NEXT_ADAPTER_FIB: status = next_getadapter_fib(dev, arg); break; case FSACTL_CLOSE_GET_ADAPTER_FIB: status = close_getadapter_fib(dev, arg); break; case FSACTL_SEND_RAW_SRB: status = aac_send_raw_srb(dev,arg); break; case FSACTL_GET_PCI_INFO: status = aac_get_pci_info(dev,arg); break; case FSACTL_GET_HBA_INFO: status = aac_get_hba_info(dev, arg); break; case FSACTL_RESET_IOP: status = aac_send_reset_adapter(dev, arg); break; default: status = -ENOTTY; break; } cleanup: mutex_unlock(&dev->ioctl_mutex); return status; }