/* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2012 Intel Corporation. All rights reserved. * Copyright (C) 2015 EMC Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * BSD LICENSE * * Copyright(c) 2012 Intel Corporation. All rights reserved. * Copyright (C) 2015 EMC Corporation. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copy * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Intel PCIe NTB Linux driver * * Contact Information: * Jon Mason */ #include #include #include #include #include #include #include #include #include #include "ntb_hw_intel.h" #define NTB_NAME "ntb_hw_intel" #define NTB_DESC "Intel(R) PCI-E Non-Transparent Bridge Driver" #define NTB_VER "2.0" MODULE_DESCRIPTION(NTB_DESC); MODULE_VERSION(NTB_VER); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Intel Corporation"); #define bar0_off(base, bar) ((base) + ((bar) << 2)) #define bar2_off(base, bar) bar0_off(base, (bar) - 2) static const struct intel_ntb_reg atom_reg; static const struct intel_ntb_alt_reg atom_pri_reg; static const struct intel_ntb_alt_reg atom_sec_reg; static const struct intel_ntb_alt_reg atom_b2b_reg; static const struct intel_ntb_xlat_reg atom_pri_xlat; static const struct intel_ntb_xlat_reg atom_sec_xlat; static const struct intel_ntb_reg xeon_reg; static const struct intel_ntb_alt_reg xeon_pri_reg; static const struct intel_ntb_alt_reg xeon_sec_reg; static const struct intel_ntb_alt_reg xeon_b2b_reg; static const struct intel_ntb_xlat_reg xeon_pri_xlat; static const struct intel_ntb_xlat_reg xeon_sec_xlat; static struct intel_b2b_addr xeon_b2b_usd_addr; static struct intel_b2b_addr xeon_b2b_dsd_addr; static const struct ntb_dev_ops intel_ntb_ops; static const struct file_operations intel_ntb_debugfs_info; static struct dentry *debugfs_dir; static int b2b_mw_idx = -1; module_param(b2b_mw_idx, int, 0644); MODULE_PARM_DESC(b2b_mw_idx, "Use this mw idx to access the peer ntb. A " "value of zero or positive starts from first mw idx, and a " "negative value starts from last mw idx. Both sides MUST " "set the same value here!"); static unsigned int b2b_mw_share; module_param(b2b_mw_share, uint, 0644); MODULE_PARM_DESC(b2b_mw_share, "If the b2b mw is large enough, configure the " "ntb so that the peer ntb only occupies the first half of " "the mw, so the second half can still be used as a mw. Both " "sides MUST set the same value here!"); module_param_named(xeon_b2b_usd_bar2_addr64, xeon_b2b_usd_addr.bar2_addr64, ullong, 0644); MODULE_PARM_DESC(xeon_b2b_usd_bar2_addr64, "XEON B2B USD BAR 2 64-bit address"); module_param_named(xeon_b2b_usd_bar4_addr64, xeon_b2b_usd_addr.bar4_addr64, ullong, 0644); MODULE_PARM_DESC(xeon_b2b_usd_bar2_addr64, "XEON B2B USD BAR 4 64-bit address"); module_param_named(xeon_b2b_usd_bar4_addr32, xeon_b2b_usd_addr.bar4_addr32, ullong, 0644); MODULE_PARM_DESC(xeon_b2b_usd_bar2_addr64, "XEON B2B USD split-BAR 4 32-bit address"); module_param_named(xeon_b2b_usd_bar5_addr32, xeon_b2b_usd_addr.bar5_addr32, ullong, 0644); MODULE_PARM_DESC(xeon_b2b_usd_bar2_addr64, "XEON B2B USD split-BAR 5 32-bit address"); module_param_named(xeon_b2b_dsd_bar2_addr64, xeon_b2b_dsd_addr.bar2_addr64, ullong, 0644); MODULE_PARM_DESC(xeon_b2b_dsd_bar2_addr64, "XEON B2B DSD BAR 2 64-bit address"); module_param_named(xeon_b2b_dsd_bar4_addr64, xeon_b2b_dsd_addr.bar4_addr64, ullong, 0644); MODULE_PARM_DESC(xeon_b2b_dsd_bar2_addr64, "XEON B2B DSD BAR 4 64-bit address"); module_param_named(xeon_b2b_dsd_bar4_addr32, xeon_b2b_dsd_addr.bar4_addr32, ullong, 0644); MODULE_PARM_DESC(xeon_b2b_dsd_bar2_addr64, "XEON B2B DSD split-BAR 4 32-bit address"); module_param_named(xeon_b2b_dsd_bar5_addr32, xeon_b2b_dsd_addr.bar5_addr32, ullong, 0644); MODULE_PARM_DESC(xeon_b2b_dsd_bar2_addr64, "XEON B2B DSD split-BAR 5 32-bit address"); #ifndef ioread64 #ifdef readq #define ioread64 readq #else #define ioread64 _ioread64 static inline u64 _ioread64(void __iomem *mmio) { u64 low, high; low = ioread32(mmio); high = ioread32(mmio + sizeof(u32)); return low | (high << 32); } #endif #endif #ifndef iowrite64 #ifdef writeq #define iowrite64 writeq #else #define iowrite64 _iowrite64 static inline void _iowrite64(u64 val, void __iomem *mmio) { iowrite32(val, mmio); iowrite32(val >> 32, mmio + sizeof(u32)); } #endif #endif static inline int pdev_is_atom(struct pci_dev *pdev) { switch (pdev->device) { case PCI_DEVICE_ID_INTEL_NTB_B2B_BWD: return 1; } return 0; } static inline int pdev_is_xeon(struct pci_dev *pdev) { switch (pdev->device) { case PCI_DEVICE_ID_INTEL_NTB_SS_JSF: case PCI_DEVICE_ID_INTEL_NTB_SS_SNB: case PCI_DEVICE_ID_INTEL_NTB_SS_IVT: case PCI_DEVICE_ID_INTEL_NTB_SS_HSX: case PCI_DEVICE_ID_INTEL_NTB_PS_JSF: case PCI_DEVICE_ID_INTEL_NTB_PS_SNB: case PCI_DEVICE_ID_INTEL_NTB_PS_IVT: case PCI_DEVICE_ID_INTEL_NTB_PS_HSX: case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF: case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB: case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT: case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX: return 1; } return 0; } static inline void ndev_reset_unsafe_flags(struct intel_ntb_dev *ndev) { ndev->unsafe_flags = 0; ndev->unsafe_flags_ignore = 0; /* Only B2B has a workaround to avoid SDOORBELL */ if (ndev->hwerr_flags & NTB_HWERR_SDOORBELL_LOCKUP) if (!ntb_topo_is_b2b(ndev->ntb.topo)) ndev->unsafe_flags |= NTB_UNSAFE_DB; /* No low level workaround to avoid SB01BASE */ if (ndev->hwerr_flags & NTB_HWERR_SB01BASE_LOCKUP) { ndev->unsafe_flags |= NTB_UNSAFE_DB; ndev->unsafe_flags |= NTB_UNSAFE_SPAD; } } static inline int ndev_is_unsafe(struct intel_ntb_dev *ndev, unsigned long flag) { return !!(flag & ndev->unsafe_flags & ~ndev->unsafe_flags_ignore); } static inline int ndev_ignore_unsafe(struct intel_ntb_dev *ndev, unsigned long flag) { flag &= ndev->unsafe_flags; ndev->unsafe_flags_ignore |= flag; return !!flag; } static int ndev_mw_to_bar(struct intel_ntb_dev *ndev, int idx) { if (idx < 0 || idx > ndev->mw_count) return -EINVAL; return ndev->reg->mw_bar[idx]; } static inline int ndev_db_addr(struct intel_ntb_dev *ndev, phys_addr_t *db_addr, resource_size_t *db_size, phys_addr_t reg_addr, unsigned long reg) { if (ndev_is_unsafe(ndev, NTB_UNSAFE_DB)) pr_warn_once("%s: NTB unsafe doorbell access", __func__); if (db_addr) { *db_addr = reg_addr + reg; dev_dbg(ndev_dev(ndev), "Peer db addr %llx\n", *db_addr); } if (db_size) { *db_size = ndev->reg->db_size; dev_dbg(ndev_dev(ndev), "Peer db size %llx\n", *db_size); } return 0; } static inline u64 ndev_db_read(struct intel_ntb_dev *ndev, void __iomem *mmio) { if (ndev_is_unsafe(ndev, NTB_UNSAFE_DB)) pr_warn_once("%s: NTB unsafe doorbell access", __func__); return ndev->reg->db_ioread(mmio); } static inline int ndev_db_write(struct intel_ntb_dev *ndev, u64 db_bits, void __iomem *mmio) { if (ndev_is_unsafe(ndev, NTB_UNSAFE_DB)) pr_warn_once("%s: NTB unsafe doorbell access", __func__); if (db_bits & ~ndev->db_valid_mask) return -EINVAL; ndev->reg->db_iowrite(db_bits, mmio); return 0; } static inline int ndev_db_set_mask(struct intel_ntb_dev *ndev, u64 db_bits, void __iomem *mmio) { unsigned long irqflags; if (ndev_is_unsafe(ndev, NTB_UNSAFE_DB)) pr_warn_once("%s: NTB unsafe doorbell access", __func__); if (db_bits & ~ndev->db_valid_mask) return -EINVAL; spin_lock_irqsave(&ndev->db_mask_lock, irqflags); { ndev->db_mask |= db_bits; ndev->reg->db_iowrite(ndev->db_mask, mmio); } spin_unlock_irqrestore(&ndev->db_mask_lock, irqflags); return 0; } static inline int ndev_db_clear_mask(struct intel_ntb_dev *ndev, u64 db_bits, void __iomem *mmio) { unsigned long irqflags; if (ndev_is_unsafe(ndev, NTB_UNSAFE_DB)) pr_warn_once("%s: NTB unsafe doorbell access", __func__); if (db_bits & ~ndev->db_valid_mask) return -EINVAL; spin_lock_irqsave(&ndev->db_mask_lock, irqflags); { ndev->db_mask &= ~db_bits; ndev->reg->db_iowrite(ndev->db_mask, mmio); } spin_unlock_irqrestore(&ndev->db_mask_lock, irqflags); return 0; } static inline int ndev_vec_mask(struct intel_ntb_dev *ndev, int db_vector) { u64 shift, mask; shift = ndev->db_vec_shift; mask = BIT_ULL(shift) - 1; return mask << (shift * db_vector); } static inline int ndev_spad_addr(struct intel_ntb_dev *ndev, int idx, phys_addr_t *spad_addr, phys_addr_t reg_addr, unsigned long reg) { if (ndev_is_unsafe(ndev, NTB_UNSAFE_SPAD)) pr_warn_once("%s: NTB unsafe scratchpad access", __func__); if (idx < 0 || idx >= ndev->spad_count) return -EINVAL; if (spad_addr) { *spad_addr = reg_addr + reg + (idx << 2); dev_dbg(ndev_dev(ndev), "Peer spad addr %llx\n", *spad_addr); } return 0; } static inline u32 ndev_spad_read(struct intel_ntb_dev *ndev, int idx, void __iomem *mmio) { if (ndev_is_unsafe(ndev, NTB_UNSAFE_SPAD)) pr_warn_once("%s: NTB unsafe scratchpad access", __func__); if (idx < 0 || idx >= ndev->spad_count) return 0; return ioread32(mmio + (idx << 2)); } static inline int ndev_spad_write(struct intel_ntb_dev *ndev, int idx, u32 val, void __iomem *mmio) { if (ndev_is_unsafe(ndev, NTB_UNSAFE_SPAD)) pr_warn_once("%s: NTB unsafe scratchpad access", __func__); if (idx < 0 || idx >= ndev->spad_count) return -EINVAL; iowrite32(val, mmio + (idx << 2)); return 0; } static irqreturn_t ndev_interrupt(struct intel_ntb_dev *ndev, int vec) { u64 vec_mask; vec_mask = ndev_vec_mask(ndev, vec); dev_dbg(ndev_dev(ndev), "vec %d vec_mask %llx\n", vec, vec_mask); ndev->last_ts = jiffies; if (vec_mask & ndev->db_link_mask) { if (ndev->reg->poll_link(ndev)) ntb_link_event(&ndev->ntb); } if (vec_mask & ndev->db_valid_mask) ntb_db_event(&ndev->ntb, vec); return IRQ_HANDLED; } static irqreturn_t ndev_vec_isr(int irq, void *dev) { struct intel_ntb_vec *nvec = dev; return ndev_interrupt(nvec->ndev, nvec->num); } static irqreturn_t ndev_irq_isr(int irq, void *dev) { struct intel_ntb_dev *ndev = dev; return ndev_interrupt(ndev, irq - ndev_pdev(ndev)->irq); } static int ndev_init_isr(struct intel_ntb_dev *ndev, int msix_min, int msix_max, int msix_shift, int total_shift) { struct pci_dev *pdev; int rc, i, msix_count, node; pdev = ndev_pdev(ndev); node = dev_to_node(&pdev->dev); /* Mask all doorbell interrupts */ ndev->db_mask = ndev->db_valid_mask; ndev->reg->db_iowrite(ndev->db_mask, ndev->self_mmio + ndev->self_reg->db_mask); /* Try to set up msix irq */ ndev->vec = kzalloc_node(msix_max * sizeof(*ndev->vec), GFP_KERNEL, node); if (!ndev->vec) goto err_msix_vec_alloc; ndev->msix = kzalloc_node(msix_max * sizeof(*ndev->msix), GFP_KERNEL, node); if (!ndev->msix) goto err_msix_alloc; for (i = 0; i < msix_max; ++i) ndev->msix[i].entry = i; msix_count = pci_enable_msix_range(pdev, ndev->msix, msix_min, msix_max); if (msix_count < 0) goto err_msix_enable; for (i = 0; i < msix_count; ++i) { ndev->vec[i].ndev = ndev; ndev->vec[i].num = i; rc = request_irq(ndev->msix[i].vector, ndev_vec_isr, 0, "ndev_vec_isr", &ndev->vec[i]); if (rc) goto err_msix_request; } dev_dbg(ndev_dev(ndev), "Using msix interrupts\n"); ndev->db_vec_count = msix_count; ndev->db_vec_shift = msix_shift; return 0; err_msix_request: while (i-- > 0) free_irq(ndev->msix[i].vector, ndev); pci_disable_msix(pdev); err_msix_enable: kfree(ndev->msix); err_msix_alloc: kfree(ndev->vec); err_msix_vec_alloc: ndev->msix = NULL; ndev->vec = NULL; /* Try to set up msi irq */ rc = pci_enable_msi(pdev); if (rc) goto err_msi_enable; rc = request_irq(pdev->irq, ndev_irq_isr, 0, "ndev_irq_isr", ndev); if (rc) goto err_msi_request; dev_dbg(ndev_dev(ndev), "Using msi interrupts\n"); ndev->db_vec_count = 1; ndev->db_vec_shift = total_shift; return 0; err_msi_request: pci_disable_msi(pdev); err_msi_enable: /* Try to set up intx irq */ pci_intx(pdev, 1); rc = request_irq(pdev->irq, ndev_irq_isr, IRQF_SHARED, "ndev_irq_isr", ndev); if (rc) goto err_intx_request; dev_dbg(ndev_dev(ndev), "Using intx interrupts\n"); ndev->db_vec_count = 1; ndev->db_vec_shift = total_shift; return 0; err_intx_request: return rc; } static void ndev_deinit_isr(struct intel_ntb_dev *ndev) { struct pci_dev *pdev; int i; pdev = ndev_pdev(ndev); /* Mask all doorbell interrupts */ ndev->db_mask = ndev->db_valid_mask; ndev->reg->db_iowrite(ndev->db_mask, ndev->self_mmio + ndev->self_reg->db_mask); if (ndev->msix) { i = ndev->db_vec_count; while (i--) free_irq(ndev->msix[i].vector, &ndev->vec[i]); pci_disable_msix(pdev); kfree(ndev->msix); kfree(ndev->vec); } else { free_irq(pdev->irq, ndev); if (pci_dev_msi_enabled(pdev)) pci_disable_msi(pdev); } } static ssize_t ndev_debugfs_read(struct file *filp, char __user *ubuf, size_t count, loff_t *offp) { struct intel_ntb_dev *ndev; void __iomem *mmio; char *buf; size_t buf_size; ssize_t ret, off; union { u64 v64; u32 v32; u16 v16; } u; ndev = filp->private_data; mmio = ndev->self_mmio; buf_size = min(count, 0x800ul); buf = kmalloc(buf_size, GFP_KERNEL); if (!buf) return -ENOMEM; off = 0; off += scnprintf(buf + off, buf_size - off, "NTB Device Information:\n"); off += scnprintf(buf + off, buf_size - off, "Connection Topology -\t%s\n", ntb_topo_string(ndev->ntb.topo)); off += scnprintf(buf + off, buf_size - off, "B2B Offset -\t\t%#lx\n", ndev->b2b_off); off += scnprintf(buf + off, buf_size - off, "B2B MW Idx -\t\t%d\n", ndev->b2b_idx); off += scnprintf(buf + off, buf_size - off, "BAR4 Split -\t\t%s\n", ndev->bar4_split ? "yes" : "no"); off += scnprintf(buf + off, buf_size - off, "NTB CTL -\t\t%#06x\n", ndev->ntb_ctl); off += scnprintf(buf + off, buf_size - off, "LNK STA -\t\t%#06x\n", ndev->lnk_sta); if (!ndev->reg->link_is_up(ndev)) { off += scnprintf(buf + off, buf_size - off, "Link Status -\t\tDown\n"); } else { off += scnprintf(buf + off, buf_size - off, "Link Status -\t\tUp\n"); off += scnprintf(buf + off, buf_size - off, "Link Speed -\t\tPCI-E Gen %u\n", NTB_LNK_STA_SPEED(ndev->lnk_sta)); off += scnprintf(buf + off, buf_size - off, "Link Width -\t\tx%u\n", NTB_LNK_STA_WIDTH(ndev->lnk_sta)); } off += scnprintf(buf + off, buf_size - off, "Memory Window Count -\t%u\n", ndev->mw_count); off += scnprintf(buf + off, buf_size - off, "Scratchpad Count -\t%u\n", ndev->spad_count); off += scnprintf(buf + off, buf_size - off, "Doorbell Count -\t%u\n", ndev->db_count); off += scnprintf(buf + off, buf_size - off, "Doorbell Vector Count -\t%u\n", ndev->db_vec_count); off += scnprintf(buf + off, buf_size - off, "Doorbell Vector Shift -\t%u\n", ndev->db_vec_shift); off += scnprintf(buf + off, buf_size - off, "Doorbell Valid Mask -\t%#llx\n", ndev->db_valid_mask); off += scnprintf(buf + off, buf_size - off, "Doorbell Link Mask -\t%#llx\n", ndev->db_link_mask); off += scnprintf(buf + off, buf_size - off, "Doorbell Mask Cached -\t%#llx\n", ndev->db_mask); u.v64 = ndev_db_read(ndev, mmio + ndev->self_reg->db_mask); off += scnprintf(buf + off, buf_size - off, "Doorbell Mask -\t\t%#llx\n", u.v64); u.v64 = ndev_db_read(ndev, mmio + ndev->self_reg->db_bell); off += scnprintf(buf + off, buf_size - off, "Doorbell Bell -\t\t%#llx\n", u.v64); off += scnprintf(buf + off, buf_size - off, "\nNTB Incoming XLAT:\n"); u.v64 = ioread64(mmio + bar2_off(ndev->xlat_reg->bar2_xlat, 2)); off += scnprintf(buf + off, buf_size - off, "XLAT23 -\t\t%#018llx\n", u.v64); if (ndev->bar4_split) { u.v32 = ioread32(mmio + bar2_off(ndev->xlat_reg->bar2_xlat, 4)); off += scnprintf(buf + off, buf_size - off, "XLAT4 -\t\t\t%#06x\n", u.v32); u.v32 = ioread32(mmio + bar2_off(ndev->xlat_reg->bar2_xlat, 5)); off += scnprintf(buf + off, buf_size - off, "XLAT5 -\t\t\t%#06x\n", u.v32); } else { u.v64 = ioread64(mmio + bar2_off(ndev->xlat_reg->bar2_xlat, 4)); off += scnprintf(buf + off, buf_size - off, "XLAT45 -\t\t%#018llx\n", u.v64); } u.v64 = ioread64(mmio + bar2_off(ndev->xlat_reg->bar2_limit, 2)); off += scnprintf(buf + off, buf_size - off, "LMT23 -\t\t\t%#018llx\n", u.v64); if (ndev->bar4_split) { u.v32 = ioread32(mmio + bar2_off(ndev->xlat_reg->bar2_limit, 4)); off += scnprintf(buf + off, buf_size - off, "LMT4 -\t\t\t%#06x\n", u.v32); u.v32 = ioread32(mmio + bar2_off(ndev->xlat_reg->bar2_limit, 5)); off += scnprintf(buf + off, buf_size - off, "LMT5 -\t\t\t%#06x\n", u.v32); } else { u.v64 = ioread64(mmio + bar2_off(ndev->xlat_reg->bar2_limit, 4)); off += scnprintf(buf + off, buf_size - off, "LMT45 -\t\t\t%#018llx\n", u.v64); } if (pdev_is_xeon(ndev->ntb.pdev)) { if (ntb_topo_is_b2b(ndev->ntb.topo)) { off += scnprintf(buf + off, buf_size - off, "\nNTB Outgoing B2B XLAT:\n"); u.v64 = ioread64(mmio + XEON_PBAR23XLAT_OFFSET); off += scnprintf(buf + off, buf_size - off, "B2B XLAT23 -\t\t%#018llx\n", u.v64); if (ndev->bar4_split) { u.v32 = ioread32(mmio + XEON_PBAR4XLAT_OFFSET); off += scnprintf(buf + off, buf_size - off, "B2B XLAT4 -\t\t%#06x\n", u.v32); u.v32 = ioread32(mmio + XEON_PBAR5XLAT_OFFSET); off += scnprintf(buf + off, buf_size - off, "B2B XLAT5 -\t\t%#06x\n", u.v32); } else { u.v64 = ioread64(mmio + XEON_PBAR45XLAT_OFFSET); off += scnprintf(buf + off, buf_size - off, "B2B XLAT45 -\t\t%#018llx\n", u.v64); } u.v64 = ioread64(mmio + XEON_PBAR23LMT_OFFSET); off += scnprintf(buf + off, buf_size - off, "B2B LMT23 -\t\t%#018llx\n", u.v64); if (ndev->bar4_split) { u.v32 = ioread32(mmio + XEON_PBAR4LMT_OFFSET); off += scnprintf(buf + off, buf_size - off, "B2B LMT4 -\t\t%#06x\n", u.v32); u.v32 = ioread32(mmio + XEON_PBAR5LMT_OFFSET); off += scnprintf(buf + off, buf_size - off, "B2B LMT5 -\t\t%#06x\n", u.v32); } else { u.v64 = ioread64(mmio + XEON_PBAR45LMT_OFFSET); off += scnprintf(buf + off, buf_size - off, "B2B LMT45 -\t\t%#018llx\n", u.v64); } off += scnprintf(buf + off, buf_size - off, "\nNTB Secondary BAR:\n"); u.v64 = ioread64(mmio + XEON_SBAR0BASE_OFFSET); off += scnprintf(buf + off, buf_size - off, "SBAR01 -\t\t%#018llx\n", u.v64); u.v64 = ioread64(mmio + XEON_SBAR23BASE_OFFSET); off += scnprintf(buf + off, buf_size - off, "SBAR23 -\t\t%#018llx\n", u.v64); if (ndev->bar4_split) { u.v32 = ioread32(mmio + XEON_SBAR4BASE_OFFSET); off += scnprintf(buf + off, buf_size - off, "SBAR4 -\t\t\t%#06x\n", u.v32); u.v32 = ioread32(mmio + XEON_SBAR5BASE_OFFSET); off += scnprintf(buf + off, buf_size - off, "SBAR5 -\t\t\t%#06x\n", u.v32); } else { u.v64 = ioread64(mmio + XEON_SBAR45BASE_OFFSET); off += scnprintf(buf + off, buf_size - off, "SBAR45 -\t\t%#018llx\n", u.v64); } } off += scnprintf(buf + off, buf_size - off, "\nXEON NTB Statistics:\n"); u.v16 = ioread16(mmio + XEON_USMEMMISS_OFFSET); off += scnprintf(buf + off, buf_size - off, "Upstream Memory Miss -\t%u\n", u.v16); off += scnprintf(buf + off, buf_size - off, "\nXEON NTB Hardware Errors:\n"); if (!pci_read_config_word(ndev->ntb.pdev, XEON_DEVSTS_OFFSET, &u.v16)) off += scnprintf(buf + off, buf_size - off, "DEVSTS -\t\t%#06x\n", u.v16); if (!pci_read_config_word(ndev->ntb.pdev, XEON_LINK_STATUS_OFFSET, &u.v16)) off += scnprintf(buf + off, buf_size - off, "LNKSTS -\t\t%#06x\n", u.v16); if (!pci_read_config_dword(ndev->ntb.pdev, XEON_UNCERRSTS_OFFSET, &u.v32)) off += scnprintf(buf + off, buf_size - off, "UNCERRSTS -\t\t%#06x\n", u.v32); if (!pci_read_config_dword(ndev->ntb.pdev, XEON_CORERRSTS_OFFSET, &u.v32)) off += scnprintf(buf + off, buf_size - off, "CORERRSTS -\t\t%#06x\n", u.v32); } ret = simple_read_from_buffer(ubuf, count, offp, buf, off); kfree(buf); return ret; } static void ndev_init_debugfs(struct intel_ntb_dev *ndev) { if (!debugfs_dir) { ndev->debugfs_dir = NULL; ndev->debugfs_info = NULL; } else { ndev->debugfs_dir = debugfs_create_dir(ndev_name(ndev), debugfs_dir); if (!ndev->debugfs_dir) ndev->debugfs_info = NULL; else ndev->debugfs_info = debugfs_create_file("info", S_IRUSR, ndev->debugfs_dir, ndev, &intel_ntb_debugfs_info); } } static void ndev_deinit_debugfs(struct intel_ntb_dev *ndev) { debugfs_remove_recursive(ndev->debugfs_dir); } static int intel_ntb_mw_count(struct ntb_dev *ntb) { return ntb_ndev(ntb)->mw_count; } static int intel_ntb_mw_get_range(struct ntb_dev *ntb, int idx, phys_addr_t *base, resource_size_t *size, resource_size_t *align, resource_size_t *align_size) { struct intel_ntb_dev *ndev = ntb_ndev(ntb); int bar; if (idx >= ndev->b2b_idx && !ndev->b2b_off) idx += 1; bar = ndev_mw_to_bar(ndev, idx); if (bar < 0) return bar; if (base) *base = pci_resource_start(ndev->ntb.pdev, bar) + (idx == ndev->b2b_idx ? ndev->b2b_off : 0); if (size) *size = pci_resource_len(ndev->ntb.pdev, bar) - (idx == ndev->b2b_idx ? ndev->b2b_off : 0); if (align) *align = pci_resource_len(ndev->ntb.pdev, bar); if (align_size) *align_size = 1; return 0; } static int intel_ntb_mw_set_trans(struct ntb_dev *ntb, int idx, dma_addr_t addr, resource_size_t size) { struct intel_ntb_dev *ndev = ntb_ndev(ntb); unsigned long base_reg, xlat_reg, limit_reg; resource_size_t bar_size, mw_size; void __iomem *mmio; u64 base, limit, reg_val; int bar; if (idx >= ndev->b2b_idx && !ndev->b2b_off) idx += 1; bar = ndev_mw_to_bar(ndev, idx); if (bar < 0) return bar; bar_size = pci_resource_len(ndev->ntb.pdev, bar); if (idx == ndev->b2b_idx) mw_size = bar_size - ndev->b2b_off; else mw_size = bar_size; /* hardware requires that addr is aligned to bar size */ if (addr & (bar_size - 1)) return -EINVAL; /* make sure the range fits in the usable mw size */ if (size > mw_size) return -EINVAL; mmio = ndev->self_mmio; base_reg = bar0_off(ndev->xlat_reg->bar0_base, bar); xlat_reg = bar2_off(ndev->xlat_reg->bar2_xlat, bar); limit_reg = bar2_off(ndev->xlat_reg->bar2_limit, bar); if (bar < 4 || !ndev->bar4_split) { base = ioread64(mmio + base_reg); /* Set the limit if supported, if size is not mw_size */ if (limit_reg && size != mw_size) limit = base + size; else limit = 0; /* set and verify setting the translation address */ iowrite64(addr, mmio + xlat_reg); reg_val = ioread64(mmio + xlat_reg); if (reg_val != addr) { iowrite64(0, mmio + xlat_reg); return -EIO; } /* set and verify setting the limit */ iowrite64(limit, mmio + limit_reg); reg_val = ioread64(mmio + limit_reg); if (reg_val != limit) { iowrite64(base, mmio + limit_reg); iowrite64(0, mmio + xlat_reg); return -EIO; } } else { /* split bar addr range must all be 32 bit */ if (addr & (~0ull << 32)) return -EINVAL; if ((addr + size) & (~0ull << 32)) return -EINVAL; base = ioread32(mmio + base_reg); /* Set the limit if supported, if size is not mw_size */ if (limit_reg && size != mw_size) limit = base + size; else limit = 0; /* set and verify setting the translation address */ iowrite32(addr, mmio + xlat_reg); reg_val = ioread32(mmio + xlat_reg); if (reg_val != addr) { iowrite32(0, mmio + xlat_reg); return -EIO; } /* set and verify setting the limit */ iowrite32(limit, mmio + limit_reg); reg_val = ioread32(mmio + limit_reg); if (reg_val != limit) { iowrite32(base, mmio + limit_reg); iowrite32(0, mmio + xlat_reg); return -EIO; } } return 0; } static int intel_ntb_link_is_up(struct ntb_dev *ntb, enum ntb_speed *speed, enum ntb_width *width) { struct intel_ntb_dev *ndev = ntb_ndev(ntb); if (ndev->reg->link_is_up(ndev)) { if (speed) *speed = NTB_LNK_STA_SPEED(ndev->lnk_sta); if (width) *width = NTB_LNK_STA_WIDTH(ndev->lnk_sta); return 1; } else { /* TODO MAYBE: is it possible to observe the link speed and * width while link is training? */ if (speed) *speed = NTB_SPEED_NONE; if (width) *width = NTB_WIDTH_NONE; return 0; } } static int intel_ntb_link_enable(struct ntb_dev *ntb, enum ntb_speed max_speed, enum ntb_width max_width) { struct intel_ntb_dev *ndev; u32 ntb_ctl; ndev = container_of(ntb, struct intel_ntb_dev, ntb); if (ndev->ntb.topo == NTB_TOPO_SEC) return -EINVAL; dev_dbg(ndev_dev(ndev), "Enabling link with max_speed %d max_width %d\n", max_speed, max_width); if (max_speed != NTB_SPEED_AUTO) dev_dbg(ndev_dev(ndev), "ignoring max_speed %d\n", max_speed); if (max_width != NTB_WIDTH_AUTO) dev_dbg(ndev_dev(ndev), "ignoring max_width %d\n", max_width); ntb_ctl = ioread32(ndev->self_mmio + ndev->reg->ntb_ctl); ntb_ctl &= ~(NTB_CTL_DISABLE | NTB_CTL_CFG_LOCK); ntb_ctl |= NTB_CTL_P2S_BAR2_SNOOP | NTB_CTL_S2P_BAR2_SNOOP; ntb_ctl |= NTB_CTL_P2S_BAR4_SNOOP | NTB_CTL_S2P_BAR4_SNOOP; if (ndev->bar4_split) ntb_ctl |= NTB_CTL_P2S_BAR5_SNOOP | NTB_CTL_S2P_BAR5_SNOOP; iowrite32(ntb_ctl, ndev->self_mmio + ndev->reg->ntb_ctl); return 0; } static int intel_ntb_link_disable(struct ntb_dev *ntb) { struct intel_ntb_dev *ndev; u32 ntb_cntl; ndev = container_of(ntb, struct intel_ntb_dev, ntb); if (ndev->ntb.topo == NTB_TOPO_SEC) return -EINVAL; dev_dbg(ndev_dev(ndev), "Disabling link\n"); /* Bring NTB link down */ ntb_cntl = ioread32(ndev->self_mmio + ndev->reg->ntb_ctl); ntb_cntl &= ~(NTB_CTL_P2S_BAR2_SNOOP | NTB_CTL_S2P_BAR2_SNOOP); ntb_cntl &= ~(NTB_CTL_P2S_BAR4_SNOOP | NTB_CTL_S2P_BAR4_SNOOP); if (ndev->bar4_split) ntb_cntl &= ~(NTB_CTL_P2S_BAR5_SNOOP | NTB_CTL_S2P_BAR5_SNOOP); ntb_cntl |= NTB_CTL_DISABLE | NTB_CTL_CFG_LOCK; iowrite32(ntb_cntl, ndev->self_mmio + ndev->reg->ntb_ctl); return 0; } static int intel_ntb_db_is_unsafe(struct ntb_dev *ntb) { return ndev_ignore_unsafe(ntb_ndev(ntb), NTB_UNSAFE_DB); } static u64 intel_ntb_db_valid_mask(struct ntb_dev *ntb) { return ntb_ndev(ntb)->db_valid_mask; } static int intel_ntb_db_vector_count(struct ntb_dev *ntb) { struct intel_ntb_dev *ndev; ndev = container_of(ntb, struct intel_ntb_dev, ntb); return ndev->db_vec_count; } static u64 intel_ntb_db_vector_mask(struct ntb_dev *ntb, int db_vector) { struct intel_ntb_dev *ndev = ntb_ndev(ntb); if (db_vector < 0 || db_vector > ndev->db_vec_count) return 0; return ndev->db_valid_mask & ndev_vec_mask(ndev, db_vector); } static u64 intel_ntb_db_read(struct ntb_dev *ntb) { struct intel_ntb_dev *ndev = ntb_ndev(ntb); return ndev_db_read(ndev, ndev->self_mmio + ndev->self_reg->db_bell); } static int intel_ntb_db_clear(struct ntb_dev *ntb, u64 db_bits) { struct intel_ntb_dev *ndev = ntb_ndev(ntb); return ndev_db_write(ndev, db_bits, ndev->self_mmio + ndev->self_reg->db_bell); } static int intel_ntb_db_set_mask(struct ntb_dev *ntb, u64 db_bits) { struct intel_ntb_dev *ndev = ntb_ndev(ntb); return ndev_db_set_mask(ndev, db_bits, ndev->self_mmio + ndev->self_reg->db_mask); } static int intel_ntb_db_clear_mask(struct ntb_dev *ntb, u64 db_bits) { struct intel_ntb_dev *ndev = ntb_ndev(ntb); return ndev_db_clear_mask(ndev, db_bits, ndev->self_mmio + ndev->self_reg->db_mask); } static int intel_ntb_peer_db_addr(struct ntb_dev *ntb, phys_addr_t *db_addr, resource_size_t *db_size) { struct intel_ntb_dev *ndev = ntb_ndev(ntb); return ndev_db_addr(ndev, db_addr, db_size, ndev->peer_addr, ndev->peer_reg->db_bell); } static int intel_ntb_peer_db_set(struct ntb_dev *ntb, u64 db_bits) { struct intel_ntb_dev *ndev = ntb_ndev(ntb); return ndev_db_write(ndev, db_bits, ndev->peer_mmio + ndev->peer_reg->db_bell); } static int intel_ntb_spad_is_unsafe(struct ntb_dev *ntb) { return ndev_ignore_unsafe(ntb_ndev(ntb), NTB_UNSAFE_SPAD); } static int intel_ntb_spad_count(struct ntb_dev *ntb) { struct intel_ntb_dev *ndev; ndev = container_of(ntb, struct intel_ntb_dev, ntb); return ndev->spad_count; } static u32 intel_ntb_spad_read(struct ntb_dev *ntb, int idx) { struct intel_ntb_dev *ndev = ntb_ndev(ntb); return ndev_spad_read(ndev, idx, ndev->self_mmio + ndev->self_reg->spad); } static int intel_ntb_spad_write(struct ntb_dev *ntb, int idx, u32 val) { struct intel_ntb_dev *ndev = ntb_ndev(ntb); return ndev_spad_write(ndev, idx, val, ndev->self_mmio + ndev->self_reg->spad); } static int intel_ntb_peer_spad_addr(struct ntb_dev *ntb, int idx, phys_addr_t *spad_addr) { struct intel_ntb_dev *ndev = ntb_ndev(ntb); return ndev_spad_addr(ndev, idx, spad_addr, ndev->peer_addr, ndev->peer_reg->spad); } static u32 intel_ntb_peer_spad_read(struct ntb_dev *ntb, int idx) { struct intel_ntb_dev *ndev = ntb_ndev(ntb); return ndev_spad_read(ndev, idx, ndev->peer_mmio + ndev->peer_reg->spad); } static int intel_ntb_peer_spad_write(struct ntb_dev *ntb, int idx, u32 val) { struct intel_ntb_dev *ndev = ntb_ndev(ntb); return ndev_spad_write(ndev, idx, val, ndev->peer_mmio + ndev->peer_reg->spad); } /* ATOM */ static u64 atom_db_ioread(void __iomem *mmio) { return ioread64(mmio); } static void atom_db_iowrite(u64 bits, void __iomem *mmio) { iowrite64(bits, mmio); } static int atom_poll_link(struct intel_ntb_dev *ndev) { u32 ntb_ctl; ntb_ctl = ioread32(ndev->self_mmio + ATOM_NTBCNTL_OFFSET); if (ntb_ctl == ndev->ntb_ctl) return 0; ndev->ntb_ctl = ntb_ctl; ndev->lnk_sta = ioread32(ndev->self_mmio + ATOM_LINK_STATUS_OFFSET); return 1; } static int atom_link_is_up(struct intel_ntb_dev *ndev) { return ATOM_NTB_CTL_ACTIVE(ndev->ntb_ctl); } static int atom_link_is_err(struct intel_ntb_dev *ndev) { if (ioread32(ndev->self_mmio + ATOM_LTSSMSTATEJMP_OFFSET) & ATOM_LTSSMSTATEJMP_FORCEDETECT) return 1; if (ioread32(ndev->self_mmio + ATOM_IBSTERRRCRVSTS0_OFFSET) & ATOM_IBIST_ERR_OFLOW) return 1; return 0; } static inline enum ntb_topo atom_ppd_topo(struct intel_ntb_dev *ndev, u32 ppd) { switch (ppd & ATOM_PPD_TOPO_MASK) { case ATOM_PPD_TOPO_B2B_USD: dev_dbg(ndev_dev(ndev), "PPD %d B2B USD\n", ppd); return NTB_TOPO_B2B_USD; case ATOM_PPD_TOPO_B2B_DSD: dev_dbg(ndev_dev(ndev), "PPD %d B2B DSD\n", ppd); return NTB_TOPO_B2B_DSD; case ATOM_PPD_TOPO_PRI_USD: case ATOM_PPD_TOPO_PRI_DSD: /* accept bogus PRI_DSD */ case ATOM_PPD_TOPO_SEC_USD: case ATOM_PPD_TOPO_SEC_DSD: /* accept bogus SEC_DSD */ dev_dbg(ndev_dev(ndev), "PPD %d non B2B disabled\n", ppd); return NTB_TOPO_NONE; } dev_dbg(ndev_dev(ndev), "PPD %d invalid\n", ppd); return NTB_TOPO_NONE; } static void atom_link_hb(struct work_struct *work) { struct intel_ntb_dev *ndev = hb_ndev(work); unsigned long poll_ts; void __iomem *mmio; u32 status32; poll_ts = ndev->last_ts + ATOM_LINK_HB_TIMEOUT; /* Delay polling the link status if an interrupt was received, * unless the cached link status says the link is down. */ if (time_after(poll_ts, jiffies) && atom_link_is_up(ndev)) { schedule_delayed_work(&ndev->hb_timer, poll_ts - jiffies); return; } if (atom_poll_link(ndev)) ntb_link_event(&ndev->ntb); if (atom_link_is_up(ndev) || !atom_link_is_err(ndev)) { schedule_delayed_work(&ndev->hb_timer, ATOM_LINK_HB_TIMEOUT); return; } /* Link is down with error: recover the link! */ mmio = ndev->self_mmio; /* Driver resets the NTB ModPhy lanes - magic! */ iowrite8(0xe0, mmio + ATOM_MODPHY_PCSREG6); iowrite8(0x40, mmio + ATOM_MODPHY_PCSREG4); iowrite8(0x60, mmio + ATOM_MODPHY_PCSREG4); iowrite8(0x60, mmio + ATOM_MODPHY_PCSREG6); /* Driver waits 100ms to allow the NTB ModPhy to settle */ msleep(100); /* Clear AER Errors, write to clear */ status32 = ioread32(mmio + ATOM_ERRCORSTS_OFFSET); dev_dbg(ndev_dev(ndev), "ERRCORSTS = %x\n", status32); status32 &= PCI_ERR_COR_REP_ROLL; iowrite32(status32, mmio + ATOM_ERRCORSTS_OFFSET); /* Clear unexpected electrical idle event in LTSSM, write to clear */ status32 = ioread32(mmio + ATOM_LTSSMERRSTS0_OFFSET); dev_dbg(ndev_dev(ndev), "LTSSMERRSTS0 = %x\n", status32); status32 |= ATOM_LTSSMERRSTS0_UNEXPECTEDEI; iowrite32(status32, mmio + ATOM_LTSSMERRSTS0_OFFSET); /* Clear DeSkew Buffer error, write to clear */ status32 = ioread32(mmio + ATOM_DESKEWSTS_OFFSET); dev_dbg(ndev_dev(ndev), "DESKEWSTS = %x\n", status32); status32 |= ATOM_DESKEWSTS_DBERR; iowrite32(status32, mmio + ATOM_DESKEWSTS_OFFSET); status32 = ioread32(mmio + ATOM_IBSTERRRCRVSTS0_OFFSET); dev_dbg(ndev_dev(ndev), "IBSTERRRCRVSTS0 = %x\n", status32); status32 &= ATOM_IBIST_ERR_OFLOW; iowrite32(status32, mmio + ATOM_IBSTERRRCRVSTS0_OFFSET); /* Releases the NTB state machine to allow the link to retrain */ status32 = ioread32(mmio + ATOM_LTSSMSTATEJMP_OFFSET); dev_dbg(ndev_dev(ndev), "LTSSMSTATEJMP = %x\n", status32); status32 &= ~ATOM_LTSSMSTATEJMP_FORCEDETECT; iowrite32(status32, mmio + ATOM_LTSSMSTATEJMP_OFFSET); /* There is a potential race between the 2 NTB devices recovering at the * same time. If the times are the same, the link will not recover and * the driver will be stuck in this loop forever. Add a random interval * to the recovery time to prevent this race. */ schedule_delayed_work(&ndev->hb_timer, ATOM_LINK_RECOVERY_TIME + prandom_u32() % ATOM_LINK_RECOVERY_TIME); } static int atom_init_isr(struct intel_ntb_dev *ndev) { int rc; rc = ndev_init_isr(ndev, 1, ATOM_DB_MSIX_VECTOR_COUNT, ATOM_DB_MSIX_VECTOR_SHIFT, ATOM_DB_TOTAL_SHIFT); if (rc) return rc; /* ATOM doesn't have link status interrupt, poll on that platform */ ndev->last_ts = jiffies; INIT_DELAYED_WORK(&ndev->hb_timer, atom_link_hb); schedule_delayed_work(&ndev->hb_timer, ATOM_LINK_HB_TIMEOUT); return 0; } static void atom_deinit_isr(struct intel_ntb_dev *ndev) { cancel_delayed_work_sync(&ndev->hb_timer); ndev_deinit_isr(ndev); } static int atom_init_ntb(struct intel_ntb_dev *ndev) { ndev->mw_count = ATOM_MW_COUNT; ndev->spad_count = ATOM_SPAD_COUNT; ndev->db_count = ATOM_DB_COUNT; switch (ndev->ntb.topo) { case NTB_TOPO_B2B_USD: case NTB_TOPO_B2B_DSD: ndev->self_reg = &atom_pri_reg; ndev->peer_reg = &atom_b2b_reg; ndev->xlat_reg = &atom_sec_xlat; /* Enable Bus Master and Memory Space on the secondary side */ iowrite16(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER, ndev->self_mmio + ATOM_SPCICMD_OFFSET); break; default: return -EINVAL; } ndev->db_valid_mask = BIT_ULL(ndev->db_count) - 1; return 0; } static int atom_init_dev(struct intel_ntb_dev *ndev) { u32 ppd; int rc; rc = pci_read_config_dword(ndev->ntb.pdev, ATOM_PPD_OFFSET, &ppd); if (rc) return -EIO; ndev->ntb.topo = atom_ppd_topo(ndev, ppd); if (ndev->ntb.topo == NTB_TOPO_NONE) return -EINVAL; rc = atom_init_ntb(ndev); if (rc) return rc; rc = atom_init_isr(ndev); if (rc) return rc; if (ndev->ntb.topo != NTB_TOPO_SEC) { /* Initiate PCI-E link training */ rc = pci_write_config_dword(ndev->ntb.pdev, ATOM_PPD_OFFSET, ppd | ATOM_PPD_INIT_LINK); if (rc) return rc; } return 0; } static void atom_deinit_dev(struct intel_ntb_dev *ndev) { atom_deinit_isr(ndev); } /* XEON */ static u64 xeon_db_ioread(void __iomem *mmio) { return (u64)ioread16(mmio); } static void xeon_db_iowrite(u64 bits, void __iomem *mmio) { iowrite16((u16)bits, mmio); } static int xeon_poll_link(struct intel_ntb_dev *ndev) { u16 reg_val; int rc; ndev->reg->db_iowrite(ndev->db_link_mask, ndev->self_mmio + ndev->self_reg->db_bell); rc = pci_read_config_word(ndev->ntb.pdev, XEON_LINK_STATUS_OFFSET, ®_val); if (rc) return 0; if (reg_val == ndev->lnk_sta) return 0; ndev->lnk_sta = reg_val; return 1; } static int xeon_link_is_up(struct intel_ntb_dev *ndev) { if (ndev->ntb.topo == NTB_TOPO_SEC) return 1; return NTB_LNK_STA_ACTIVE(ndev->lnk_sta); } static inline enum ntb_topo xeon_ppd_topo(struct intel_ntb_dev *ndev, u8 ppd) { switch (ppd & XEON_PPD_TOPO_MASK) { case XEON_PPD_TOPO_B2B_USD: return NTB_TOPO_B2B_USD; case XEON_PPD_TOPO_B2B_DSD: return NTB_TOPO_B2B_DSD; case XEON_PPD_TOPO_PRI_USD: case XEON_PPD_TOPO_PRI_DSD: /* accept bogus PRI_DSD */ return NTB_TOPO_PRI; case XEON_PPD_TOPO_SEC_USD: case XEON_PPD_TOPO_SEC_DSD: /* accept bogus SEC_DSD */ return NTB_TOPO_SEC; } return NTB_TOPO_NONE; } static inline int xeon_ppd_bar4_split(struct intel_ntb_dev *ndev, u8 ppd) { if (ppd & XEON_PPD_SPLIT_BAR_MASK) { dev_dbg(ndev_dev(ndev), "PPD %d split bar\n", ppd); return 1; } return 0; } static int xeon_init_isr(struct intel_ntb_dev *ndev) { return ndev_init_isr(ndev, XEON_DB_MSIX_VECTOR_COUNT, XEON_DB_MSIX_VECTOR_COUNT, XEON_DB_MSIX_VECTOR_SHIFT, XEON_DB_TOTAL_SHIFT); } static void xeon_deinit_isr(struct intel_ntb_dev *ndev) { ndev_deinit_isr(ndev); } static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev, const struct intel_b2b_addr *addr, const struct intel_b2b_addr *peer_addr) { struct pci_dev *pdev; void __iomem *mmio; resource_size_t bar_size; phys_addr_t bar_addr; int b2b_bar; u8 bar_sz; pdev = ndev_pdev(ndev); mmio = ndev->self_mmio; if (ndev->b2b_idx >= ndev->mw_count) { dev_dbg(ndev_dev(ndev), "not using b2b mw\n"); b2b_bar = 0; ndev->b2b_off = 0; } else { b2b_bar = ndev_mw_to_bar(ndev, ndev->b2b_idx); if (b2b_bar < 0) return -EIO; dev_dbg(ndev_dev(ndev), "using b2b mw bar %d\n", b2b_bar); bar_size = pci_resource_len(ndev->ntb.pdev, b2b_bar); dev_dbg(ndev_dev(ndev), "b2b bar size %#llx\n", bar_size); if (b2b_mw_share && XEON_B2B_MIN_SIZE <= bar_size >> 1) { dev_dbg(ndev_dev(ndev), "b2b using first half of bar\n"); ndev->b2b_off = bar_size >> 1; } else if (XEON_B2B_MIN_SIZE <= bar_size) { dev_dbg(ndev_dev(ndev), "b2b using whole bar\n"); ndev->b2b_off = 0; --ndev->mw_count; } else { dev_dbg(ndev_dev(ndev), "b2b bar size is too small\n"); return -EIO; } } /* Reset the secondary bar sizes to match the primary bar sizes, * except disable or halve the size of the b2b secondary bar. * * Note: code for each specific bar size register, because the register * offsets are not in a consistent order (bar5sz comes after ppd, odd). */ pci_read_config_byte(pdev, XEON_PBAR23SZ_OFFSET, &bar_sz); dev_dbg(ndev_dev(ndev), "PBAR23SZ %#x\n", bar_sz); if (b2b_bar == 2) { if (ndev->b2b_off) bar_sz -= 1; else bar_sz = 0; } pci_write_config_byte(pdev, XEON_SBAR23SZ_OFFSET, bar_sz); pci_read_config_byte(pdev, XEON_SBAR23SZ_OFFSET, &bar_sz); dev_dbg(ndev_dev(ndev), "SBAR23SZ %#x\n", bar_sz); if (!ndev->bar4_split) { pci_read_config_byte(pdev, XEON_PBAR45SZ_OFFSET, &bar_sz); dev_dbg(ndev_dev(ndev), "PBAR45SZ %#x\n", bar_sz); if (b2b_bar == 4) { if (ndev->b2b_off) bar_sz -= 1; else bar_sz = 0; } pci_write_config_byte(pdev, XEON_SBAR45SZ_OFFSET, bar_sz); pci_read_config_byte(pdev, XEON_SBAR45SZ_OFFSET, &bar_sz); dev_dbg(ndev_dev(ndev), "SBAR45SZ %#x\n", bar_sz); } else { pci_read_config_byte(pdev, XEON_PBAR4SZ_OFFSET, &bar_sz); dev_dbg(ndev_dev(ndev), "PBAR4SZ %#x\n", bar_sz); if (b2b_bar == 4) { if (ndev->b2b_off) bar_sz -= 1; else bar_sz = 0; } pci_write_config_byte(pdev, XEON_SBAR4SZ_OFFSET, bar_sz); pci_read_config_byte(pdev, XEON_SBAR4SZ_OFFSET, &bar_sz); dev_dbg(ndev_dev(ndev), "SBAR4SZ %#x\n", bar_sz); pci_read_config_byte(pdev, XEON_PBAR5SZ_OFFSET, &bar_sz); dev_dbg(ndev_dev(ndev), "PBAR5SZ %#x\n", bar_sz); if (b2b_bar == 5) { if (ndev->b2b_off) bar_sz -= 1; else bar_sz = 0; } pci_write_config_byte(pdev, XEON_SBAR5SZ_OFFSET, bar_sz); pci_read_config_byte(pdev, XEON_SBAR5SZ_OFFSET, &bar_sz); dev_dbg(ndev_dev(ndev), "SBAR5SZ %#x\n", bar_sz); } /* SBAR01 hit by first part of the b2b bar */ if (b2b_bar == 0) bar_addr = addr->bar0_addr; else if (b2b_bar == 2) bar_addr = addr->bar2_addr64; else if (b2b_bar == 4 && !ndev->bar4_split) bar_addr = addr->bar4_addr64; else if (b2b_bar == 4) bar_addr = addr->bar4_addr32; else if (b2b_bar == 5) bar_addr = addr->bar5_addr32; else return -EIO; dev_dbg(ndev_dev(ndev), "SBAR01 %#018llx\n", bar_addr); iowrite64(bar_addr, mmio + XEON_SBAR0BASE_OFFSET); /* Other SBAR are normally hit by the PBAR xlat, except for b2b bar. * The b2b bar is either disabled above, or configured half-size, and * it starts at the PBAR xlat + offset. */ bar_addr = addr->bar2_addr64 + (b2b_bar == 2 ? ndev->b2b_off : 0); iowrite64(bar_addr, mmio + XEON_SBAR23BASE_OFFSET); bar_addr = ioread64(mmio + XEON_SBAR23BASE_OFFSET); dev_dbg(ndev_dev(ndev), "SBAR23 %#018llx\n", bar_addr); if (!ndev->bar4_split) { bar_addr = addr->bar4_addr64 + (b2b_bar == 4 ? ndev->b2b_off : 0); iowrite64(bar_addr, mmio + XEON_SBAR45BASE_OFFSET); bar_addr = ioread64(mmio + XEON_SBAR45BASE_OFFSET); dev_dbg(ndev_dev(ndev), "SBAR45 %#018llx\n", bar_addr); } else { bar_addr = addr->bar4_addr32 + (b2b_bar == 4 ? ndev->b2b_off : 0); iowrite32(bar_addr, mmio + XEON_SBAR4BASE_OFFSET); bar_addr = ioread32(mmio + XEON_SBAR4BASE_OFFSET); dev_dbg(ndev_dev(ndev), "SBAR4 %#010llx\n", bar_addr); bar_addr = addr->bar5_addr32 + (b2b_bar == 5 ? ndev->b2b_off : 0); iowrite32(bar_addr, mmio + XEON_SBAR5BASE_OFFSET); bar_addr = ioread32(mmio + XEON_SBAR5BASE_OFFSET); dev_dbg(ndev_dev(ndev), "SBAR5 %#010llx\n", bar_addr); } /* setup incoming bar limits == base addrs (zero length windows) */ bar_addr = addr->bar2_addr64 + (b2b_bar == 2 ? ndev->b2b_off : 0); iowrite64(bar_addr, mmio + XEON_SBAR23LMT_OFFSET); bar_addr = ioread64(mmio + XEON_SBAR23LMT_OFFSET); dev_dbg(ndev_dev(ndev), "SBAR23LMT %#018llx\n", bar_addr); if (!ndev->bar4_split) { bar_addr = addr->bar4_addr64 + (b2b_bar == 4 ? ndev->b2b_off : 0); iowrite64(bar_addr, mmio + XEON_SBAR45LMT_OFFSET); bar_addr = ioread64(mmio + XEON_SBAR45LMT_OFFSET); dev_dbg(ndev_dev(ndev), "SBAR45LMT %#018llx\n", bar_addr); } else { bar_addr = addr->bar4_addr32 + (b2b_bar == 4 ? ndev->b2b_off : 0); iowrite32(bar_addr, mmio + XEON_SBAR4LMT_OFFSET); bar_addr = ioread32(mmio + XEON_SBAR4LMT_OFFSET); dev_dbg(ndev_dev(ndev), "SBAR4LMT %#010llx\n", bar_addr); bar_addr = addr->bar5_addr32 + (b2b_bar == 5 ? ndev->b2b_off : 0); iowrite32(bar_addr, mmio + XEON_SBAR5LMT_OFFSET); bar_addr = ioread32(mmio + XEON_SBAR5LMT_OFFSET); dev_dbg(ndev_dev(ndev), "SBAR5LMT %#05llx\n", bar_addr); } /* zero incoming translation addrs */ iowrite64(0, mmio + XEON_SBAR23XLAT_OFFSET); if (!ndev->bar4_split) { iowrite64(0, mmio + XEON_SBAR45XLAT_OFFSET); } else { iowrite32(0, mmio + XEON_SBAR4XLAT_OFFSET); iowrite32(0, mmio + XEON_SBAR5XLAT_OFFSET); } /* zero outgoing translation limits (whole bar size windows) */ iowrite64(0, mmio + XEON_PBAR23LMT_OFFSET); if (!ndev->bar4_split) { iowrite64(0, mmio + XEON_PBAR45LMT_OFFSET); } else { iowrite32(0, mmio + XEON_PBAR4LMT_OFFSET); iowrite32(0, mmio + XEON_PBAR5LMT_OFFSET); } /* set outgoing translation offsets */ bar_addr = peer_addr->bar2_addr64; iowrite64(bar_addr, mmio + XEON_PBAR23XLAT_OFFSET); bar_addr = ioread64(mmio + XEON_PBAR23XLAT_OFFSET); dev_dbg(ndev_dev(ndev), "PBAR23XLAT %#018llx\n", bar_addr); if (!ndev->bar4_split) { bar_addr = peer_addr->bar4_addr64; iowrite64(bar_addr, mmio + XEON_PBAR45XLAT_OFFSET); bar_addr = ioread64(mmio + XEON_PBAR45XLAT_OFFSET); dev_dbg(ndev_dev(ndev), "PBAR45XLAT %#018llx\n", bar_addr); } else { bar_addr = peer_addr->bar4_addr32; iowrite32(bar_addr, mmio + XEON_PBAR4XLAT_OFFSET); bar_addr = ioread32(mmio + XEON_PBAR4XLAT_OFFSET); dev_dbg(ndev_dev(ndev), "PBAR4XLAT %#010llx\n", bar_addr); bar_addr = peer_addr->bar5_addr32; iowrite32(bar_addr, mmio + XEON_PBAR5XLAT_OFFSET); bar_addr = ioread32(mmio + XEON_PBAR5XLAT_OFFSET); dev_dbg(ndev_dev(ndev), "PBAR5XLAT %#010llx\n", bar_addr); } /* set the translation offset for b2b registers */ if (b2b_bar == 0) bar_addr = peer_addr->bar0_addr; else if (b2b_bar == 2) bar_addr = peer_addr->bar2_addr64; else if (b2b_bar == 4 && !ndev->bar4_split) bar_addr = peer_addr->bar4_addr64; else if (b2b_bar == 4) bar_addr = peer_addr->bar4_addr32; else if (b2b_bar == 5) bar_addr = peer_addr->bar5_addr32; else return -EIO; /* B2B_XLAT_OFFSET is 64bit, but can only take 32bit writes */ dev_dbg(ndev_dev(ndev), "B2BXLAT %#018llx\n", bar_addr); iowrite32(bar_addr, mmio + XEON_B2B_XLAT_OFFSETL); iowrite32(bar_addr >> 32, mmio + XEON_B2B_XLAT_OFFSETU); if (b2b_bar) { /* map peer ntb mmio config space registers */ ndev->peer_mmio = pci_iomap(pdev, b2b_bar, XEON_B2B_MIN_SIZE); if (!ndev->peer_mmio) return -EIO; } return 0; } static int xeon_init_ntb(struct intel_ntb_dev *ndev) { int rc; u32 ntb_ctl; if (ndev->bar4_split) ndev->mw_count = HSX_SPLIT_BAR_MW_COUNT; else ndev->mw_count = XEON_MW_COUNT; ndev->spad_count = XEON_SPAD_COUNT; ndev->db_count = XEON_DB_COUNT; ndev->db_link_mask = XEON_DB_LINK_BIT; switch (ndev->ntb.topo) { case NTB_TOPO_PRI: if (ndev->hwerr_flags & NTB_HWERR_SDOORBELL_LOCKUP) { dev_err(ndev_dev(ndev), "NTB Primary config disabled\n"); return -EINVAL; } /* enable link to allow secondary side device to appear */ ntb_ctl = ioread32(ndev->self_mmio + ndev->reg->ntb_ctl); ntb_ctl &= ~NTB_CTL_DISABLE; iowrite32(ntb_ctl, ndev->self_mmio + ndev->reg->ntb_ctl); /* use half the spads for the peer */ ndev->spad_count >>= 1; ndev->self_reg = &xeon_pri_reg; ndev->peer_reg = &xeon_sec_reg; ndev->xlat_reg = &xeon_sec_xlat; break; case NTB_TOPO_SEC: if (ndev->hwerr_flags & NTB_HWERR_SDOORBELL_LOCKUP) { dev_err(ndev_dev(ndev), "NTB Secondary config disabled\n"); return -EINVAL; } /* use half the spads for the peer */ ndev->spad_count >>= 1; ndev->self_reg = &xeon_sec_reg; ndev->peer_reg = &xeon_pri_reg; ndev->xlat_reg = &xeon_pri_xlat; break; case NTB_TOPO_B2B_USD: case NTB_TOPO_B2B_DSD: ndev->self_reg = &xeon_pri_reg; ndev->peer_reg = &xeon_b2b_reg; ndev->xlat_reg = &xeon_sec_xlat; if (ndev->hwerr_flags & NTB_HWERR_SDOORBELL_LOCKUP) { ndev->peer_reg = &xeon_pri_reg; if (b2b_mw_idx < 0) ndev->b2b_idx = b2b_mw_idx + ndev->mw_count; else ndev->b2b_idx = b2b_mw_idx; dev_dbg(ndev_dev(ndev), "setting up b2b mw idx %d means %d\n", b2b_mw_idx, ndev->b2b_idx); } else if (ndev->hwerr_flags & NTB_HWERR_B2BDOORBELL_BIT14) { dev_warn(ndev_dev(ndev), "Reduce doorbell count by 1\n"); ndev->db_count -= 1; } if (ndev->ntb.topo == NTB_TOPO_B2B_USD) { rc = xeon_setup_b2b_mw(ndev, &xeon_b2b_dsd_addr, &xeon_b2b_usd_addr); } else { rc = xeon_setup_b2b_mw(ndev, &xeon_b2b_usd_addr, &xeon_b2b_dsd_addr); } if (rc) return rc; /* Enable Bus Master and Memory Space on the secondary side */ iowrite16(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER, ndev->self_mmio + XEON_SPCICMD_OFFSET); break; default: return -EINVAL; } ndev->db_valid_mask = BIT_ULL(ndev->db_count) - 1; ndev->reg->db_iowrite(ndev->db_valid_mask, ndev->self_mmio + ndev->self_reg->db_mask); return 0; } static int xeon_init_dev(struct intel_ntb_dev *ndev) { struct pci_dev *pdev; u8 ppd; int rc, mem; pdev = ndev_pdev(ndev); switch (pdev->device) { /* There is a Xeon hardware errata related to writes to SDOORBELL or * B2BDOORBELL in conjunction with inbound access to NTB MMIO Space, * which may hang the system. To workaround this use the second memory * window to access the interrupt and scratch pad registers on the * remote system. */ case PCI_DEVICE_ID_INTEL_NTB_SS_JSF: case PCI_DEVICE_ID_INTEL_NTB_PS_JSF: case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF: case PCI_DEVICE_ID_INTEL_NTB_SS_SNB: case PCI_DEVICE_ID_INTEL_NTB_PS_SNB: case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB: case PCI_DEVICE_ID_INTEL_NTB_SS_IVT: case PCI_DEVICE_ID_INTEL_NTB_PS_IVT: case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT: case PCI_DEVICE_ID_INTEL_NTB_SS_HSX: case PCI_DEVICE_ID_INTEL_NTB_PS_HSX: case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX: ndev->hwerr_flags |= NTB_HWERR_SDOORBELL_LOCKUP; break; } switch (pdev->device) { /* There is a hardware errata related to accessing any register in * SB01BASE in the presence of bidirectional traffic crossing the NTB. */ case PCI_DEVICE_ID_INTEL_NTB_SS_IVT: case PCI_DEVICE_ID_INTEL_NTB_PS_IVT: case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT: case PCI_DEVICE_ID_INTEL_NTB_SS_HSX: case PCI_DEVICE_ID_INTEL_NTB_PS_HSX: case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX: ndev->hwerr_flags |= NTB_HWERR_SB01BASE_LOCKUP; break; } switch (pdev->device) { /* HW Errata on bit 14 of b2bdoorbell register. Writes will not be * mirrored to the remote system. Shrink the number of bits by one, * since bit 14 is the last bit. */ case PCI_DEVICE_ID_INTEL_NTB_SS_JSF: case PCI_DEVICE_ID_INTEL_NTB_PS_JSF: case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF: case PCI_DEVICE_ID_INTEL_NTB_SS_SNB: case PCI_DEVICE_ID_INTEL_NTB_PS_SNB: case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB: case PCI_DEVICE_ID_INTEL_NTB_SS_IVT: case PCI_DEVICE_ID_INTEL_NTB_PS_IVT: case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT: case PCI_DEVICE_ID_INTEL_NTB_SS_HSX: case PCI_DEVICE_ID_INTEL_NTB_PS_HSX: case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX: ndev->hwerr_flags |= NTB_HWERR_B2BDOORBELL_BIT14; break; } ndev->reg = &xeon_reg; rc = pci_read_config_byte(pdev, XEON_PPD_OFFSET, &ppd); if (rc) return -EIO; ndev->ntb.topo = xeon_ppd_topo(ndev, ppd); dev_dbg(ndev_dev(ndev), "ppd %#x topo %s\n", ppd, ntb_topo_string(ndev->ntb.topo)); if (ndev->ntb.topo == NTB_TOPO_NONE) return -EINVAL; if (ndev->ntb.topo != NTB_TOPO_SEC) { ndev->bar4_split = xeon_ppd_bar4_split(ndev, ppd); dev_dbg(ndev_dev(ndev), "ppd %#x bar4_split %d\n", ppd, ndev->bar4_split); } else { /* This is a way for transparent BAR to figure out if we are * doing split BAR or not. There is no way for the hw on the * transparent side to know and set the PPD. */ mem = pci_select_bars(pdev, IORESOURCE_MEM); ndev->bar4_split = hweight32(mem) == HSX_SPLIT_BAR_MW_COUNT + 1; dev_dbg(ndev_dev(ndev), "mem %#x bar4_split %d\n", mem, ndev->bar4_split); } rc = xeon_init_ntb(ndev); if (rc) return rc; return xeon_init_isr(ndev); } static void xeon_deinit_dev(struct intel_ntb_dev *ndev) { xeon_deinit_isr(ndev); } static int intel_ntb_init_pci(struct intel_ntb_dev *ndev, struct pci_dev *pdev) { int rc; pci_set_drvdata(pdev, ndev); rc = pci_enable_device(pdev); if (rc) goto err_pci_enable; rc = pci_request_regions(pdev, NTB_NAME); if (rc) goto err_pci_regions; pci_set_master(pdev); rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); if (rc) { rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc) goto err_dma_mask; dev_warn(ndev_dev(ndev), "Cannot DMA highmem\n"); } rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); if (rc) { rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc) goto err_dma_mask; dev_warn(ndev_dev(ndev), "Cannot DMA consistent highmem\n"); } ndev->self_mmio = pci_iomap(pdev, 0, 0); if (!ndev->self_mmio) { rc = -EIO; goto err_mmio; } ndev->peer_mmio = ndev->self_mmio; return 0; err_mmio: err_dma_mask: pci_clear_master(pdev); pci_release_regions(pdev); err_pci_regions: pci_disable_device(pdev); err_pci_enable: pci_set_drvdata(pdev, NULL); return rc; } static void intel_ntb_deinit_pci(struct intel_ntb_dev *ndev) { struct pci_dev *pdev = ndev_pdev(ndev); if (ndev->peer_mmio && ndev->peer_mmio != ndev->self_mmio) pci_iounmap(pdev, ndev->peer_mmio); pci_iounmap(pdev, ndev->self_mmio); pci_clear_master(pdev); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } static inline void ndev_init_struct(struct intel_ntb_dev *ndev, struct pci_dev *pdev) { ndev->ntb.pdev = pdev; ndev->ntb.topo = NTB_TOPO_NONE; ndev->ntb.ops = &intel_ntb_ops; ndev->b2b_off = 0; ndev->b2b_idx = INT_MAX; ndev->bar4_split = 0; ndev->mw_count = 0; ndev->spad_count = 0; ndev->db_count = 0; ndev->db_vec_count = 0; ndev->db_vec_shift = 0; ndev->ntb_ctl = 0; ndev->lnk_sta = 0; ndev->db_valid_mask = 0; ndev->db_link_mask = 0; ndev->db_mask = 0; spin_lock_init(&ndev->db_mask_lock); } static int intel_ntb_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct intel_ntb_dev *ndev; int rc, node; node = dev_to_node(&pdev->dev); if (pdev_is_atom(pdev)) { ndev = kzalloc_node(sizeof(*ndev), GFP_KERNEL, node); if (!ndev) { rc = -ENOMEM; goto err_ndev; } ndev_init_struct(ndev, pdev); rc = intel_ntb_init_pci(ndev, pdev); if (rc) goto err_init_pci; rc = atom_init_dev(ndev); if (rc) goto err_init_dev; } else if (pdev_is_xeon(pdev)) { ndev = kzalloc_node(sizeof(*ndev), GFP_KERNEL, node); if (!ndev) { rc = -ENOMEM; goto err_ndev; } ndev_init_struct(ndev, pdev); rc = intel_ntb_init_pci(ndev, pdev); if (rc) goto err_init_pci; rc = xeon_init_dev(ndev); if (rc) goto err_init_dev; } else { rc = -EINVAL; goto err_ndev; } ndev_reset_unsafe_flags(ndev); ndev->reg->poll_link(ndev); ndev_init_debugfs(ndev); rc = ntb_register_device(&ndev->ntb); if (rc) goto err_register; dev_info(&pdev->dev, "NTB device registered.\n"); return 0; err_register: ndev_deinit_debugfs(ndev); if (pdev_is_atom(pdev)) atom_deinit_dev(ndev); else if (pdev_is_xeon(pdev)) xeon_deinit_dev(ndev); err_init_dev: intel_ntb_deinit_pci(ndev); err_init_pci: kfree(ndev); err_ndev: return rc; } static void intel_ntb_pci_remove(struct pci_dev *pdev) { struct intel_ntb_dev *ndev = pci_get_drvdata(pdev); ntb_unregister_device(&ndev->ntb); ndev_deinit_debugfs(ndev); if (pdev_is_atom(pdev)) atom_deinit_dev(ndev); else if (pdev_is_xeon(pdev)) xeon_deinit_dev(ndev); intel_ntb_deinit_pci(ndev); kfree(ndev); } static const struct intel_ntb_reg atom_reg = { .poll_link = atom_poll_link, .link_is_up = atom_link_is_up, .db_ioread = atom_db_ioread, .db_iowrite = atom_db_iowrite, .db_size = sizeof(u64), .ntb_ctl = ATOM_NTBCNTL_OFFSET, .mw_bar = {2, 4}, }; static const struct intel_ntb_alt_reg atom_pri_reg = { .db_bell = ATOM_PDOORBELL_OFFSET, .db_mask = ATOM_PDBMSK_OFFSET, .spad = ATOM_SPAD_OFFSET, }; static const struct intel_ntb_alt_reg atom_b2b_reg = { .db_bell = ATOM_B2B_DOORBELL_OFFSET, .spad = ATOM_B2B_SPAD_OFFSET, }; static const struct intel_ntb_xlat_reg atom_sec_xlat = { /* FIXME : .bar0_base = ATOM_SBAR0BASE_OFFSET, */ /* FIXME : .bar2_limit = ATOM_SBAR2LMT_OFFSET, */ .bar2_xlat = ATOM_SBAR2XLAT_OFFSET, }; static const struct intel_ntb_reg xeon_reg = { .poll_link = xeon_poll_link, .link_is_up = xeon_link_is_up, .db_ioread = xeon_db_ioread, .db_iowrite = xeon_db_iowrite, .db_size = sizeof(u32), .ntb_ctl = XEON_NTBCNTL_OFFSET, .mw_bar = {2, 4, 5}, }; static const struct intel_ntb_alt_reg xeon_pri_reg = { .db_bell = XEON_PDOORBELL_OFFSET, .db_mask = XEON_PDBMSK_OFFSET, .spad = XEON_SPAD_OFFSET, }; static const struct intel_ntb_alt_reg xeon_sec_reg = { .db_bell = XEON_SDOORBELL_OFFSET, .db_mask = XEON_SDBMSK_OFFSET, /* second half of the scratchpads */ .spad = XEON_SPAD_OFFSET + (XEON_SPAD_COUNT << 1), }; static const struct intel_ntb_alt_reg xeon_b2b_reg = { .db_bell = XEON_B2B_DOORBELL_OFFSET, .spad = XEON_B2B_SPAD_OFFSET, }; static const struct intel_ntb_xlat_reg xeon_pri_xlat = { /* Note: no primary .bar0_base visible to the secondary side. * * The secondary side cannot get the base address stored in primary * bars. The base address is necessary to set the limit register to * any value other than zero, or unlimited. * * WITHOUT THE BASE ADDRESS, THE SECONDARY SIDE CANNOT DISABLE the * window by setting the limit equal to base, nor can it limit the size * of the memory window by setting the limit to base + size. */ .bar2_limit = XEON_PBAR23LMT_OFFSET, .bar2_xlat = XEON_PBAR23XLAT_OFFSET, }; static const struct intel_ntb_xlat_reg xeon_sec_xlat = { .bar0_base = XEON_SBAR0BASE_OFFSET, .bar2_limit = XEON_SBAR23LMT_OFFSET, .bar2_xlat = XEON_SBAR23XLAT_OFFSET, }; static struct intel_b2b_addr xeon_b2b_usd_addr = { .bar2_addr64 = XEON_B2B_BAR2_USD_ADDR64, .bar4_addr64 = XEON_B2B_BAR4_USD_ADDR64, .bar4_addr32 = XEON_B2B_BAR4_USD_ADDR32, .bar5_addr32 = XEON_B2B_BAR5_USD_ADDR32, }; static struct intel_b2b_addr xeon_b2b_dsd_addr = { .bar2_addr64 = XEON_B2B_BAR2_DSD_ADDR64, .bar4_addr64 = XEON_B2B_BAR4_DSD_ADDR64, .bar4_addr32 = XEON_B2B_BAR4_DSD_ADDR32, .bar5_addr32 = XEON_B2B_BAR5_DSD_ADDR32, }; /* operations for primary side of local ntb */ static const struct ntb_dev_ops intel_ntb_ops = { .mw_count = intel_ntb_mw_count, .mw_get_range = intel_ntb_mw_get_range, .mw_set_trans = intel_ntb_mw_set_trans, .link_is_up = intel_ntb_link_is_up, .link_enable = intel_ntb_link_enable, .link_disable = intel_ntb_link_disable, .db_is_unsafe = intel_ntb_db_is_unsafe, .db_valid_mask = intel_ntb_db_valid_mask, .db_vector_count = intel_ntb_db_vector_count, .db_vector_mask = intel_ntb_db_vector_mask, .db_read = intel_ntb_db_read, .db_clear = intel_ntb_db_clear, .db_set_mask = intel_ntb_db_set_mask, .db_clear_mask = intel_ntb_db_clear_mask, .peer_db_addr = intel_ntb_peer_db_addr, .peer_db_set = intel_ntb_peer_db_set, .spad_is_unsafe = intel_ntb_spad_is_unsafe, .spad_count = intel_ntb_spad_count, .spad_read = intel_ntb_spad_read, .spad_write = intel_ntb_spad_write, .peer_spad_addr = intel_ntb_peer_spad_addr, .peer_spad_read = intel_ntb_peer_spad_read, .peer_spad_write = intel_ntb_peer_spad_write, }; static const struct file_operations intel_ntb_debugfs_info = { .owner = THIS_MODULE, .open = simple_open, .read = ndev_debugfs_read, }; static const struct pci_device_id intel_ntb_pci_tbl[] = { {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_BWD)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_JSF)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_SNB)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_IVT)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_HSX)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_JSF)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_SNB)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_IVT)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_HSX)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_JSF)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_SNB)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_IVT)}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_HSX)}, {0} }; MODULE_DEVICE_TABLE(pci, intel_ntb_pci_tbl); static struct pci_driver intel_ntb_pci_driver = { .name = KBUILD_MODNAME, .id_table = intel_ntb_pci_tbl, .probe = intel_ntb_pci_probe, .remove = intel_ntb_pci_remove, }; static int __init intel_ntb_pci_driver_init(void) { pr_info("%s %s\n", NTB_DESC, NTB_VER); if (debugfs_initialized()) debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL); return pci_register_driver(&intel_ntb_pci_driver); } module_init(intel_ntb_pci_driver_init); static void __exit intel_ntb_pci_driver_exit(void) { pci_unregister_driver(&intel_ntb_pci_driver); debugfs_remove_recursive(debugfs_dir); } module_exit(intel_ntb_pci_driver_exit);