// SPDX-License-Identifier: GPL-2.0 /* cavium_ptp.c - PTP 1588 clock on Cavium hardware * Copyright (c) 2003-2015, 2017 Cavium, Inc. */ #include #include #include #include #include "cavium_ptp.h" #define DRV_NAME "Cavium PTP Driver" #define PCI_DEVICE_ID_CAVIUM_PTP 0xA00C #define PCI_DEVICE_ID_CAVIUM_RST 0xA00E #define PCI_PTP_BAR_NO 0 #define PCI_RST_BAR_NO 0 #define PTP_CLOCK_CFG 0xF00ULL #define PTP_CLOCK_CFG_PTP_EN BIT(0) #define PTP_CLOCK_LO 0xF08ULL #define PTP_CLOCK_HI 0xF10ULL #define PTP_CLOCK_COMP 0xF18ULL #define RST_BOOT 0x1600ULL #define CLOCK_BASE_RATE 50000000ULL static u64 ptp_cavium_clock_get(void) { struct pci_dev *pdev; void __iomem *base; u64 ret = CLOCK_BASE_RATE * 16; pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_CAVIUM_RST, NULL); if (!pdev) goto error; base = pci_ioremap_bar(pdev, PCI_RST_BAR_NO); if (!base) goto error_put_pdev; ret = CLOCK_BASE_RATE * ((readq(base + RST_BOOT) >> 33) & 0x3f); iounmap(base); error_put_pdev: pci_dev_put(pdev); error: return ret; } struct cavium_ptp *cavium_ptp_get(void) { struct cavium_ptp *ptp; struct pci_dev *pdev; pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_CAVIUM_PTP, NULL); if (!pdev) return ERR_PTR(-ENODEV); ptp = pci_get_drvdata(pdev); if (!ptp) ptp = ERR_PTR(-EPROBE_DEFER); if (IS_ERR(ptp)) pci_dev_put(pdev); return ptp; } EXPORT_SYMBOL(cavium_ptp_get); void cavium_ptp_put(struct cavium_ptp *ptp) { if (!ptp) return; pci_dev_put(ptp->pdev); } EXPORT_SYMBOL(cavium_ptp_put); /** * cavium_ptp_adjfine() - Adjust ptp frequency * @ptp: PTP clock info * @scaled_ppm: how much to adjust by, in parts per million, but with a * 16 bit binary fractional field */ static int cavium_ptp_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm) { struct cavium_ptp *clock = container_of(ptp_info, struct cavium_ptp, ptp_info); unsigned long flags; u64 comp; u64 adj; bool neg_adj = false; if (scaled_ppm < 0) { neg_adj = true; scaled_ppm = -scaled_ppm; } /* The hardware adds the clock compensation value to the PTP clock * on every coprocessor clock cycle. Typical convention is that it * represent number of nanosecond betwen each cycle. In this * convention compensation value is in 64 bit fixed-point * representation where upper 32 bits are number of nanoseconds * and lower is fractions of nanosecond. * The scaled_ppm represent the ratio in "parts per bilion" by which the * compensation value should be corrected. * To calculate new compenstation value we use 64bit fixed point * arithmetic on following formula * comp = tbase + tbase * scaled_ppm / (1M * 2^16) * where tbase is the basic compensation value calculated initialy * in cavium_ptp_init() -> tbase = 1/Hz. Then we use endian * independent structure definition to write data to PTP register. */ comp = ((u64)1000000000ull << 32) / clock->clock_rate; adj = comp * scaled_ppm; adj >>= 16; adj = div_u64(adj, 1000000ull); comp = neg_adj ? comp - adj : comp + adj; spin_lock_irqsave(&clock->spin_lock, flags); writeq(comp, clock->reg_base + PTP_CLOCK_COMP); spin_unlock_irqrestore(&clock->spin_lock, flags); return 0; } /** * cavium_ptp_adjtime() - Adjust ptp time * @ptp: PTP clock info * @delta: how much to adjust by, in nanosecs */ static int cavium_ptp_adjtime(struct ptp_clock_info *ptp_info, s64 delta) { struct cavium_ptp *clock = container_of(ptp_info, struct cavium_ptp, ptp_info); unsigned long flags; spin_lock_irqsave(&clock->spin_lock, flags); timecounter_adjtime(&clock->time_counter, delta); spin_unlock_irqrestore(&clock->spin_lock, flags); /* Sync, for network driver to get latest value */ smp_mb(); return 0; } /** * cavium_ptp_gettime() - Get hardware clock time with adjustment * @ptp: PTP clock info * @ts: timespec */ static int cavium_ptp_gettime(struct ptp_clock_info *ptp_info, struct timespec64 *ts) { struct cavium_ptp *clock = container_of(ptp_info, struct cavium_ptp, ptp_info); unsigned long flags; u64 nsec; spin_lock_irqsave(&clock->spin_lock, flags); nsec = timecounter_read(&clock->time_counter); spin_unlock_irqrestore(&clock->spin_lock, flags); *ts = ns_to_timespec64(nsec); return 0; } /** * cavium_ptp_settime() - Set hardware clock time. Reset adjustment * @ptp: PTP clock info * @ts: timespec */ static int cavium_ptp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts) { struct cavium_ptp *clock = container_of(ptp_info, struct cavium_ptp, ptp_info); unsigned long flags; u64 nsec; nsec = timespec64_to_ns(ts); spin_lock_irqsave(&clock->spin_lock, flags); timecounter_init(&clock->time_counter, &clock->cycle_counter, nsec); spin_unlock_irqrestore(&clock->spin_lock, flags); return 0; } /** * cavium_ptp_enable() - Request to enable or disable an ancillary feature. * @ptp: PTP clock info * @rq: request * @on: is it on */ static int cavium_ptp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq, int on) { return -EOPNOTSUPP; } static u64 cavium_ptp_cc_read(const struct cyclecounter *cc) { struct cavium_ptp *clock = container_of(cc, struct cavium_ptp, cycle_counter); return readq(clock->reg_base + PTP_CLOCK_HI); } static int cavium_ptp_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct device *dev = &pdev->dev; struct cavium_ptp *clock; struct cyclecounter *cc; u64 clock_cfg; u64 clock_comp; int err; clock = devm_kzalloc(dev, sizeof(*clock), GFP_KERNEL); if (!clock) { err = -ENOMEM; goto error; } clock->pdev = pdev; err = pcim_enable_device(pdev); if (err) goto error_free; err = pcim_iomap_regions(pdev, 1 << PCI_PTP_BAR_NO, pci_name(pdev)); if (err) goto error_free; clock->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO]; spin_lock_init(&clock->spin_lock); cc = &clock->cycle_counter; cc->read = cavium_ptp_cc_read; cc->mask = CYCLECOUNTER_MASK(64); cc->mult = 1; cc->shift = 0; timecounter_init(&clock->time_counter, &clock->cycle_counter, ktime_to_ns(ktime_get_real())); clock->clock_rate = ptp_cavium_clock_get(); clock->ptp_info = (struct ptp_clock_info) { .owner = THIS_MODULE, .name = "ThunderX PTP", .max_adj = 1000000000ull, .n_ext_ts = 0, .n_pins = 0, .pps = 0, .adjfine = cavium_ptp_adjfine, .adjtime = cavium_ptp_adjtime, .gettime64 = cavium_ptp_gettime, .settime64 = cavium_ptp_settime, .enable = cavium_ptp_enable, }; clock_cfg = readq(clock->reg_base + PTP_CLOCK_CFG); clock_cfg |= PTP_CLOCK_CFG_PTP_EN; writeq(clock_cfg, clock->reg_base + PTP_CLOCK_CFG); clock_comp = ((u64)1000000000ull << 32) / clock->clock_rate; writeq(clock_comp, clock->reg_base + PTP_CLOCK_COMP); clock->ptp_clock = ptp_clock_register(&clock->ptp_info, dev); if (IS_ERR(clock->ptp_clock)) { err = PTR_ERR(clock->ptp_clock); goto error_stop; } pci_set_drvdata(pdev, clock); return 0; error_stop: clock_cfg = readq(clock->reg_base + PTP_CLOCK_CFG); clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN; writeq(clock_cfg, clock->reg_base + PTP_CLOCK_CFG); pcim_iounmap_regions(pdev, 1 << PCI_PTP_BAR_NO); error_free: devm_kfree(dev, clock); error: /* For `cavium_ptp_get()` we need to differentiate between the case * when the core has not tried to probe this device and the case when * the probe failed. In the later case we pretend that the * initialization was successful and keep the error in * `dev->driver_data`. */ pci_set_drvdata(pdev, ERR_PTR(err)); return 0; } static void cavium_ptp_remove(struct pci_dev *pdev) { struct cavium_ptp *clock = pci_get_drvdata(pdev); u64 clock_cfg; if (IS_ERR_OR_NULL(clock)) return; ptp_clock_unregister(clock->ptp_clock); clock_cfg = readq(clock->reg_base + PTP_CLOCK_CFG); clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN; writeq(clock_cfg, clock->reg_base + PTP_CLOCK_CFG); } static const struct pci_device_id cavium_ptp_id_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_CAVIUM_PTP) }, { 0, } }; static struct pci_driver cavium_ptp_driver = { .name = DRV_NAME, .id_table = cavium_ptp_id_table, .probe = cavium_ptp_probe, .remove = cavium_ptp_remove, }; module_pci_driver(cavium_ptp_driver); MODULE_DESCRIPTION(DRV_NAME); MODULE_AUTHOR("Cavium Networks "); MODULE_LICENSE("GPL v2"); MODULE_DEVICE_TABLE(pci, cavium_ptp_id_table);