// SPDX-License-Identifier: GPL-2.0 /* * ARM PL353 SMC driver * * Copyright (C) 2012 - 2018 Xilinx, Inc * Author: Punnaiah Choudary Kalluri * Author: Naga Sureshkumar Relli */ #include #include #include #include #include #include #include #include #include /* Register definitions */ #define PL353_SMC_MEMC_STATUS_OFFS 0 /* Controller status reg, RO */ #define PL353_SMC_CFG_CLR_OFFS 0xC /* Clear config reg, WO */ #define PL353_SMC_DIRECT_CMD_OFFS 0x10 /* Direct command reg, WO */ #define PL353_SMC_SET_CYCLES_OFFS 0x14 /* Set cycles register, WO */ #define PL353_SMC_SET_OPMODE_OFFS 0x18 /* Set opmode register, WO */ #define PL353_SMC_ECC_STATUS_OFFS 0x400 /* ECC status register */ #define PL353_SMC_ECC_MEMCFG_OFFS 0x404 /* ECC mem config reg */ #define PL353_SMC_ECC_MEMCMD1_OFFS 0x408 /* ECC mem cmd1 reg */ #define PL353_SMC_ECC_MEMCMD2_OFFS 0x40C /* ECC mem cmd2 reg */ #define PL353_SMC_ECC_VALUE0_OFFS 0x418 /* ECC value 0 reg */ /* Controller status register specific constants */ #define PL353_SMC_MEMC_STATUS_RAW_INT_1_SHIFT 6 /* Clear configuration register specific constants */ #define PL353_SMC_CFG_CLR_INT_CLR_1 0x10 #define PL353_SMC_CFG_CLR_ECC_INT_DIS_1 0x40 #define PL353_SMC_CFG_CLR_INT_DIS_1 0x2 #define PL353_SMC_CFG_CLR_DEFAULT_MASK (PL353_SMC_CFG_CLR_INT_CLR_1 | \ PL353_SMC_CFG_CLR_ECC_INT_DIS_1 | \ PL353_SMC_CFG_CLR_INT_DIS_1) /* Set cycles register specific constants */ #define PL353_SMC_SET_CYCLES_T0_MASK 0xF #define PL353_SMC_SET_CYCLES_T0_SHIFT 0 #define PL353_SMC_SET_CYCLES_T1_MASK 0xF #define PL353_SMC_SET_CYCLES_T1_SHIFT 4 #define PL353_SMC_SET_CYCLES_T2_MASK 0x7 #define PL353_SMC_SET_CYCLES_T2_SHIFT 8 #define PL353_SMC_SET_CYCLES_T3_MASK 0x7 #define PL353_SMC_SET_CYCLES_T3_SHIFT 11 #define PL353_SMC_SET_CYCLES_T4_MASK 0x7 #define PL353_SMC_SET_CYCLES_T4_SHIFT 14 #define PL353_SMC_SET_CYCLES_T5_MASK 0x7 #define PL353_SMC_SET_CYCLES_T5_SHIFT 17 #define PL353_SMC_SET_CYCLES_T6_MASK 0xF #define PL353_SMC_SET_CYCLES_T6_SHIFT 20 /* ECC status register specific constants */ #define PL353_SMC_ECC_STATUS_BUSY BIT(6) #define PL353_SMC_ECC_REG_SIZE_OFFS 4 /* ECC memory config register specific constants */ #define PL353_SMC_ECC_MEMCFG_MODE_MASK 0xC #define PL353_SMC_ECC_MEMCFG_MODE_SHIFT 2 #define PL353_SMC_ECC_MEMCFG_PGSIZE_MASK 0xC #define PL353_SMC_DC_UPT_NAND_REGS ((4 << 23) | /* CS: NAND chip */ \ (2 << 21)) /* UpdateRegs operation */ #define PL353_NAND_ECC_CMD1 ((0x80) | /* Write command */ \ (0 << 8) | /* Read command */ \ (0x30 << 16) | /* Read End command */ \ (1 << 24)) /* Read End command calid */ #define PL353_NAND_ECC_CMD2 ((0x85) | /* Write col change cmd */ \ (5 << 8) | /* Read col change cmd */ \ (0xE0 << 16) | /* Read col change end cmd */ \ (1 << 24)) /* Read col change end cmd valid */ #define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ) /** * struct pl353_smc_data - Private smc driver structure * @memclk: Pointer to the peripheral clock * @aclk: Pointer to the APER clock */ struct pl353_smc_data { struct clk *memclk; struct clk *aclk; }; /* SMC virtual register base */ static void __iomem *pl353_smc_base; /** * pl353_smc_set_buswidth - Set memory buswidth * @bw: Memory buswidth (8 | 16) * Return: 0 on success or negative errno. */ int pl353_smc_set_buswidth(unsigned int bw) { if (bw != PL353_SMC_MEM_WIDTH_8 && bw != PL353_SMC_MEM_WIDTH_16) return -EINVAL; writel(bw, pl353_smc_base + PL353_SMC_SET_OPMODE_OFFS); writel(PL353_SMC_DC_UPT_NAND_REGS, pl353_smc_base + PL353_SMC_DIRECT_CMD_OFFS); return 0; } EXPORT_SYMBOL_GPL(pl353_smc_set_buswidth); /** * pl353_smc_set_cycles - Set memory timing parameters * @timings: NAND controller timing parameters * * Sets NAND chip specific timing parameters. */ void pl353_smc_set_cycles(u32 timings[]) { /* * Set write pulse timing. This one is easy to extract: * * NWE_PULSE = tWP */ timings[0] &= PL353_SMC_SET_CYCLES_T0_MASK; timings[1] = (timings[1] & PL353_SMC_SET_CYCLES_T1_MASK) << PL353_SMC_SET_CYCLES_T1_SHIFT; timings[2] = (timings[2] & PL353_SMC_SET_CYCLES_T2_MASK) << PL353_SMC_SET_CYCLES_T2_SHIFT; timings[3] = (timings[3] & PL353_SMC_SET_CYCLES_T3_MASK) << PL353_SMC_SET_CYCLES_T3_SHIFT; timings[4] = (timings[4] & PL353_SMC_SET_CYCLES_T4_MASK) << PL353_SMC_SET_CYCLES_T4_SHIFT; timings[5] = (timings[5] & PL353_SMC_SET_CYCLES_T5_MASK) << PL353_SMC_SET_CYCLES_T5_SHIFT; timings[6] = (timings[6] & PL353_SMC_SET_CYCLES_T6_MASK) << PL353_SMC_SET_CYCLES_T6_SHIFT; timings[0] |= timings[1] | timings[2] | timings[3] | timings[4] | timings[5] | timings[6]; writel(timings[0], pl353_smc_base + PL353_SMC_SET_CYCLES_OFFS); writel(PL353_SMC_DC_UPT_NAND_REGS, pl353_smc_base + PL353_SMC_DIRECT_CMD_OFFS); } EXPORT_SYMBOL_GPL(pl353_smc_set_cycles); /** * pl353_smc_ecc_is_busy - Read ecc busy flag * Return: the ecc_status bit from the ecc_status register. 1 = busy, 0 = idle */ bool pl353_smc_ecc_is_busy(void) { return ((readl(pl353_smc_base + PL353_SMC_ECC_STATUS_OFFS) & PL353_SMC_ECC_STATUS_BUSY) == PL353_SMC_ECC_STATUS_BUSY); } EXPORT_SYMBOL_GPL(pl353_smc_ecc_is_busy); /** * pl353_smc_get_ecc_val - Read ecc_valueN registers * @ecc_reg: Index of the ecc_value reg (0..3) * Return: the content of the requested ecc_value register. * * There are four valid ecc_value registers. The argument is truncated to stay * within this valid boundary. */ u32 pl353_smc_get_ecc_val(int ecc_reg) { u32 addr, reg; addr = PL353_SMC_ECC_VALUE0_OFFS + (ecc_reg * PL353_SMC_ECC_REG_SIZE_OFFS); reg = readl(pl353_smc_base + addr); return reg; } EXPORT_SYMBOL_GPL(pl353_smc_get_ecc_val); /** * pl353_smc_get_nand_int_status_raw - Get NAND interrupt status bit * Return: the raw_int_status1 bit from the memc_status register */ int pl353_smc_get_nand_int_status_raw(void) { u32 reg; reg = readl(pl353_smc_base + PL353_SMC_MEMC_STATUS_OFFS); reg >>= PL353_SMC_MEMC_STATUS_RAW_INT_1_SHIFT; reg &= 1; return reg; } EXPORT_SYMBOL_GPL(pl353_smc_get_nand_int_status_raw); /** * pl353_smc_clr_nand_int - Clear NAND interrupt */ void pl353_smc_clr_nand_int(void) { writel(PL353_SMC_CFG_CLR_INT_CLR_1, pl353_smc_base + PL353_SMC_CFG_CLR_OFFS); } EXPORT_SYMBOL_GPL(pl353_smc_clr_nand_int); /** * pl353_smc_set_ecc_mode - Set SMC ECC mode * @mode: ECC mode (BYPASS, APB, MEM) * Return: 0 on success or negative errno. */ int pl353_smc_set_ecc_mode(enum pl353_smc_ecc_mode mode) { u32 reg; int ret = 0; switch (mode) { case PL353_SMC_ECCMODE_BYPASS: case PL353_SMC_ECCMODE_APB: case PL353_SMC_ECCMODE_MEM: reg = readl(pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS); reg &= ~PL353_SMC_ECC_MEMCFG_MODE_MASK; reg |= mode << PL353_SMC_ECC_MEMCFG_MODE_SHIFT; writel(reg, pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS); break; default: ret = -EINVAL; } return ret; } EXPORT_SYMBOL_GPL(pl353_smc_set_ecc_mode); /** * pl353_smc_set_ecc_pg_size - Set SMC ECC page size * @pg_sz: ECC page size * Return: 0 on success or negative errno. */ int pl353_smc_set_ecc_pg_size(unsigned int pg_sz) { u32 reg, sz; switch (pg_sz) { case 0: sz = 0; break; case SZ_512: sz = 1; break; case SZ_1K: sz = 2; break; case SZ_2K: sz = 3; break; default: return -EINVAL; } reg = readl(pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS); reg &= ~PL353_SMC_ECC_MEMCFG_PGSIZE_MASK; reg |= sz; writel(reg, pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS); return 0; } EXPORT_SYMBOL_GPL(pl353_smc_set_ecc_pg_size); static int __maybe_unused pl353_smc_suspend(struct device *dev) { struct pl353_smc_data *pl353_smc = dev_get_drvdata(dev); clk_disable(pl353_smc->memclk); clk_disable(pl353_smc->aclk); return 0; } static int __maybe_unused pl353_smc_resume(struct device *dev) { int ret; struct pl353_smc_data *pl353_smc = dev_get_drvdata(dev); ret = clk_enable(pl353_smc->aclk); if (ret) { dev_err(dev, "Cannot enable axi domain clock.\n"); return ret; } ret = clk_enable(pl353_smc->memclk); if (ret) { dev_err(dev, "Cannot enable memory clock.\n"); clk_disable(pl353_smc->aclk); return ret; } return ret; } static struct amba_driver pl353_smc_driver; static SIMPLE_DEV_PM_OPS(pl353_smc_dev_pm_ops, pl353_smc_suspend, pl353_smc_resume); /** * pl353_smc_init_nand_interface - Initialize the NAND interface * @adev: Pointer to the amba_device struct * @nand_node: Pointer to the pl353_nand device_node struct */ static void pl353_smc_init_nand_interface(struct amba_device *adev, struct device_node *nand_node) { unsigned long timeout; pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_8); writel(PL353_SMC_CFG_CLR_INT_CLR_1, pl353_smc_base + PL353_SMC_CFG_CLR_OFFS); writel(PL353_SMC_DC_UPT_NAND_REGS, pl353_smc_base + PL353_SMC_DIRECT_CMD_OFFS); timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT; /* Wait till the ECC operation is complete */ do { if (pl353_smc_ecc_is_busy()) cpu_relax(); else break; } while (!time_after_eq(jiffies, timeout)); if (time_after_eq(jiffies, timeout)) return; writel(PL353_NAND_ECC_CMD1, pl353_smc_base + PL353_SMC_ECC_MEMCMD1_OFFS); writel(PL353_NAND_ECC_CMD2, pl353_smc_base + PL353_SMC_ECC_MEMCMD2_OFFS); } static const struct of_device_id pl353_smc_supported_children[] = { { .compatible = "cfi-flash" }, { .compatible = "arm,pl353-nand-r2p1", .data = pl353_smc_init_nand_interface }, {} }; static int pl353_smc_probe(struct amba_device *adev, const struct amba_id *id) { struct pl353_smc_data *pl353_smc; struct device_node *child; struct resource *res; int err; struct device_node *of_node = adev->dev.of_node; static void (*init)(struct amba_device *adev, struct device_node *nand_node); const struct of_device_id *match = NULL; pl353_smc = devm_kzalloc(&adev->dev, sizeof(*pl353_smc), GFP_KERNEL); if (!pl353_smc) return -ENOMEM; /* Get the NAND controller virtual address */ res = &adev->res; pl353_smc_base = devm_ioremap_resource(&adev->dev, res); if (IS_ERR(pl353_smc_base)) return PTR_ERR(pl353_smc_base); pl353_smc->aclk = devm_clk_get(&adev->dev, "apb_pclk"); if (IS_ERR(pl353_smc->aclk)) { dev_err(&adev->dev, "aclk clock not found.\n"); return PTR_ERR(pl353_smc->aclk); } pl353_smc->memclk = devm_clk_get(&adev->dev, "memclk"); if (IS_ERR(pl353_smc->memclk)) { dev_err(&adev->dev, "memclk clock not found.\n"); return PTR_ERR(pl353_smc->memclk); } err = clk_prepare_enable(pl353_smc->aclk); if (err) { dev_err(&adev->dev, "Unable to enable AXI clock.\n"); return err; } err = clk_prepare_enable(pl353_smc->memclk); if (err) { dev_err(&adev->dev, "Unable to enable memory clock.\n"); goto out_clk_dis_aper; } amba_set_drvdata(adev, pl353_smc); /* clear interrupts */ writel(PL353_SMC_CFG_CLR_DEFAULT_MASK, pl353_smc_base + PL353_SMC_CFG_CLR_OFFS); /* Find compatible children. Only a single child is supported */ for_each_available_child_of_node(of_node, child) { match = of_match_node(pl353_smc_supported_children, child); if (!match) { dev_warn(&adev->dev, "unsupported child node\n"); continue; } break; } if (!match) { dev_err(&adev->dev, "no matching children\n"); goto out_clk_disable; } init = match->data; if (init) init(adev, child); of_platform_device_create(child, NULL, &adev->dev); return 0; out_clk_disable: clk_disable_unprepare(pl353_smc->memclk); out_clk_dis_aper: clk_disable_unprepare(pl353_smc->aclk); return err; } static int pl353_smc_remove(struct amba_device *adev) { struct pl353_smc_data *pl353_smc = amba_get_drvdata(adev); clk_disable_unprepare(pl353_smc->memclk); clk_disable_unprepare(pl353_smc->aclk); return 0; } static const struct amba_id pl353_ids[] = { { .id = 0x00041353, .mask = 0x000fffff, }, { 0, 0 }, }; MODULE_DEVICE_TABLE(amba, pl353_ids); static struct amba_driver pl353_smc_driver = { .drv = { .owner = THIS_MODULE, .name = "pl353-smc", .pm = &pl353_smc_dev_pm_ops, }, .id_table = pl353_ids, .probe = pl353_smc_probe, .remove = pl353_smc_remove, }; module_amba_driver(pl353_smc_driver); MODULE_AUTHOR("Xilinx, Inc."); MODULE_DESCRIPTION("ARM PL353 SMC Driver"); MODULE_LICENSE("GPL");