/* * Copyright (C) 2002 Sistina Software (UK) Limited. * Copyright (C) 2006 Red Hat GmbH * * This file is released under the GPL. * * Kcopyd provides a simple interface for copying an area of one * block-device to one or more other block-devices, with an asynchronous * completion notification. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dm-core.h" #define SUB_JOB_SIZE 128 #define SPLIT_COUNT 8 #define MIN_JOBS 8 #define RESERVE_PAGES (DIV_ROUND_UP(SUB_JOB_SIZE << SECTOR_SHIFT, PAGE_SIZE)) /*----------------------------------------------------------------- * Each kcopyd client has its own little pool of preallocated * pages for kcopyd io. *---------------------------------------------------------------*/ struct dm_kcopyd_client { struct page_list *pages; unsigned nr_reserved_pages; unsigned nr_free_pages; struct dm_io_client *io_client; wait_queue_head_t destroyq; mempool_t job_pool; struct workqueue_struct *kcopyd_wq; struct work_struct kcopyd_work; struct dm_kcopyd_throttle *throttle; atomic_t nr_jobs; /* * We maintain four lists of jobs: * * i) jobs waiting for pages * ii) jobs that have pages, and are waiting for the io to be issued. * iii) jobs that don't need to do any IO and just run a callback * iv) jobs that have completed. * * All four of these are protected by job_lock. */ spinlock_t job_lock; struct list_head callback_jobs; struct list_head complete_jobs; struct list_head io_jobs; struct list_head pages_jobs; }; static struct page_list zero_page_list; static DEFINE_SPINLOCK(throttle_spinlock); /* * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period. * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided * by 2. */ #define ACCOUNT_INTERVAL_SHIFT SHIFT_HZ /* * Sleep this number of milliseconds. * * The value was decided experimentally. * Smaller values seem to cause an increased copy rate above the limit. * The reason for this is unknown but possibly due to jiffies rounding errors * or read/write cache inside the disk. */ #define SLEEP_MSEC 100 /* * Maximum number of sleep events. There is a theoretical livelock if more * kcopyd clients do work simultaneously which this limit avoids. */ #define MAX_SLEEPS 10 static void io_job_start(struct dm_kcopyd_throttle *t) { unsigned throttle, now, difference; int slept = 0, skew; if (unlikely(!t)) return; try_again: spin_lock_irq(&throttle_spinlock); throttle = READ_ONCE(t->throttle); if (likely(throttle >= 100)) goto skip_limit; now = jiffies; difference = now - t->last_jiffies; t->last_jiffies = now; if (t->num_io_jobs) t->io_period += difference; t->total_period += difference; /* * Maintain sane values if we got a temporary overflow. */ if (unlikely(t->io_period > t->total_period)) t->io_period = t->total_period; if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) { int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT); t->total_period >>= shift; t->io_period >>= shift; } skew = t->io_period - throttle * t->total_period / 100; if (unlikely(skew > 0) && slept < MAX_SLEEPS) { slept++; spin_unlock_irq(&throttle_spinlock); msleep(SLEEP_MSEC); goto try_again; } skip_limit: t->num_io_jobs++; spin_unlock_irq(&throttle_spinlock); } static void io_job_finish(struct dm_kcopyd_throttle *t) { unsigned long flags; if (unlikely(!t)) return; spin_lock_irqsave(&throttle_spinlock, flags); t->num_io_jobs--; if (likely(READ_ONCE(t->throttle) >= 100)) goto skip_limit; if (!t->num_io_jobs) { unsigned now, difference; now = jiffies; difference = now - t->last_jiffies; t->last_jiffies = now; t->io_period += difference; t->total_period += difference; /* * Maintain sane values if we got a temporary overflow. */ if (unlikely(t->io_period > t->total_period)) t->io_period = t->total_period; } skip_limit: spin_unlock_irqrestore(&throttle_spinlock, flags); } static void wake(struct dm_kcopyd_client *kc) { queue_work(kc->kcopyd_wq, &kc->kcopyd_work); } /* * Obtain one page for the use of kcopyd. */ static struct page_list *alloc_pl(gfp_t gfp) { struct page_list *pl; pl = kmalloc(sizeof(*pl), gfp); if (!pl) return NULL; pl->page = alloc_page(gfp); if (!pl->page) { kfree(pl); return NULL; } return pl; } static void free_pl(struct page_list *pl) { __free_page(pl->page); kfree(pl); } /* * Add the provided pages to a client's free page list, releasing * back to the system any beyond the reserved_pages limit. */ static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl) { struct page_list *next; do { next = pl->next; if (kc->nr_free_pages >= kc->nr_reserved_pages) free_pl(pl); else { pl->next = kc->pages; kc->pages = pl; kc->nr_free_pages++; } pl = next; } while (pl); } static int kcopyd_get_pages(struct dm_kcopyd_client *kc, unsigned int nr, struct page_list **pages) { struct page_list *pl; *pages = NULL; do { pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY | __GFP_KSWAPD_RECLAIM); if (unlikely(!pl)) { /* Use reserved pages */ pl = kc->pages; if (unlikely(!pl)) goto out_of_memory; kc->pages = pl->next; kc->nr_free_pages--; } pl->next = *pages; *pages = pl; } while (--nr); return 0; out_of_memory: if (*pages) kcopyd_put_pages(kc, *pages); return -ENOMEM; } /* * These three functions resize the page pool. */ static void drop_pages(struct page_list *pl) { struct page_list *next; while (pl) { next = pl->next; free_pl(pl); pl = next; } } /* * Allocate and reserve nr_pages for the use of a specific client. */ static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned nr_pages) { unsigned i; struct page_list *pl = NULL, *next; for (i = 0; i < nr_pages; i++) { next = alloc_pl(GFP_KERNEL); if (!next) { if (pl) drop_pages(pl); return -ENOMEM; } next->next = pl; pl = next; } kc->nr_reserved_pages += nr_pages; kcopyd_put_pages(kc, pl); return 0; } static void client_free_pages(struct dm_kcopyd_client *kc) { BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages); drop_pages(kc->pages); kc->pages = NULL; kc->nr_free_pages = kc->nr_reserved_pages = 0; } /*----------------------------------------------------------------- * kcopyd_jobs need to be allocated by the *clients* of kcopyd, * for this reason we use a mempool to prevent the client from * ever having to do io (which could cause a deadlock). *---------------------------------------------------------------*/ struct kcopyd_job { struct dm_kcopyd_client *kc; struct list_head list; unsigned long flags; /* * Error state of the job. */ int read_err; unsigned long write_err; /* * Either READ or WRITE */ int rw; struct dm_io_region source; /* * The destinations for the transfer. */ unsigned int num_dests; struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS]; struct page_list *pages; /* * Set this to ensure you are notified when the job has * completed. 'context' is for callback to use. */ dm_kcopyd_notify_fn fn; void *context; /* * These fields are only used if the job has been split * into more manageable parts. */ struct mutex lock; atomic_t sub_jobs; sector_t progress; sector_t write_offset; struct kcopyd_job *master_job; }; static struct kmem_cache *_job_cache; int __init dm_kcopyd_init(void) { _job_cache = kmem_cache_create("kcopyd_job", sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1), __alignof__(struct kcopyd_job), 0, NULL); if (!_job_cache) return -ENOMEM; zero_page_list.next = &zero_page_list; zero_page_list.page = ZERO_PAGE(0); return 0; } void dm_kcopyd_exit(void) { kmem_cache_destroy(_job_cache); _job_cache = NULL; } /* * Functions to push and pop a job onto the head of a given job * list. */ static struct kcopyd_job *pop_io_job(struct list_head *jobs, struct dm_kcopyd_client *kc) { struct kcopyd_job *job; /* * For I/O jobs, pop any read, any write without sequential write * constraint and sequential writes that are at the right position. */ list_for_each_entry(job, jobs, list) { if (job->rw == READ || !test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) { list_del(&job->list); return job; } if (job->write_offset == job->master_job->write_offset) { job->master_job->write_offset += job->source.count; list_del(&job->list); return job; } } return NULL; } static struct kcopyd_job *pop(struct list_head *jobs, struct dm_kcopyd_client *kc) { struct kcopyd_job *job = NULL; unsigned long flags; spin_lock_irqsave(&kc->job_lock, flags); if (!list_empty(jobs)) { if (jobs == &kc->io_jobs) job = pop_io_job(jobs, kc); else { job = list_entry(jobs->next, struct kcopyd_job, list); list_del(&job->list); } } spin_unlock_irqrestore(&kc->job_lock, flags); return job; } static void push(struct list_head *jobs, struct kcopyd_job *job) { unsigned long flags; struct dm_kcopyd_client *kc = job->kc; spin_lock_irqsave(&kc->job_lock, flags); list_add_tail(&job->list, jobs); spin_unlock_irqrestore(&kc->job_lock, flags); } static void push_head(struct list_head *jobs, struct kcopyd_job *job) { unsigned long flags; struct dm_kcopyd_client *kc = job->kc; spin_lock_irqsave(&kc->job_lock, flags); list_add(&job->list, jobs); spin_unlock_irqrestore(&kc->job_lock, flags); } /* * These three functions process 1 item from the corresponding * job list. * * They return: * < 0: error * 0: success * > 0: can't process yet. */ static int run_complete_job(struct kcopyd_job *job) { void *context = job->context; int read_err = job->read_err; unsigned long write_err = job->write_err; dm_kcopyd_notify_fn fn = job->fn; struct dm_kcopyd_client *kc = job->kc; if (job->pages && job->pages != &zero_page_list) kcopyd_put_pages(kc, job->pages); /* * If this is the master job, the sub jobs have already * completed so we can free everything. */ if (job->master_job == job) { mutex_destroy(&job->lock); mempool_free(job, &kc->job_pool); } fn(read_err, write_err, context); if (atomic_dec_and_test(&kc->nr_jobs)) wake_up(&kc->destroyq); cond_resched(); return 0; } static void complete_io(unsigned long error, void *context) { struct kcopyd_job *job = (struct kcopyd_job *) context; struct dm_kcopyd_client *kc = job->kc; io_job_finish(kc->throttle); if (error) { if (op_is_write(job->rw)) job->write_err |= error; else job->read_err = 1; if (!test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) { push(&kc->complete_jobs, job); wake(kc); return; } } if (op_is_write(job->rw)) push(&kc->complete_jobs, job); else { job->rw = WRITE; push(&kc->io_jobs, job); } wake(kc); } /* * Request io on as many buffer heads as we can currently get for * a particular job. */ static int run_io_job(struct kcopyd_job *job) { int r; struct dm_io_request io_req = { .bi_op = job->rw, .bi_op_flags = 0, .mem.type = DM_IO_PAGE_LIST, .mem.ptr.pl = job->pages, .mem.offset = 0, .notify.fn = complete_io, .notify.context = job, .client = job->kc->io_client, }; /* * If we need to write sequentially and some reads or writes failed, * no point in continuing. */ if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) && job->master_job->write_err) return -EIO; io_job_start(job->kc->throttle); if (job->rw == READ) r = dm_io(&io_req, 1, &job->source, NULL); else r = dm_io(&io_req, job->num_dests, job->dests, NULL); return r; } static int run_pages_job(struct kcopyd_job *job) { int r; unsigned nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9); r = kcopyd_get_pages(job->kc, nr_pages, &job->pages); if (!r) { /* this job is ready for io */ push(&job->kc->io_jobs, job); return 0; } if (r == -ENOMEM) /* can't complete now */ return 1; return r; } /* * Run through a list for as long as possible. Returns the count * of successful jobs. */ static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc, int (*fn) (struct kcopyd_job *)) { struct kcopyd_job *job; int r, count = 0; while ((job = pop(jobs, kc))) { r = fn(job); if (r < 0) { /* error this rogue job */ if (op_is_write(job->rw)) job->write_err = (unsigned long) -1L; else job->read_err = 1; push(&kc->complete_jobs, job); break; } if (r > 0) { /* * We couldn't service this job ATM, so * push this job back onto the list. */ push_head(jobs, job); break; } count++; } return count; } /* * kcopyd does this every time it's woken up. */ static void do_work(struct work_struct *work) { struct dm_kcopyd_client *kc = container_of(work, struct dm_kcopyd_client, kcopyd_work); struct blk_plug plug; unsigned long flags; /* * The order that these are called is *very* important. * complete jobs can free some pages for pages jobs. * Pages jobs when successful will jump onto the io jobs * list. io jobs call wake when they complete and it all * starts again. */ spin_lock_irqsave(&kc->job_lock, flags); list_splice_tail_init(&kc->callback_jobs, &kc->complete_jobs); spin_unlock_irqrestore(&kc->job_lock, flags); blk_start_plug(&plug); process_jobs(&kc->complete_jobs, kc, run_complete_job); process_jobs(&kc->pages_jobs, kc, run_pages_job); process_jobs(&kc->io_jobs, kc, run_io_job); blk_finish_plug(&plug); } /* * If we are copying a small region we just dispatch a single job * to do the copy, otherwise the io has to be split up into many * jobs. */ static void dispatch_job(struct kcopyd_job *job) { struct dm_kcopyd_client *kc = job->kc; atomic_inc(&kc->nr_jobs); if (unlikely(!job->source.count)) push(&kc->callback_jobs, job); else if (job->pages == &zero_page_list) push(&kc->io_jobs, job); else push(&kc->pages_jobs, job); wake(kc); } static void segment_complete(int read_err, unsigned long write_err, void *context) { /* FIXME: tidy this function */ sector_t progress = 0; sector_t count = 0; struct kcopyd_job *sub_job = (struct kcopyd_job *) context; struct kcopyd_job *job = sub_job->master_job; struct dm_kcopyd_client *kc = job->kc; mutex_lock(&job->lock); /* update the error */ if (read_err) job->read_err = 1; if (write_err) job->write_err |= write_err; /* * Only dispatch more work if there hasn't been an error. */ if ((!job->read_err && !job->write_err) || test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) { /* get the next chunk of work */ progress = job->progress; count = job->source.count - progress; if (count) { if (count > SUB_JOB_SIZE) count = SUB_JOB_SIZE; job->progress += count; } } mutex_unlock(&job->lock); if (count) { int i; *sub_job = *job; sub_job->write_offset = progress; sub_job->source.sector += progress; sub_job->source.count = count; for (i = 0; i < job->num_dests; i++) { sub_job->dests[i].sector += progress; sub_job->dests[i].count = count; } sub_job->fn = segment_complete; sub_job->context = sub_job; dispatch_job(sub_job); } else if (atomic_dec_and_test(&job->sub_jobs)) { /* * Queue the completion callback to the kcopyd thread. * * Some callers assume that all the completions are called * from a single thread and don't race with each other. * * We must not call the callback directly here because this * code may not be executing in the thread. */ push(&kc->complete_jobs, job); wake(kc); } } /* * Create some sub jobs to share the work between them. */ static void split_job(struct kcopyd_job *master_job) { int i; atomic_inc(&master_job->kc->nr_jobs); atomic_set(&master_job->sub_jobs, SPLIT_COUNT); for (i = 0; i < SPLIT_COUNT; i++) { master_job[i + 1].master_job = master_job; segment_complete(0, 0u, &master_job[i + 1]); } } void dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from, unsigned int num_dests, struct dm_io_region *dests, unsigned int flags, dm_kcopyd_notify_fn fn, void *context) { struct kcopyd_job *job; int i; /* * Allocate an array of jobs consisting of one master job * followed by SPLIT_COUNT sub jobs. */ job = mempool_alloc(&kc->job_pool, GFP_NOIO); mutex_init(&job->lock); /* * set up for the read. */ job->kc = kc; job->flags = flags; job->read_err = 0; job->write_err = 0; job->num_dests = num_dests; memcpy(&job->dests, dests, sizeof(*dests) * num_dests); /* * If one of the destination is a host-managed zoned block device, * we need to write sequentially. If one of the destination is a * host-aware device, then leave it to the caller to choose what to do. */ if (!test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) { for (i = 0; i < job->num_dests; i++) { if (bdev_zoned_model(dests[i].bdev) == BLK_ZONED_HM) { set_bit(DM_KCOPYD_WRITE_SEQ, &job->flags); break; } } } /* * If we need to write sequentially, errors cannot be ignored. */ if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) && test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) clear_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags); if (from) { job->source = *from; job->pages = NULL; job->rw = READ; } else { memset(&job->source, 0, sizeof job->source); job->source.count = job->dests[0].count; job->pages = &zero_page_list; /* * Use WRITE ZEROES to optimize zeroing if all dests support it. */ job->rw = REQ_OP_WRITE_ZEROES; for (i = 0; i < job->num_dests; i++) if (!bdev_write_zeroes_sectors(job->dests[i].bdev)) { job->rw = WRITE; break; } } job->fn = fn; job->context = context; job->master_job = job; job->write_offset = 0; if (job->source.count <= SUB_JOB_SIZE) dispatch_job(job); else { job->progress = 0; split_job(job); } } EXPORT_SYMBOL(dm_kcopyd_copy); void dm_kcopyd_zero(struct dm_kcopyd_client *kc, unsigned num_dests, struct dm_io_region *dests, unsigned flags, dm_kcopyd_notify_fn fn, void *context) { dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context); } EXPORT_SYMBOL(dm_kcopyd_zero); void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc, dm_kcopyd_notify_fn fn, void *context) { struct kcopyd_job *job; job = mempool_alloc(&kc->job_pool, GFP_NOIO); memset(job, 0, sizeof(struct kcopyd_job)); job->kc = kc; job->fn = fn; job->context = context; job->master_job = job; atomic_inc(&kc->nr_jobs); return job; } EXPORT_SYMBOL(dm_kcopyd_prepare_callback); void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err) { struct kcopyd_job *job = j; struct dm_kcopyd_client *kc = job->kc; job->read_err = read_err; job->write_err = write_err; push(&kc->callback_jobs, job); wake(kc); } EXPORT_SYMBOL(dm_kcopyd_do_callback); /* * Cancels a kcopyd job, eg. someone might be deactivating a * mirror. */ #if 0 int kcopyd_cancel(struct kcopyd_job *job, int block) { /* FIXME: finish */ return -1; } #endif /* 0 */ /*----------------------------------------------------------------- * Client setup *---------------------------------------------------------------*/ struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle) { int r; struct dm_kcopyd_client *kc; kc = kzalloc(sizeof(*kc), GFP_KERNEL); if (!kc) return ERR_PTR(-ENOMEM); spin_lock_init(&kc->job_lock); INIT_LIST_HEAD(&kc->callback_jobs); INIT_LIST_HEAD(&kc->complete_jobs); INIT_LIST_HEAD(&kc->io_jobs); INIT_LIST_HEAD(&kc->pages_jobs); kc->throttle = throttle; r = mempool_init_slab_pool(&kc->job_pool, MIN_JOBS, _job_cache); if (r) goto bad_slab; INIT_WORK(&kc->kcopyd_work, do_work); kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0); if (!kc->kcopyd_wq) { r = -ENOMEM; goto bad_workqueue; } kc->pages = NULL; kc->nr_reserved_pages = kc->nr_free_pages = 0; r = client_reserve_pages(kc, RESERVE_PAGES); if (r) goto bad_client_pages; kc->io_client = dm_io_client_create(); if (IS_ERR(kc->io_client)) { r = PTR_ERR(kc->io_client); goto bad_io_client; } init_waitqueue_head(&kc->destroyq); atomic_set(&kc->nr_jobs, 0); return kc; bad_io_client: client_free_pages(kc); bad_client_pages: destroy_workqueue(kc->kcopyd_wq); bad_workqueue: mempool_exit(&kc->job_pool); bad_slab: kfree(kc); return ERR_PTR(r); } EXPORT_SYMBOL(dm_kcopyd_client_create); void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc) { /* Wait for completion of all jobs submitted by this client. */ wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs)); BUG_ON(!list_empty(&kc->callback_jobs)); BUG_ON(!list_empty(&kc->complete_jobs)); BUG_ON(!list_empty(&kc->io_jobs)); BUG_ON(!list_empty(&kc->pages_jobs)); destroy_workqueue(kc->kcopyd_wq); dm_io_client_destroy(kc->io_client); client_free_pages(kc); mempool_exit(&kc->job_pool); kfree(kc); } EXPORT_SYMBOL(dm_kcopyd_client_destroy);