// SPDX-License-Identifier: GPL-2.0+ /* * pulsedlight-lidar-lite-v2.c - Support for PulsedLight LIDAR sensor * * Copyright (C) 2015, 2017-2018 * Author: Matt Ranostay * * TODO: interrupt mode, and signal strength reporting */ #include #include #include #include #include #include #include #include #include #include #include #include #define LIDAR_REG_CONTROL 0x00 #define LIDAR_REG_CONTROL_ACQUIRE BIT(2) #define LIDAR_REG_STATUS 0x01 #define LIDAR_REG_STATUS_INVALID BIT(3) #define LIDAR_REG_STATUS_READY BIT(0) #define LIDAR_REG_DATA_HBYTE 0x0f #define LIDAR_REG_DATA_LBYTE 0x10 #define LIDAR_REG_DATA_WORD_READ BIT(7) #define LIDAR_REG_PWR_CONTROL 0x65 #define LIDAR_DRV_NAME "lidar" struct lidar_data { struct iio_dev *indio_dev; struct i2c_client *client; int (*xfer)(struct lidar_data *data, u8 reg, u8 *val, int len); int i2c_enabled; u16 buffer[8]; /* 2 byte distance + 8 byte timestamp */ }; static const struct iio_chan_spec lidar_channels[] = { { .type = IIO_DISTANCE, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .scan_index = 0, .scan_type = { .sign = 'u', .realbits = 16, .storagebits = 16, }, }, IIO_CHAN_SOFT_TIMESTAMP(1), }; static int lidar_i2c_xfer(struct lidar_data *data, u8 reg, u8 *val, int len) { struct i2c_client *client = data->client; struct i2c_msg msg[2]; int ret; msg[0].addr = client->addr; msg[0].flags = client->flags | I2C_M_STOP; msg[0].len = 1; msg[0].buf = (char *) ® msg[1].addr = client->addr; msg[1].flags = client->flags | I2C_M_RD; msg[1].len = len; msg[1].buf = (char *) val; ret = i2c_transfer(client->adapter, msg, 2); return (ret == 2) ? 0 : -EIO; } static int lidar_smbus_xfer(struct lidar_data *data, u8 reg, u8 *val, int len) { struct i2c_client *client = data->client; int ret; /* * Device needs a STOP condition between address write, and data read * so in turn i2c_smbus_read_byte_data cannot be used */ while (len--) { ret = i2c_smbus_write_byte(client, reg++); if (ret < 0) { dev_err(&client->dev, "cannot write addr value"); return ret; } ret = i2c_smbus_read_byte(client); if (ret < 0) { dev_err(&client->dev, "cannot read data value"); return ret; } *(val++) = ret; } return 0; } static int lidar_read_byte(struct lidar_data *data, u8 reg) { int ret; u8 val; ret = data->xfer(data, reg, &val, 1); if (ret < 0) return ret; return val; } static inline int lidar_write_control(struct lidar_data *data, int val) { return i2c_smbus_write_byte_data(data->client, LIDAR_REG_CONTROL, val); } static inline int lidar_write_power(struct lidar_data *data, int val) { return i2c_smbus_write_byte_data(data->client, LIDAR_REG_PWR_CONTROL, val); } static int lidar_read_measurement(struct lidar_data *data, u16 *reg) { int ret = data->xfer(data, LIDAR_REG_DATA_HBYTE | (data->i2c_enabled ? LIDAR_REG_DATA_WORD_READ : 0), (u8 *) reg, 2); if (!ret) *reg = be16_to_cpu(*reg); return ret; } static int lidar_get_measurement(struct lidar_data *data, u16 *reg) { struct i2c_client *client = data->client; int tries = 10; int ret; pm_runtime_get_sync(&client->dev); /* start sample */ ret = lidar_write_control(data, LIDAR_REG_CONTROL_ACQUIRE); if (ret < 0) { dev_err(&client->dev, "cannot send start measurement command"); return ret; } while (tries--) { usleep_range(1000, 2000); ret = lidar_read_byte(data, LIDAR_REG_STATUS); if (ret < 0) break; /* return -EINVAL since laser is likely pointed out of range */ if (ret & LIDAR_REG_STATUS_INVALID) { *reg = 0; ret = -EINVAL; break; } /* sample ready to read */ if (!(ret & LIDAR_REG_STATUS_READY)) { ret = lidar_read_measurement(data, reg); break; } ret = -EIO; } pm_runtime_mark_last_busy(&client->dev); pm_runtime_put_autosuspend(&client->dev); return ret; } static int lidar_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct lidar_data *data = iio_priv(indio_dev); int ret = -EINVAL; switch (mask) { case IIO_CHAN_INFO_RAW: { u16 reg; if (iio_device_claim_direct_mode(indio_dev)) return -EBUSY; ret = lidar_get_measurement(data, ®); if (!ret) { *val = reg; ret = IIO_VAL_INT; } iio_device_release_direct_mode(indio_dev); break; } case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = 10000; ret = IIO_VAL_INT_PLUS_MICRO; break; } return ret; } static irqreturn_t lidar_trigger_handler(int irq, void *private) { struct iio_poll_func *pf = private; struct iio_dev *indio_dev = pf->indio_dev; struct lidar_data *data = iio_priv(indio_dev); int ret; ret = lidar_get_measurement(data, data->buffer); if (!ret) { iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, iio_get_time_ns(indio_dev)); } else if (ret != -EINVAL) { dev_err(&data->client->dev, "cannot read LIDAR measurement"); } iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static const struct iio_info lidar_info = { .read_raw = lidar_read_raw, }; static int lidar_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct lidar_data *data; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { data->xfer = lidar_i2c_xfer; data->i2c_enabled = 1; } else if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_BYTE)) data->xfer = lidar_smbus_xfer; else return -EOPNOTSUPP; indio_dev->info = &lidar_info; indio_dev->name = LIDAR_DRV_NAME; indio_dev->channels = lidar_channels; indio_dev->num_channels = ARRAY_SIZE(lidar_channels); indio_dev->dev.parent = &client->dev; indio_dev->modes = INDIO_DIRECT_MODE; i2c_set_clientdata(client, indio_dev); data->client = client; data->indio_dev = indio_dev; ret = iio_triggered_buffer_setup(indio_dev, NULL, lidar_trigger_handler, NULL); if (ret) return ret; ret = iio_device_register(indio_dev); if (ret) goto error_unreg_buffer; pm_runtime_set_autosuspend_delay(&client->dev, 1000); pm_runtime_use_autosuspend(&client->dev); ret = pm_runtime_set_active(&client->dev); if (ret) goto error_unreg_buffer; pm_runtime_enable(&client->dev); pm_runtime_idle(&client->dev); return 0; error_unreg_buffer: iio_triggered_buffer_cleanup(indio_dev); return ret; } static int lidar_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); return 0; } static const struct i2c_device_id lidar_id[] = { {"lidar-lite-v2", 0}, {"lidar-lite-v3", 0}, { }, }; MODULE_DEVICE_TABLE(i2c, lidar_id); static const struct of_device_id lidar_dt_ids[] = { { .compatible = "pulsedlight,lidar-lite-v2" }, { .compatible = "grmn,lidar-lite-v3" }, { } }; MODULE_DEVICE_TABLE(of, lidar_dt_ids); #ifdef CONFIG_PM static int lidar_pm_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct lidar_data *data = iio_priv(indio_dev); return lidar_write_power(data, 0x0f); } static int lidar_pm_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct lidar_data *data = iio_priv(indio_dev); int ret = lidar_write_power(data, 0); /* regulator and FPGA needs settling time */ usleep_range(15000, 20000); return ret; } #endif static const struct dev_pm_ops lidar_pm_ops = { SET_RUNTIME_PM_OPS(lidar_pm_runtime_suspend, lidar_pm_runtime_resume, NULL) }; static struct i2c_driver lidar_driver = { .driver = { .name = LIDAR_DRV_NAME, .of_match_table = of_match_ptr(lidar_dt_ids), .pm = &lidar_pm_ops, }, .probe = lidar_probe, .remove = lidar_remove, .id_table = lidar_id, }; module_i2c_driver(lidar_driver); MODULE_AUTHOR("Matt Ranostay "); MODULE_DESCRIPTION("PulsedLight LIDAR sensor"); MODULE_LICENSE("GPL");