// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Prevas A/S */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ADS8688_CMD_REG(x) (x << 8) #define ADS8688_CMD_REG_NOOP 0x00 #define ADS8688_CMD_REG_RST 0x85 #define ADS8688_CMD_REG_MAN_CH(chan) (0xC0 | (4 * chan)) #define ADS8688_CMD_DONT_CARE_BITS 16 #define ADS8688_PROG_REG(x) (x << 9) #define ADS8688_PROG_REG_RANGE_CH(chan) (0x05 + chan) #define ADS8688_PROG_WR_BIT BIT(8) #define ADS8688_PROG_DONT_CARE_BITS 8 #define ADS8688_REG_PLUSMINUS25VREF 0 #define ADS8688_REG_PLUSMINUS125VREF 1 #define ADS8688_REG_PLUSMINUS0625VREF 2 #define ADS8688_REG_PLUS25VREF 5 #define ADS8688_REG_PLUS125VREF 6 #define ADS8688_VREF_MV 4096 #define ADS8688_REALBITS 16 #define ADS8688_MAX_CHANNELS 8 /* * enum ads8688_range - ADS8688 reference voltage range * @ADS8688_PLUSMINUS25VREF: Device is configured for input range ±2.5 * VREF * @ADS8688_PLUSMINUS125VREF: Device is configured for input range ±1.25 * VREF * @ADS8688_PLUSMINUS0625VREF: Device is configured for input range ±0.625 * VREF * @ADS8688_PLUS25VREF: Device is configured for input range 0 - 2.5 * VREF * @ADS8688_PLUS125VREF: Device is configured for input range 0 - 1.25 * VREF */ enum ads8688_range { ADS8688_PLUSMINUS25VREF, ADS8688_PLUSMINUS125VREF, ADS8688_PLUSMINUS0625VREF, ADS8688_PLUS25VREF, ADS8688_PLUS125VREF, }; struct ads8688_chip_info { const struct iio_chan_spec *channels; unsigned int num_channels; }; struct ads8688_state { struct mutex lock; const struct ads8688_chip_info *chip_info; struct spi_device *spi; struct regulator *reg; unsigned int vref_mv; enum ads8688_range range[8]; union { __be32 d32; u8 d8[4]; } data[2] ____cacheline_aligned; }; enum ads8688_id { ID_ADS8684, ID_ADS8688, }; struct ads8688_ranges { enum ads8688_range range; unsigned int scale; int offset; u8 reg; }; static const struct ads8688_ranges ads8688_range_def[5] = { { .range = ADS8688_PLUSMINUS25VREF, .scale = 76295, .offset = -(1 << (ADS8688_REALBITS - 1)), .reg = ADS8688_REG_PLUSMINUS25VREF, }, { .range = ADS8688_PLUSMINUS125VREF, .scale = 38148, .offset = -(1 << (ADS8688_REALBITS - 1)), .reg = ADS8688_REG_PLUSMINUS125VREF, }, { .range = ADS8688_PLUSMINUS0625VREF, .scale = 19074, .offset = -(1 << (ADS8688_REALBITS - 1)), .reg = ADS8688_REG_PLUSMINUS0625VREF, }, { .range = ADS8688_PLUS25VREF, .scale = 38148, .offset = 0, .reg = ADS8688_REG_PLUS25VREF, }, { .range = ADS8688_PLUS125VREF, .scale = 19074, .offset = 0, .reg = ADS8688_REG_PLUS125VREF, } }; static ssize_t ads8688_show_scales(struct device *dev, struct device_attribute *attr, char *buf) { struct ads8688_state *st = iio_priv(dev_to_iio_dev(dev)); return sprintf(buf, "0.%09u 0.%09u 0.%09u\n", ads8688_range_def[0].scale * st->vref_mv, ads8688_range_def[1].scale * st->vref_mv, ads8688_range_def[2].scale * st->vref_mv); } static ssize_t ads8688_show_offsets(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d %d\n", ads8688_range_def[0].offset, ads8688_range_def[3].offset); } static IIO_DEVICE_ATTR(in_voltage_scale_available, S_IRUGO, ads8688_show_scales, NULL, 0); static IIO_DEVICE_ATTR(in_voltage_offset_available, S_IRUGO, ads8688_show_offsets, NULL, 0); static struct attribute *ads8688_attributes[] = { &iio_dev_attr_in_voltage_scale_available.dev_attr.attr, &iio_dev_attr_in_voltage_offset_available.dev_attr.attr, NULL, }; static const struct attribute_group ads8688_attribute_group = { .attrs = ads8688_attributes, }; #define ADS8688_CHAN(index) \ { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .channel = index, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) \ | BIT(IIO_CHAN_INFO_SCALE) \ | BIT(IIO_CHAN_INFO_OFFSET), \ .scan_index = index, \ .scan_type = { \ .sign = 'u', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_BE, \ }, \ } static const struct iio_chan_spec ads8684_channels[] = { ADS8688_CHAN(0), ADS8688_CHAN(1), ADS8688_CHAN(2), ADS8688_CHAN(3), }; static const struct iio_chan_spec ads8688_channels[] = { ADS8688_CHAN(0), ADS8688_CHAN(1), ADS8688_CHAN(2), ADS8688_CHAN(3), ADS8688_CHAN(4), ADS8688_CHAN(5), ADS8688_CHAN(6), ADS8688_CHAN(7), }; static int ads8688_prog_write(struct iio_dev *indio_dev, unsigned int addr, unsigned int val) { struct ads8688_state *st = iio_priv(indio_dev); u32 tmp; tmp = ADS8688_PROG_REG(addr) | ADS8688_PROG_WR_BIT | val; tmp <<= ADS8688_PROG_DONT_CARE_BITS; st->data[0].d32 = cpu_to_be32(tmp); return spi_write(st->spi, &st->data[0].d8[1], 3); } static int ads8688_reset(struct iio_dev *indio_dev) { struct ads8688_state *st = iio_priv(indio_dev); u32 tmp; tmp = ADS8688_CMD_REG(ADS8688_CMD_REG_RST); tmp <<= ADS8688_CMD_DONT_CARE_BITS; st->data[0].d32 = cpu_to_be32(tmp); return spi_write(st->spi, &st->data[0].d8[0], 4); } static int ads8688_read(struct iio_dev *indio_dev, unsigned int chan) { struct ads8688_state *st = iio_priv(indio_dev); int ret; u32 tmp; struct spi_transfer t[] = { { .tx_buf = &st->data[0].d8[0], .len = 4, .cs_change = 1, }, { .tx_buf = &st->data[1].d8[0], .rx_buf = &st->data[1].d8[0], .len = 4, }, }; tmp = ADS8688_CMD_REG(ADS8688_CMD_REG_MAN_CH(chan)); tmp <<= ADS8688_CMD_DONT_CARE_BITS; st->data[0].d32 = cpu_to_be32(tmp); tmp = ADS8688_CMD_REG(ADS8688_CMD_REG_NOOP); tmp <<= ADS8688_CMD_DONT_CARE_BITS; st->data[1].d32 = cpu_to_be32(tmp); ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t)); if (ret < 0) return ret; return be32_to_cpu(st->data[1].d32) & 0xffff; } static int ads8688_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long m) { int ret, offset; unsigned long scale_mv; struct ads8688_state *st = iio_priv(indio_dev); mutex_lock(&st->lock); switch (m) { case IIO_CHAN_INFO_RAW: ret = ads8688_read(indio_dev, chan->channel); mutex_unlock(&st->lock); if (ret < 0) return ret; *val = ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: scale_mv = st->vref_mv; scale_mv *= ads8688_range_def[st->range[chan->channel]].scale; *val = 0; *val2 = scale_mv; mutex_unlock(&st->lock); return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_OFFSET: offset = ads8688_range_def[st->range[chan->channel]].offset; *val = offset; mutex_unlock(&st->lock); return IIO_VAL_INT; } mutex_unlock(&st->lock); return -EINVAL; } static int ads8688_write_reg_range(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, enum ads8688_range range) { unsigned int tmp; int ret; tmp = ADS8688_PROG_REG_RANGE_CH(chan->channel); ret = ads8688_prog_write(indio_dev, tmp, range); return ret; } static int ads8688_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ads8688_state *st = iio_priv(indio_dev); unsigned int scale = 0; int ret = -EINVAL, i, offset = 0; mutex_lock(&st->lock); switch (mask) { case IIO_CHAN_INFO_SCALE: /* If the offset is 0 the ±2.5 * VREF mode is not available */ offset = ads8688_range_def[st->range[chan->channel]].offset; if (offset == 0 && val2 == ads8688_range_def[0].scale * st->vref_mv) { mutex_unlock(&st->lock); return -EINVAL; } /* Lookup new mode */ for (i = 0; i < ARRAY_SIZE(ads8688_range_def); i++) if (val2 == ads8688_range_def[i].scale * st->vref_mv && offset == ads8688_range_def[i].offset) { ret = ads8688_write_reg_range(indio_dev, chan, ads8688_range_def[i].reg); break; } break; case IIO_CHAN_INFO_OFFSET: /* * There are only two available offsets: * 0 and -(1 << (ADS8688_REALBITS - 1)) */ if (!(ads8688_range_def[0].offset == val || ads8688_range_def[3].offset == val)) { mutex_unlock(&st->lock); return -EINVAL; } /* * If the device are in ±2.5 * VREF mode, it's not allowed to * switch to a mode where the offset is 0 */ if (val == 0 && st->range[chan->channel] == ADS8688_PLUSMINUS25VREF) { mutex_unlock(&st->lock); return -EINVAL; } scale = ads8688_range_def[st->range[chan->channel]].scale; /* Lookup new mode */ for (i = 0; i < ARRAY_SIZE(ads8688_range_def); i++) if (val == ads8688_range_def[i].offset && scale == ads8688_range_def[i].scale) { ret = ads8688_write_reg_range(indio_dev, chan, ads8688_range_def[i].reg); break; } break; } if (!ret) st->range[chan->channel] = ads8688_range_def[i].range; mutex_unlock(&st->lock); return ret; } static int ads8688_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_OFFSET: return IIO_VAL_INT; } return -EINVAL; } static const struct iio_info ads8688_info = { .read_raw = &ads8688_read_raw, .write_raw = &ads8688_write_raw, .write_raw_get_fmt = &ads8688_write_raw_get_fmt, .attrs = &ads8688_attribute_group, }; static irqreturn_t ads8688_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; u16 buffer[ADS8688_MAX_CHANNELS + sizeof(s64)/sizeof(u16)]; int i, j = 0; for (i = 0; i < indio_dev->masklength; i++) { if (!test_bit(i, indio_dev->active_scan_mask)) continue; buffer[j] = ads8688_read(indio_dev, i); j++; } iio_push_to_buffers_with_timestamp(indio_dev, buffer, iio_get_time_ns(indio_dev)); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static const struct ads8688_chip_info ads8688_chip_info_tbl[] = { [ID_ADS8684] = { .channels = ads8684_channels, .num_channels = ARRAY_SIZE(ads8684_channels), }, [ID_ADS8688] = { .channels = ads8688_channels, .num_channels = ARRAY_SIZE(ads8688_channels), }, }; static int ads8688_probe(struct spi_device *spi) { struct ads8688_state *st; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (indio_dev == NULL) return -ENOMEM; st = iio_priv(indio_dev); st->reg = devm_regulator_get_optional(&spi->dev, "vref"); if (!IS_ERR(st->reg)) { ret = regulator_enable(st->reg); if (ret) return ret; ret = regulator_get_voltage(st->reg); if (ret < 0) goto err_regulator_disable; st->vref_mv = ret / 1000; } else { /* Use internal reference */ st->vref_mv = ADS8688_VREF_MV; } st->chip_info = &ads8688_chip_info_tbl[spi_get_device_id(spi)->driver_data]; spi->mode = SPI_MODE_1; spi_set_drvdata(spi, indio_dev); st->spi = spi; indio_dev->name = spi_get_device_id(spi)->name; indio_dev->dev.parent = &spi->dev; indio_dev->dev.of_node = spi->dev.of_node; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = st->chip_info->channels; indio_dev->num_channels = st->chip_info->num_channels; indio_dev->info = &ads8688_info; ads8688_reset(indio_dev); mutex_init(&st->lock); ret = iio_triggered_buffer_setup(indio_dev, NULL, ads8688_trigger_handler, NULL); if (ret < 0) { dev_err(&spi->dev, "iio triggered buffer setup failed\n"); goto err_regulator_disable; } ret = iio_device_register(indio_dev); if (ret) goto err_buffer_cleanup; return 0; err_buffer_cleanup: iio_triggered_buffer_cleanup(indio_dev); err_regulator_disable: if (!IS_ERR(st->reg)) regulator_disable(st->reg); return ret; } static int ads8688_remove(struct spi_device *spi) { struct iio_dev *indio_dev = spi_get_drvdata(spi); struct ads8688_state *st = iio_priv(indio_dev); iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); if (!IS_ERR(st->reg)) regulator_disable(st->reg); return 0; } static const struct spi_device_id ads8688_id[] = { {"ads8684", ID_ADS8684}, {"ads8688", ID_ADS8688}, {} }; MODULE_DEVICE_TABLE(spi, ads8688_id); static const struct of_device_id ads8688_of_match[] = { { .compatible = "ti,ads8684" }, { .compatible = "ti,ads8688" }, { } }; MODULE_DEVICE_TABLE(of, ads8688_of_match); static struct spi_driver ads8688_driver = { .driver = { .name = "ads8688", }, .probe = ads8688_probe, .remove = ads8688_remove, .id_table = ads8688_id, }; module_spi_driver(ads8688_driver); MODULE_AUTHOR("Sean Nyekjaer "); MODULE_DESCRIPTION("Texas Instruments ADS8688 driver"); MODULE_LICENSE("GPL v2");