// SPDX-License-Identifier: GPL-2.0 /* * This file is part of STM32 ADC driver * * Copyright (C) 2016, STMicroelectronics - All Rights Reserved * Author: Fabrice Gasnier . * * Inspired from: fsl-imx25-tsadc * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "stm32-adc-core.h" #define STM32_ADC_CORE_SLEEP_DELAY_MS 2000 /* SYSCFG registers */ #define STM32MP1_SYSCFG_PMCSETR 0x04 #define STM32MP1_SYSCFG_PMCCLRR 0x44 /* SYSCFG bit fields */ #define STM32MP1_SYSCFG_ANASWVDD_MASK BIT(9) /* SYSCFG capability flags */ #define HAS_VBOOSTER BIT(0) #define HAS_ANASWVDD BIT(1) /** * struct stm32_adc_common_regs - stm32 common registers * @csr: common status register offset * @ccr: common control register offset * @eoc1_msk: adc1 end of conversion flag in @csr * @eoc2_msk: adc2 end of conversion flag in @csr * @eoc3_msk: adc3 end of conversion flag in @csr * @ier: interrupt enable register offset for each adc * @eocie_msk: end of conversion interrupt enable mask in @ier */ struct stm32_adc_common_regs { u32 csr; u32 ccr; u32 eoc1_msk; u32 eoc2_msk; u32 eoc3_msk; u32 ier; u32 eocie_msk; }; struct stm32_adc_priv; /** * struct stm32_adc_priv_cfg - stm32 core compatible configuration data * @regs: common registers for all instances * @clk_sel: clock selection routine * @max_clk_rate_hz: maximum analog clock rate (Hz, from datasheet) * @has_syscfg: SYSCFG capability flags */ struct stm32_adc_priv_cfg { const struct stm32_adc_common_regs *regs; int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *); u32 max_clk_rate_hz; unsigned int has_syscfg; }; /** * struct stm32_adc_priv - stm32 ADC core private data * @irq: irq(s) for ADC block * @domain: irq domain reference * @aclk: clock reference for the analog circuitry * @bclk: bus clock common for all ADCs, depends on part used * @max_clk_rate: desired maximum clock rate * @booster: booster supply reference * @vdd: vdd supply reference * @vdda: vdda analog supply reference * @vref: regulator reference * @vdd_uv: vdd supply voltage (microvolts) * @vdda_uv: vdda supply voltage (microvolts) * @cfg: compatible configuration data * @common: common data for all ADC instances * @ccr_bak: backup CCR in low power mode * @syscfg: reference to syscon, system control registers */ struct stm32_adc_priv { int irq[STM32_ADC_MAX_ADCS]; struct irq_domain *domain; struct clk *aclk; struct clk *bclk; u32 max_clk_rate; struct regulator *booster; struct regulator *vdd; struct regulator *vdda; struct regulator *vref; int vdd_uv; int vdda_uv; const struct stm32_adc_priv_cfg *cfg; struct stm32_adc_common common; u32 ccr_bak; struct regmap *syscfg; }; static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com) { return container_of(com, struct stm32_adc_priv, common); } /* STM32F4 ADC internal common clock prescaler division ratios */ static int stm32f4_pclk_div[] = {2, 4, 6, 8}; /** * stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler * @pdev: platform device * @priv: stm32 ADC core private data * Select clock prescaler used for analog conversions, before using ADC. */ static int stm32f4_adc_clk_sel(struct platform_device *pdev, struct stm32_adc_priv *priv) { unsigned long rate; u32 val; int i; /* stm32f4 has one clk input for analog (mandatory), enforce it here */ if (!priv->aclk) { dev_err(&pdev->dev, "No 'adc' clock found\n"); return -ENOENT; } rate = clk_get_rate(priv->aclk); if (!rate) { dev_err(&pdev->dev, "Invalid clock rate: 0\n"); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) { if ((rate / stm32f4_pclk_div[i]) <= priv->max_clk_rate) break; } if (i >= ARRAY_SIZE(stm32f4_pclk_div)) { dev_err(&pdev->dev, "adc clk selection failed\n"); return -EINVAL; } priv->common.rate = rate / stm32f4_pclk_div[i]; val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR); val &= ~STM32F4_ADC_ADCPRE_MASK; val |= i << STM32F4_ADC_ADCPRE_SHIFT; writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR); dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n", priv->common.rate / 1000); return 0; } /** * struct stm32h7_adc_ck_spec - specification for stm32h7 adc clock * @ckmode: ADC clock mode, Async or sync with prescaler. * @presc: prescaler bitfield for async clock mode * @div: prescaler division ratio */ struct stm32h7_adc_ck_spec { u32 ckmode; u32 presc; int div; }; static const struct stm32h7_adc_ck_spec stm32h7_adc_ckmodes_spec[] = { /* 00: CK_ADC[1..3]: Asynchronous clock modes */ { 0, 0, 1 }, { 0, 1, 2 }, { 0, 2, 4 }, { 0, 3, 6 }, { 0, 4, 8 }, { 0, 5, 10 }, { 0, 6, 12 }, { 0, 7, 16 }, { 0, 8, 32 }, { 0, 9, 64 }, { 0, 10, 128 }, { 0, 11, 256 }, /* HCLK used: Synchronous clock modes (1, 2 or 4 prescaler) */ { 1, 0, 1 }, { 2, 0, 2 }, { 3, 0, 4 }, }; static int stm32h7_adc_clk_sel(struct platform_device *pdev, struct stm32_adc_priv *priv) { u32 ckmode, presc, val; unsigned long rate; int i, div; /* stm32h7 bus clock is common for all ADC instances (mandatory) */ if (!priv->bclk) { dev_err(&pdev->dev, "No 'bus' clock found\n"); return -ENOENT; } /* * stm32h7 can use either 'bus' or 'adc' clock for analog circuitry. * So, choice is to have bus clock mandatory and adc clock optional. * If optional 'adc' clock has been found, then try to use it first. */ if (priv->aclk) { /* * Asynchronous clock modes (e.g. ckmode == 0) * From spec: PLL output musn't exceed max rate */ rate = clk_get_rate(priv->aclk); if (!rate) { dev_err(&pdev->dev, "Invalid adc clock rate: 0\n"); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) { ckmode = stm32h7_adc_ckmodes_spec[i].ckmode; presc = stm32h7_adc_ckmodes_spec[i].presc; div = stm32h7_adc_ckmodes_spec[i].div; if (ckmode) continue; if ((rate / div) <= priv->max_clk_rate) goto out; } } /* Synchronous clock modes (e.g. ckmode is 1, 2 or 3) */ rate = clk_get_rate(priv->bclk); if (!rate) { dev_err(&pdev->dev, "Invalid bus clock rate: 0\n"); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) { ckmode = stm32h7_adc_ckmodes_spec[i].ckmode; presc = stm32h7_adc_ckmodes_spec[i].presc; div = stm32h7_adc_ckmodes_spec[i].div; if (!ckmode) continue; if ((rate / div) <= priv->max_clk_rate) goto out; } dev_err(&pdev->dev, "adc clk selection failed\n"); return -EINVAL; out: /* rate used later by each ADC instance to control BOOST mode */ priv->common.rate = rate / div; /* Set common clock mode and prescaler */ val = readl_relaxed(priv->common.base + STM32H7_ADC_CCR); val &= ~(STM32H7_CKMODE_MASK | STM32H7_PRESC_MASK); val |= ckmode << STM32H7_CKMODE_SHIFT; val |= presc << STM32H7_PRESC_SHIFT; writel_relaxed(val, priv->common.base + STM32H7_ADC_CCR); dev_dbg(&pdev->dev, "Using %s clock/%d source at %ld kHz\n", ckmode ? "bus" : "adc", div, priv->common.rate / 1000); return 0; } /* STM32F4 common registers definitions */ static const struct stm32_adc_common_regs stm32f4_adc_common_regs = { .csr = STM32F4_ADC_CSR, .ccr = STM32F4_ADC_CCR, .eoc1_msk = STM32F4_EOC1 | STM32F4_OVR1, .eoc2_msk = STM32F4_EOC2 | STM32F4_OVR2, .eoc3_msk = STM32F4_EOC3 | STM32F4_OVR3, .ier = STM32F4_ADC_CR1, .eocie_msk = STM32F4_EOCIE | STM32F4_OVRIE, }; /* STM32H7 common registers definitions */ static const struct stm32_adc_common_regs stm32h7_adc_common_regs = { .csr = STM32H7_ADC_CSR, .ccr = STM32H7_ADC_CCR, .eoc1_msk = STM32H7_EOC_MST | STM32H7_OVR_MST, .eoc2_msk = STM32H7_EOC_SLV | STM32H7_OVR_SLV, .ier = STM32H7_ADC_IER, .eocie_msk = STM32H7_EOCIE | STM32H7_OVRIE, }; static const unsigned int stm32_adc_offset[STM32_ADC_MAX_ADCS] = { 0, STM32_ADC_OFFSET, STM32_ADC_OFFSET * 2, }; static unsigned int stm32_adc_eoc_enabled(struct stm32_adc_priv *priv, unsigned int adc) { u32 ier, offset = stm32_adc_offset[adc]; ier = readl_relaxed(priv->common.base + offset + priv->cfg->regs->ier); return ier & priv->cfg->regs->eocie_msk; } /* ADC common interrupt for all instances */ static void stm32_adc_irq_handler(struct irq_desc *desc) { struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc); struct irq_chip *chip = irq_desc_get_chip(desc); u32 status; chained_irq_enter(chip, desc); status = readl_relaxed(priv->common.base + priv->cfg->regs->csr); /* * End of conversion may be handled by using IRQ or DMA. There may be a * race here when two conversions complete at the same time on several * ADCs. EOC may be read 'set' for several ADCs, with: * - an ADC configured to use DMA (EOC triggers the DMA request, and * is then automatically cleared by DR read in hardware) * - an ADC configured to use IRQs (EOCIE bit is set. The handler must * be called in this case) * So both EOC status bit in CSR and EOCIE control bit must be checked * before invoking the interrupt handler (e.g. call ISR only for * IRQ-enabled ADCs). */ if (status & priv->cfg->regs->eoc1_msk && stm32_adc_eoc_enabled(priv, 0)) generic_handle_irq(irq_find_mapping(priv->domain, 0)); if (status & priv->cfg->regs->eoc2_msk && stm32_adc_eoc_enabled(priv, 1)) generic_handle_irq(irq_find_mapping(priv->domain, 1)); if (status & priv->cfg->regs->eoc3_msk && stm32_adc_eoc_enabled(priv, 2)) generic_handle_irq(irq_find_mapping(priv->domain, 2)); chained_irq_exit(chip, desc); }; static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hwirq) { irq_set_chip_data(irq, d->host_data); irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq); return 0; } static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq) { irq_set_chip_and_handler(irq, NULL, NULL); irq_set_chip_data(irq, NULL); } static const struct irq_domain_ops stm32_adc_domain_ops = { .map = stm32_adc_domain_map, .unmap = stm32_adc_domain_unmap, .xlate = irq_domain_xlate_onecell, }; static int stm32_adc_irq_probe(struct platform_device *pdev, struct stm32_adc_priv *priv) { struct device_node *np = pdev->dev.of_node; unsigned int i; for (i = 0; i < STM32_ADC_MAX_ADCS; i++) { priv->irq[i] = platform_get_irq(pdev, i); if (priv->irq[i] < 0) { /* * At least one interrupt must be provided, make others * optional: * - stm32f4/h7 shares a common interrupt. * - stm32mp1, has one line per ADC (either for ADC1, * ADC2 or both). */ if (i && priv->irq[i] == -ENXIO) continue; return priv->irq[i]; } } priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0, &stm32_adc_domain_ops, priv); if (!priv->domain) { dev_err(&pdev->dev, "Failed to add irq domain\n"); return -ENOMEM; } for (i = 0; i < STM32_ADC_MAX_ADCS; i++) { if (priv->irq[i] < 0) continue; irq_set_chained_handler(priv->irq[i], stm32_adc_irq_handler); irq_set_handler_data(priv->irq[i], priv); } return 0; } static void stm32_adc_irq_remove(struct platform_device *pdev, struct stm32_adc_priv *priv) { int hwirq; unsigned int i; for (hwirq = 0; hwirq < STM32_ADC_MAX_ADCS; hwirq++) irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq)); irq_domain_remove(priv->domain); for (i = 0; i < STM32_ADC_MAX_ADCS; i++) { if (priv->irq[i] < 0) continue; irq_set_chained_handler(priv->irq[i], NULL); } } static int stm32_adc_core_switches_supply_en(struct stm32_adc_priv *priv, struct device *dev) { int ret; /* * On STM32H7 and STM32MP1, the ADC inputs are multiplexed with analog * switches (via PCSEL) which have reduced performances when their * supply is below 2.7V (vdda by default): * - Voltage booster can be used, to get full ADC performances * (increases power consumption). * - Vdd can be used to supply them, if above 2.7V (STM32MP1 only). * * Recommended settings for ANASWVDD and EN_BOOSTER: * - vdda < 2.7V but vdd > 2.7V: ANASWVDD = 1, EN_BOOSTER = 0 (stm32mp1) * - vdda < 2.7V and vdd < 2.7V: ANASWVDD = 0, EN_BOOSTER = 1 * - vdda >= 2.7V: ANASWVDD = 0, EN_BOOSTER = 0 (default) */ if (priv->vdda_uv < 2700000) { if (priv->syscfg && priv->vdd_uv > 2700000) { ret = regulator_enable(priv->vdd); if (ret < 0) { dev_err(dev, "vdd enable failed %d\n", ret); return ret; } ret = regmap_write(priv->syscfg, STM32MP1_SYSCFG_PMCSETR, STM32MP1_SYSCFG_ANASWVDD_MASK); if (ret < 0) { regulator_disable(priv->vdd); dev_err(dev, "vdd select failed, %d\n", ret); return ret; } dev_dbg(dev, "analog switches supplied by vdd\n"); return 0; } if (priv->booster) { /* * This is optional, as this is a trade-off between * analog performance and power consumption. */ ret = regulator_enable(priv->booster); if (ret < 0) { dev_err(dev, "booster enable failed %d\n", ret); return ret; } dev_dbg(dev, "analog switches supplied by booster\n"); return 0; } } /* Fallback using vdda (default), nothing to do */ dev_dbg(dev, "analog switches supplied by vdda (%d uV)\n", priv->vdda_uv); return 0; } static void stm32_adc_core_switches_supply_dis(struct stm32_adc_priv *priv) { if (priv->vdda_uv < 2700000) { if (priv->syscfg && priv->vdd_uv > 2700000) { regmap_write(priv->syscfg, STM32MP1_SYSCFG_PMCCLRR, STM32MP1_SYSCFG_ANASWVDD_MASK); regulator_disable(priv->vdd); return; } if (priv->booster) regulator_disable(priv->booster); } } static int stm32_adc_core_hw_start(struct device *dev) { struct stm32_adc_common *common = dev_get_drvdata(dev); struct stm32_adc_priv *priv = to_stm32_adc_priv(common); int ret; ret = regulator_enable(priv->vdda); if (ret < 0) { dev_err(dev, "vdda enable failed %d\n", ret); return ret; } ret = regulator_get_voltage(priv->vdda); if (ret < 0) { dev_err(dev, "vdda get voltage failed, %d\n", ret); goto err_vdda_disable; } priv->vdda_uv = ret; ret = stm32_adc_core_switches_supply_en(priv, dev); if (ret < 0) goto err_vdda_disable; ret = regulator_enable(priv->vref); if (ret < 0) { dev_err(dev, "vref enable failed\n"); goto err_switches_dis; } if (priv->bclk) { ret = clk_prepare_enable(priv->bclk); if (ret < 0) { dev_err(dev, "bus clk enable failed\n"); goto err_regulator_disable; } } if (priv->aclk) { ret = clk_prepare_enable(priv->aclk); if (ret < 0) { dev_err(dev, "adc clk enable failed\n"); goto err_bclk_disable; } } writel_relaxed(priv->ccr_bak, priv->common.base + priv->cfg->regs->ccr); return 0; err_bclk_disable: if (priv->bclk) clk_disable_unprepare(priv->bclk); err_regulator_disable: regulator_disable(priv->vref); err_switches_dis: stm32_adc_core_switches_supply_dis(priv); err_vdda_disable: regulator_disable(priv->vdda); return ret; } static void stm32_adc_core_hw_stop(struct device *dev) { struct stm32_adc_common *common = dev_get_drvdata(dev); struct stm32_adc_priv *priv = to_stm32_adc_priv(common); /* Backup CCR that may be lost (depends on power state to achieve) */ priv->ccr_bak = readl_relaxed(priv->common.base + priv->cfg->regs->ccr); if (priv->aclk) clk_disable_unprepare(priv->aclk); if (priv->bclk) clk_disable_unprepare(priv->bclk); regulator_disable(priv->vref); stm32_adc_core_switches_supply_dis(priv); regulator_disable(priv->vdda); } static int stm32_adc_core_switches_probe(struct device *dev, struct stm32_adc_priv *priv) { struct device_node *np = dev->of_node; int ret; /* Analog switches supply can be controlled by syscfg (optional) */ priv->syscfg = syscon_regmap_lookup_by_phandle(np, "st,syscfg"); if (IS_ERR(priv->syscfg)) { ret = PTR_ERR(priv->syscfg); if (ret != -ENODEV) { if (ret != -EPROBE_DEFER) dev_err(dev, "Can't probe syscfg: %d\n", ret); return ret; } priv->syscfg = NULL; } /* Booster can be used to supply analog switches (optional) */ if (priv->cfg->has_syscfg & HAS_VBOOSTER && of_property_read_bool(np, "booster-supply")) { priv->booster = devm_regulator_get_optional(dev, "booster"); if (IS_ERR(priv->booster)) { ret = PTR_ERR(priv->booster); if (ret != -ENODEV) { if (ret != -EPROBE_DEFER) dev_err(dev, "can't get booster %d\n", ret); return ret; } priv->booster = NULL; } } /* Vdd can be used to supply analog switches (optional) */ if (priv->cfg->has_syscfg & HAS_ANASWVDD && of_property_read_bool(np, "vdd-supply")) { priv->vdd = devm_regulator_get_optional(dev, "vdd"); if (IS_ERR(priv->vdd)) { ret = PTR_ERR(priv->vdd); if (ret != -ENODEV) { if (ret != -EPROBE_DEFER) dev_err(dev, "can't get vdd %d\n", ret); return ret; } priv->vdd = NULL; } } if (priv->vdd) { ret = regulator_enable(priv->vdd); if (ret < 0) { dev_err(dev, "vdd enable failed %d\n", ret); return ret; } ret = regulator_get_voltage(priv->vdd); if (ret < 0) { dev_err(dev, "vdd get voltage failed %d\n", ret); regulator_disable(priv->vdd); return ret; } priv->vdd_uv = ret; regulator_disable(priv->vdd); } return 0; } static int stm32_adc_probe(struct platform_device *pdev) { struct stm32_adc_priv *priv; struct device *dev = &pdev->dev; struct device_node *np = pdev->dev.of_node; struct resource *res; u32 max_rate; int ret; if (!pdev->dev.of_node) return -ENODEV; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; platform_set_drvdata(pdev, &priv->common); priv->cfg = (const struct stm32_adc_priv_cfg *) of_match_device(dev->driver->of_match_table, dev)->data; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); priv->common.base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(priv->common.base)) return PTR_ERR(priv->common.base); priv->common.phys_base = res->start; priv->vdda = devm_regulator_get(&pdev->dev, "vdda"); if (IS_ERR(priv->vdda)) { ret = PTR_ERR(priv->vdda); if (ret != -EPROBE_DEFER) dev_err(&pdev->dev, "vdda get failed, %d\n", ret); return ret; } priv->vref = devm_regulator_get(&pdev->dev, "vref"); if (IS_ERR(priv->vref)) { ret = PTR_ERR(priv->vref); dev_err(&pdev->dev, "vref get failed, %d\n", ret); return ret; } priv->aclk = devm_clk_get(&pdev->dev, "adc"); if (IS_ERR(priv->aclk)) { ret = PTR_ERR(priv->aclk); if (ret != -ENOENT) { dev_err(&pdev->dev, "Can't get 'adc' clock\n"); return ret; } priv->aclk = NULL; } priv->bclk = devm_clk_get(&pdev->dev, "bus"); if (IS_ERR(priv->bclk)) { ret = PTR_ERR(priv->bclk); if (ret != -ENOENT) { dev_err(&pdev->dev, "Can't get 'bus' clock\n"); return ret; } priv->bclk = NULL; } ret = stm32_adc_core_switches_probe(dev, priv); if (ret) return ret; pm_runtime_get_noresume(dev); pm_runtime_set_active(dev); pm_runtime_set_autosuspend_delay(dev, STM32_ADC_CORE_SLEEP_DELAY_MS); pm_runtime_use_autosuspend(dev); pm_runtime_enable(dev); ret = stm32_adc_core_hw_start(dev); if (ret) goto err_pm_stop; ret = regulator_get_voltage(priv->vref); if (ret < 0) { dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret); goto err_hw_stop; } priv->common.vref_mv = ret / 1000; dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv); ret = of_property_read_u32(pdev->dev.of_node, "st,max-clk-rate-hz", &max_rate); if (!ret) priv->max_clk_rate = min(max_rate, priv->cfg->max_clk_rate_hz); else priv->max_clk_rate = priv->cfg->max_clk_rate_hz; ret = priv->cfg->clk_sel(pdev, priv); if (ret < 0) goto err_hw_stop; ret = stm32_adc_irq_probe(pdev, priv); if (ret < 0) goto err_hw_stop; ret = of_platform_populate(np, NULL, NULL, &pdev->dev); if (ret < 0) { dev_err(&pdev->dev, "failed to populate DT children\n"); goto err_irq_remove; } pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return 0; err_irq_remove: stm32_adc_irq_remove(pdev, priv); err_hw_stop: stm32_adc_core_hw_stop(dev); err_pm_stop: pm_runtime_disable(dev); pm_runtime_set_suspended(dev); pm_runtime_put_noidle(dev); return ret; } static int stm32_adc_remove(struct platform_device *pdev) { struct stm32_adc_common *common = platform_get_drvdata(pdev); struct stm32_adc_priv *priv = to_stm32_adc_priv(common); pm_runtime_get_sync(&pdev->dev); of_platform_depopulate(&pdev->dev); stm32_adc_irq_remove(pdev, priv); stm32_adc_core_hw_stop(&pdev->dev); pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); pm_runtime_put_noidle(&pdev->dev); return 0; } #if defined(CONFIG_PM) static int stm32_adc_core_runtime_suspend(struct device *dev) { stm32_adc_core_hw_stop(dev); return 0; } static int stm32_adc_core_runtime_resume(struct device *dev) { return stm32_adc_core_hw_start(dev); } #endif static const struct dev_pm_ops stm32_adc_core_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(stm32_adc_core_runtime_suspend, stm32_adc_core_runtime_resume, NULL) }; static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = { .regs = &stm32f4_adc_common_regs, .clk_sel = stm32f4_adc_clk_sel, .max_clk_rate_hz = 36000000, }; static const struct stm32_adc_priv_cfg stm32h7_adc_priv_cfg = { .regs = &stm32h7_adc_common_regs, .clk_sel = stm32h7_adc_clk_sel, .max_clk_rate_hz = 36000000, .has_syscfg = HAS_VBOOSTER, }; static const struct stm32_adc_priv_cfg stm32mp1_adc_priv_cfg = { .regs = &stm32h7_adc_common_regs, .clk_sel = stm32h7_adc_clk_sel, .max_clk_rate_hz = 40000000, .has_syscfg = HAS_VBOOSTER | HAS_ANASWVDD, }; static const struct of_device_id stm32_adc_of_match[] = { { .compatible = "st,stm32f4-adc-core", .data = (void *)&stm32f4_adc_priv_cfg }, { .compatible = "st,stm32h7-adc-core", .data = (void *)&stm32h7_adc_priv_cfg }, { .compatible = "st,stm32mp1-adc-core", .data = (void *)&stm32mp1_adc_priv_cfg }, { }, }; MODULE_DEVICE_TABLE(of, stm32_adc_of_match); static struct platform_driver stm32_adc_driver = { .probe = stm32_adc_probe, .remove = stm32_adc_remove, .driver = { .name = "stm32-adc-core", .of_match_table = stm32_adc_of_match, .pm = &stm32_adc_core_pm_ops, }, }; module_platform_driver(stm32_adc_driver); MODULE_AUTHOR("Fabrice Gasnier "); MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:stm32-adc-core");