// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2018 Spreadtrum Communications Inc. #include #include #include #include #include #include #include #include #include /* PMIC global registers definition */ #define SC27XX_MODULE_EN 0xc08 #define SC27XX_MODULE_ADC_EN BIT(5) #define SC27XX_ARM_CLK_EN 0xc10 #define SC27XX_CLK_ADC_EN BIT(5) #define SC27XX_CLK_ADC_CLK_EN BIT(6) /* ADC controller registers definition */ #define SC27XX_ADC_CTL 0x0 #define SC27XX_ADC_CH_CFG 0x4 #define SC27XX_ADC_DATA 0x4c #define SC27XX_ADC_INT_EN 0x50 #define SC27XX_ADC_INT_CLR 0x54 #define SC27XX_ADC_INT_STS 0x58 #define SC27XX_ADC_INT_RAW 0x5c /* Bits and mask definition for SC27XX_ADC_CTL register */ #define SC27XX_ADC_EN BIT(0) #define SC27XX_ADC_CHN_RUN BIT(1) #define SC27XX_ADC_12BIT_MODE BIT(2) #define SC27XX_ADC_RUN_NUM_MASK GENMASK(7, 4) #define SC27XX_ADC_RUN_NUM_SHIFT 4 /* Bits and mask definition for SC27XX_ADC_CH_CFG register */ #define SC27XX_ADC_CHN_ID_MASK GENMASK(4, 0) #define SC27XX_ADC_SCALE_MASK GENMASK(10, 8) #define SC27XX_ADC_SCALE_SHIFT 8 /* Bits definitions for SC27XX_ADC_INT_EN registers */ #define SC27XX_ADC_IRQ_EN BIT(0) /* Bits definitions for SC27XX_ADC_INT_CLR registers */ #define SC27XX_ADC_IRQ_CLR BIT(0) /* Bits definitions for SC27XX_ADC_INT_RAW registers */ #define SC27XX_ADC_IRQ_RAW BIT(0) /* Mask definition for SC27XX_ADC_DATA register */ #define SC27XX_ADC_DATA_MASK GENMASK(11, 0) /* Timeout (ms) for the trylock of hardware spinlocks */ #define SC27XX_ADC_HWLOCK_TIMEOUT 5000 /* Timeout (us) for ADC data conversion according to ADC datasheet */ #define SC27XX_ADC_RDY_TIMEOUT 1000000 #define SC27XX_ADC_POLL_RAW_STATUS 500 /* Maximum ADC channel number */ #define SC27XX_ADC_CHANNEL_MAX 32 /* ADC voltage ratio definition */ #define SC27XX_VOLT_RATIO(n, d) \ (((n) << SC27XX_RATIO_NUMERATOR_OFFSET) | (d)) #define SC27XX_RATIO_NUMERATOR_OFFSET 16 #define SC27XX_RATIO_DENOMINATOR_MASK GENMASK(15, 0) struct sc27xx_adc_data { struct device *dev; struct regmap *regmap; /* * One hardware spinlock to synchronize between the multiple * subsystems which will access the unique ADC controller. */ struct hwspinlock *hwlock; int channel_scale[SC27XX_ADC_CHANNEL_MAX]; u32 base; int irq; }; struct sc27xx_adc_linear_graph { int volt0; int adc0; int volt1; int adc1; }; /* * According to the datasheet, we can convert one ADC value to one voltage value * through 2 points in the linear graph. If the voltage is less than 1.2v, we * should use the small-scale graph, and if more than 1.2v, we should use the * big-scale graph. */ static struct sc27xx_adc_linear_graph big_scale_graph = { 4200, 3310, 3600, 2832, }; static struct sc27xx_adc_linear_graph small_scale_graph = { 1000, 3413, 100, 341, }; static const struct sc27xx_adc_linear_graph big_scale_graph_calib = { 4200, 856, 3600, 733, }; static const struct sc27xx_adc_linear_graph small_scale_graph_calib = { 1000, 833, 100, 80, }; static int sc27xx_adc_get_calib_data(u32 calib_data, int calib_adc) { return ((calib_data & 0xff) + calib_adc - 128) * 4; } static int sc27xx_adc_scale_calibration(struct sc27xx_adc_data *data, bool big_scale) { const struct sc27xx_adc_linear_graph *calib_graph; struct sc27xx_adc_linear_graph *graph; struct nvmem_cell *cell; const char *cell_name; u32 calib_data = 0; void *buf; size_t len; if (big_scale) { calib_graph = &big_scale_graph_calib; graph = &big_scale_graph; cell_name = "big_scale_calib"; } else { calib_graph = &small_scale_graph_calib; graph = &small_scale_graph; cell_name = "small_scale_calib"; } cell = nvmem_cell_get(data->dev, cell_name); if (IS_ERR(cell)) return PTR_ERR(cell); buf = nvmem_cell_read(cell, &len); nvmem_cell_put(cell); if (IS_ERR(buf)) return PTR_ERR(buf); memcpy(&calib_data, buf, min(len, sizeof(u32))); /* Only need to calibrate the adc values in the linear graph. */ graph->adc0 = sc27xx_adc_get_calib_data(calib_data, calib_graph->adc0); graph->adc1 = sc27xx_adc_get_calib_data(calib_data >> 8, calib_graph->adc1); kfree(buf); return 0; } static int sc27xx_adc_get_ratio(int channel, int scale) { switch (channel) { case 1: case 2: case 3: case 4: return scale ? SC27XX_VOLT_RATIO(400, 1025) : SC27XX_VOLT_RATIO(1, 1); case 5: return SC27XX_VOLT_RATIO(7, 29); case 6: return SC27XX_VOLT_RATIO(375, 9000); case 7: case 8: return scale ? SC27XX_VOLT_RATIO(100, 125) : SC27XX_VOLT_RATIO(1, 1); case 19: return SC27XX_VOLT_RATIO(1, 3); default: return SC27XX_VOLT_RATIO(1, 1); } return SC27XX_VOLT_RATIO(1, 1); } static int sc27xx_adc_read(struct sc27xx_adc_data *data, int channel, int scale, int *val) { int ret; u32 tmp, value, status; ret = hwspin_lock_timeout_raw(data->hwlock, SC27XX_ADC_HWLOCK_TIMEOUT); if (ret) { dev_err(data->dev, "timeout to get the hwspinlock\n"); return ret; } ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL, SC27XX_ADC_EN, SC27XX_ADC_EN); if (ret) goto unlock_adc; ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_INT_CLR, SC27XX_ADC_IRQ_CLR, SC27XX_ADC_IRQ_CLR); if (ret) goto disable_adc; /* Configure the channel id and scale */ tmp = (scale << SC27XX_ADC_SCALE_SHIFT) & SC27XX_ADC_SCALE_MASK; tmp |= channel & SC27XX_ADC_CHN_ID_MASK; ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CH_CFG, SC27XX_ADC_CHN_ID_MASK | SC27XX_ADC_SCALE_MASK, tmp); if (ret) goto disable_adc; /* Select 12bit conversion mode, and only sample 1 time */ tmp = SC27XX_ADC_12BIT_MODE; tmp |= (0 << SC27XX_ADC_RUN_NUM_SHIFT) & SC27XX_ADC_RUN_NUM_MASK; ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL, SC27XX_ADC_RUN_NUM_MASK | SC27XX_ADC_12BIT_MODE, tmp); if (ret) goto disable_adc; ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL, SC27XX_ADC_CHN_RUN, SC27XX_ADC_CHN_RUN); if (ret) goto disable_adc; ret = regmap_read_poll_timeout(data->regmap, data->base + SC27XX_ADC_INT_RAW, status, (status & SC27XX_ADC_IRQ_RAW), SC27XX_ADC_POLL_RAW_STATUS, SC27XX_ADC_RDY_TIMEOUT); if (ret) { dev_err(data->dev, "read adc timeout, status = 0x%x\n", status); goto disable_adc; } ret = regmap_read(data->regmap, data->base + SC27XX_ADC_DATA, &value); if (ret) goto disable_adc; value &= SC27XX_ADC_DATA_MASK; disable_adc: regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL, SC27XX_ADC_EN, 0); unlock_adc: hwspin_unlock_raw(data->hwlock); if (!ret) *val = value; return ret; } static void sc27xx_adc_volt_ratio(struct sc27xx_adc_data *data, int channel, int scale, u32 *div_numerator, u32 *div_denominator) { u32 ratio = sc27xx_adc_get_ratio(channel, scale); *div_numerator = ratio >> SC27XX_RATIO_NUMERATOR_OFFSET; *div_denominator = ratio & SC27XX_RATIO_DENOMINATOR_MASK; } static int sc27xx_adc_to_volt(struct sc27xx_adc_linear_graph *graph, int raw_adc) { int tmp; tmp = (graph->volt0 - graph->volt1) * (raw_adc - graph->adc1); tmp /= (graph->adc0 - graph->adc1); tmp += graph->volt1; return tmp < 0 ? 0 : tmp; } static int sc27xx_adc_convert_volt(struct sc27xx_adc_data *data, int channel, int scale, int raw_adc) { u32 numerator, denominator; u32 volt; /* * Convert ADC values to voltage values according to the linear graph, * and channel 5 and channel 1 has been calibrated, so we can just * return the voltage values calculated by the linear graph. But other * channels need be calculated to the real voltage values with the * voltage ratio. */ switch (channel) { case 5: return sc27xx_adc_to_volt(&big_scale_graph, raw_adc); case 1: return sc27xx_adc_to_volt(&small_scale_graph, raw_adc); default: volt = sc27xx_adc_to_volt(&small_scale_graph, raw_adc); break; } sc27xx_adc_volt_ratio(data, channel, scale, &numerator, &denominator); return (volt * denominator + numerator / 2) / numerator; } static int sc27xx_adc_read_processed(struct sc27xx_adc_data *data, int channel, int scale, int *val) { int ret, raw_adc; ret = sc27xx_adc_read(data, channel, scale, &raw_adc); if (ret) return ret; *val = sc27xx_adc_convert_volt(data, channel, scale, raw_adc); return 0; } static int sc27xx_adc_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct sc27xx_adc_data *data = iio_priv(indio_dev); int scale = data->channel_scale[chan->channel]; int ret, tmp; switch (mask) { case IIO_CHAN_INFO_RAW: mutex_lock(&indio_dev->mlock); ret = sc27xx_adc_read(data, chan->channel, scale, &tmp); mutex_unlock(&indio_dev->mlock); if (ret) return ret; *val = tmp; return IIO_VAL_INT; case IIO_CHAN_INFO_PROCESSED: mutex_lock(&indio_dev->mlock); ret = sc27xx_adc_read_processed(data, chan->channel, scale, &tmp); mutex_unlock(&indio_dev->mlock); if (ret) return ret; *val = tmp; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = scale; return IIO_VAL_INT; default: return -EINVAL; } } static int sc27xx_adc_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct sc27xx_adc_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SCALE: data->channel_scale[chan->channel] = val; return IIO_VAL_INT; default: return -EINVAL; } } static const struct iio_info sc27xx_info = { .read_raw = &sc27xx_adc_read_raw, .write_raw = &sc27xx_adc_write_raw, }; #define SC27XX_ADC_CHANNEL(index, mask) { \ .type = IIO_VOLTAGE, \ .channel = index, \ .info_mask_separate = mask | BIT(IIO_CHAN_INFO_SCALE), \ .datasheet_name = "CH##index", \ .indexed = 1, \ } static const struct iio_chan_spec sc27xx_channels[] = { SC27XX_ADC_CHANNEL(0, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(1, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(2, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(3, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(4, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(5, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(6, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(7, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(8, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(9, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(10, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(11, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(12, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(13, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(14, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(15, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(16, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(17, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(18, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(19, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(20, BIT(IIO_CHAN_INFO_RAW)), SC27XX_ADC_CHANNEL(21, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(22, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(23, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(24, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(25, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(26, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(27, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(28, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(29, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(30, BIT(IIO_CHAN_INFO_PROCESSED)), SC27XX_ADC_CHANNEL(31, BIT(IIO_CHAN_INFO_PROCESSED)), }; static int sc27xx_adc_enable(struct sc27xx_adc_data *data) { int ret; ret = regmap_update_bits(data->regmap, SC27XX_MODULE_EN, SC27XX_MODULE_ADC_EN, SC27XX_MODULE_ADC_EN); if (ret) return ret; /* Enable ADC work clock and controller clock */ ret = regmap_update_bits(data->regmap, SC27XX_ARM_CLK_EN, SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN, SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN); if (ret) goto disable_adc; /* ADC channel scales' calibration from nvmem device */ ret = sc27xx_adc_scale_calibration(data, true); if (ret) goto disable_clk; ret = sc27xx_adc_scale_calibration(data, false); if (ret) goto disable_clk; return 0; disable_clk: regmap_update_bits(data->regmap, SC27XX_ARM_CLK_EN, SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN, 0); disable_adc: regmap_update_bits(data->regmap, SC27XX_MODULE_EN, SC27XX_MODULE_ADC_EN, 0); return ret; } static void sc27xx_adc_disable(void *_data) { struct sc27xx_adc_data *data = _data; /* Disable ADC work clock and controller clock */ regmap_update_bits(data->regmap, SC27XX_ARM_CLK_EN, SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN, 0); regmap_update_bits(data->regmap, SC27XX_MODULE_EN, SC27XX_MODULE_ADC_EN, 0); } static int sc27xx_adc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct sc27xx_adc_data *sc27xx_data; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*sc27xx_data)); if (!indio_dev) return -ENOMEM; sc27xx_data = iio_priv(indio_dev); sc27xx_data->regmap = dev_get_regmap(dev->parent, NULL); if (!sc27xx_data->regmap) { dev_err(dev, "failed to get ADC regmap\n"); return -ENODEV; } ret = of_property_read_u32(np, "reg", &sc27xx_data->base); if (ret) { dev_err(dev, "failed to get ADC base address\n"); return ret; } sc27xx_data->irq = platform_get_irq(pdev, 0); if (sc27xx_data->irq < 0) return sc27xx_data->irq; ret = of_hwspin_lock_get_id(np, 0); if (ret < 0) { dev_err(dev, "failed to get hwspinlock id\n"); return ret; } sc27xx_data->hwlock = devm_hwspin_lock_request_specific(dev, ret); if (!sc27xx_data->hwlock) { dev_err(dev, "failed to request hwspinlock\n"); return -ENXIO; } sc27xx_data->dev = dev; ret = sc27xx_adc_enable(sc27xx_data); if (ret) { dev_err(dev, "failed to enable ADC module\n"); return ret; } ret = devm_add_action_or_reset(dev, sc27xx_adc_disable, sc27xx_data); if (ret) { dev_err(dev, "failed to add ADC disable action\n"); return ret; } indio_dev->dev.parent = dev; indio_dev->name = dev_name(dev); indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &sc27xx_info; indio_dev->channels = sc27xx_channels; indio_dev->num_channels = ARRAY_SIZE(sc27xx_channels); ret = devm_iio_device_register(dev, indio_dev); if (ret) dev_err(dev, "could not register iio (ADC)"); return ret; } static const struct of_device_id sc27xx_adc_of_match[] = { { .compatible = "sprd,sc2731-adc", }, { } }; static struct platform_driver sc27xx_adc_driver = { .probe = sc27xx_adc_probe, .driver = { .name = "sc27xx-adc", .of_match_table = sc27xx_adc_of_match, }, }; module_platform_driver(sc27xx_adc_driver); MODULE_AUTHOR("Freeman Liu "); MODULE_DESCRIPTION("Spreadtrum SC27XX ADC Driver"); MODULE_LICENSE("GPL v2");