/* * Functions related to mapping data to requests */ #include #include #include #include #include #include "blk.h" static bool iovec_gap_to_prv(struct request_queue *q, struct iovec *prv, struct iovec *cur) { unsigned long prev_end; if (!queue_virt_boundary(q)) return false; if (prv->iov_base == NULL && prv->iov_len == 0) /* prv is not set - don't check */ return false; prev_end = (unsigned long)(prv->iov_base + prv->iov_len); return (((unsigned long)cur->iov_base & queue_virt_boundary(q)) || prev_end & queue_virt_boundary(q)); } int blk_rq_append_bio(struct request_queue *q, struct request *rq, struct bio *bio) { if (!rq->bio) blk_rq_bio_prep(q, rq, bio); else if (!ll_back_merge_fn(q, rq, bio)) return -EINVAL; else { rq->biotail->bi_next = bio; rq->biotail = bio; rq->__data_len += bio->bi_iter.bi_size; } return 0; } static int __blk_rq_unmap_user(struct bio *bio) { int ret = 0; if (bio) { if (bio_flagged(bio, BIO_USER_MAPPED)) bio_unmap_user(bio); else ret = bio_uncopy_user(bio); } return ret; } /** * blk_rq_map_user_iov - map user data to a request, for REQ_TYPE_BLOCK_PC usage * @q: request queue where request should be inserted * @rq: request to map data to * @map_data: pointer to the rq_map_data holding pages (if necessary) * @iter: iovec iterator * @gfp_mask: memory allocation flags * * Description: * Data will be mapped directly for zero copy I/O, if possible. Otherwise * a kernel bounce buffer is used. * * A matching blk_rq_unmap_user() must be issued at the end of I/O, while * still in process context. * * Note: The mapped bio may need to be bounced through blk_queue_bounce() * before being submitted to the device, as pages mapped may be out of * reach. It's the callers responsibility to make sure this happens. The * original bio must be passed back in to blk_rq_unmap_user() for proper * unmapping. */ int blk_rq_map_user_iov(struct request_queue *q, struct request *rq, struct rq_map_data *map_data, const struct iov_iter *iter, gfp_t gfp_mask) { struct bio *bio; int unaligned = 0; struct iov_iter i; struct iovec iov, prv = {.iov_base = NULL, .iov_len = 0}; if (!iter || !iter->count) return -EINVAL; iov_for_each(iov, i, *iter) { unsigned long uaddr = (unsigned long) iov.iov_base; if (!iov.iov_len) return -EINVAL; /* * Keep going so we check length of all segments */ if ((uaddr & queue_dma_alignment(q)) || iovec_gap_to_prv(q, &prv, &iov)) unaligned = 1; prv.iov_base = iov.iov_base; prv.iov_len = iov.iov_len; } if (unaligned || (q->dma_pad_mask & iter->count) || map_data) bio = bio_copy_user_iov(q, map_data, iter, gfp_mask); else bio = bio_map_user_iov(q, iter, gfp_mask); if (IS_ERR(bio)) return PTR_ERR(bio); if (map_data && map_data->null_mapped) bio_set_flag(bio, BIO_NULL_MAPPED); if (bio->bi_iter.bi_size != iter->count) { /* * Grab an extra reference to this bio, as bio_unmap_user() * expects to be able to drop it twice as it happens on the * normal IO completion path */ bio_get(bio); bio_endio(bio); __blk_rq_unmap_user(bio); return -EINVAL; } if (!bio_flagged(bio, BIO_USER_MAPPED)) rq->cmd_flags |= REQ_COPY_USER; blk_queue_bounce(q, &bio); bio_get(bio); blk_rq_bio_prep(q, rq, bio); return 0; } EXPORT_SYMBOL(blk_rq_map_user_iov); int blk_rq_map_user(struct request_queue *q, struct request *rq, struct rq_map_data *map_data, void __user *ubuf, unsigned long len, gfp_t gfp_mask) { struct iovec iov; struct iov_iter i; int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i); if (unlikely(ret < 0)) return ret; return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask); } EXPORT_SYMBOL(blk_rq_map_user); /** * blk_rq_unmap_user - unmap a request with user data * @bio: start of bio list * * Description: * Unmap a rq previously mapped by blk_rq_map_user(). The caller must * supply the original rq->bio from the blk_rq_map_user() return, since * the I/O completion may have changed rq->bio. */ int blk_rq_unmap_user(struct bio *bio) { struct bio *mapped_bio; int ret = 0, ret2; while (bio) { mapped_bio = bio; if (unlikely(bio_flagged(bio, BIO_BOUNCED))) mapped_bio = bio->bi_private; ret2 = __blk_rq_unmap_user(mapped_bio); if (ret2 && !ret) ret = ret2; mapped_bio = bio; bio = bio->bi_next; bio_put(mapped_bio); } return ret; } EXPORT_SYMBOL(blk_rq_unmap_user); /** * blk_rq_map_kern - map kernel data to a request, for REQ_TYPE_BLOCK_PC usage * @q: request queue where request should be inserted * @rq: request to fill * @kbuf: the kernel buffer * @len: length of user data * @gfp_mask: memory allocation flags * * Description: * Data will be mapped directly if possible. Otherwise a bounce * buffer is used. Can be called multiple times to append multiple * buffers. */ int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf, unsigned int len, gfp_t gfp_mask) { int reading = rq_data_dir(rq) == READ; unsigned long addr = (unsigned long) kbuf; int do_copy = 0; struct bio *bio; int ret; if (len > (queue_max_hw_sectors(q) << 9)) return -EINVAL; if (!len || !kbuf) return -EINVAL; do_copy = !blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf); if (do_copy) bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading); else bio = bio_map_kern(q, kbuf, len, gfp_mask); if (IS_ERR(bio)) return PTR_ERR(bio); if (!reading) bio->bi_rw |= REQ_WRITE; if (do_copy) rq->cmd_flags |= REQ_COPY_USER; ret = blk_rq_append_bio(q, rq, bio); if (unlikely(ret)) { /* request is too big */ bio_put(bio); return ret; } blk_queue_bounce(q, &rq->bio); return 0; } EXPORT_SYMBOL(blk_rq_map_kern);