#include #include #include #include #include #include #include #include #include #include #include #include #include /* * TLB flushing, formerly SMP-only * c/o Linus Torvalds. * * These mean you can really definitely utterly forget about * writing to user space from interrupts. (Its not allowed anyway). * * Optimizations Manfred Spraul * * More scalable flush, from Andi Kleen * * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi */ void leave_mm(int cpu) { struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); /* * It's plausible that we're in lazy TLB mode while our mm is init_mm. * If so, our callers still expect us to flush the TLB, but there * aren't any user TLB entries in init_mm to worry about. * * This needs to happen before any other sanity checks due to * intel_idle's shenanigans. */ if (loaded_mm == &init_mm) return; if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) BUG(); switch_mm(NULL, &init_mm, NULL); } EXPORT_SYMBOL_GPL(leave_mm); void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk) { unsigned long flags; local_irq_save(flags); switch_mm_irqs_off(prev, next, tsk); local_irq_restore(flags); } void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk) { unsigned cpu = smp_processor_id(); struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); /* * NB: The scheduler will call us with prev == next when * switching from lazy TLB mode to normal mode if active_mm * isn't changing. When this happens, there is no guarantee * that CR3 (and hence cpu_tlbstate.loaded_mm) matches next. * * NB: leave_mm() calls us with prev == NULL and tsk == NULL. */ this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK); if (real_prev == next) { /* * There's nothing to do: we always keep the per-mm control * regs in sync with cpu_tlbstate.loaded_mm. Just * sanity-check mm_cpumask. */ if (WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(next)))) cpumask_set_cpu(cpu, mm_cpumask(next)); return; } if (IS_ENABLED(CONFIG_VMAP_STACK)) { /* * If our current stack is in vmalloc space and isn't * mapped in the new pgd, we'll double-fault. Forcibly * map it. */ unsigned int stack_pgd_index = pgd_index(current_stack_pointer()); pgd_t *pgd = next->pgd + stack_pgd_index; if (unlikely(pgd_none(*pgd))) set_pgd(pgd, init_mm.pgd[stack_pgd_index]); } this_cpu_write(cpu_tlbstate.loaded_mm, next); WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next))); cpumask_set_cpu(cpu, mm_cpumask(next)); /* * Re-load page tables. * * This logic has an ordering constraint: * * CPU 0: Write to a PTE for 'next' * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI. * CPU 1: set bit 1 in next's mm_cpumask * CPU 1: load from the PTE that CPU 0 writes (implicit) * * We need to prevent an outcome in which CPU 1 observes * the new PTE value and CPU 0 observes bit 1 clear in * mm_cpumask. (If that occurs, then the IPI will never * be sent, and CPU 0's TLB will contain a stale entry.) * * The bad outcome can occur if either CPU's load is * reordered before that CPU's store, so both CPUs must * execute full barriers to prevent this from happening. * * Thus, switch_mm needs a full barrier between the * store to mm_cpumask and any operation that could load * from next->pgd. TLB fills are special and can happen * due to instruction fetches or for no reason at all, * and neither LOCK nor MFENCE orders them. * Fortunately, load_cr3() is serializing and gives the * ordering guarantee we need. */ load_cr3(next->pgd); /* * This gets called via leave_mm() in the idle path where RCU * functions differently. Tracing normally uses RCU, so we have to * call the tracepoint specially here. */ trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); /* Stop flush ipis for the previous mm */ WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) && real_prev != &init_mm); cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); /* Load per-mm CR4 and LDTR state */ load_mm_cr4(next); switch_ldt(real_prev, next); } static void flush_tlb_func_common(const struct flush_tlb_info *f, bool local, enum tlb_flush_reason reason) { /* This code cannot presently handle being reentered. */ VM_WARN_ON(!irqs_disabled()); if (this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) { leave_mm(smp_processor_id()); return; } if (f->end == TLB_FLUSH_ALL) { local_flush_tlb(); if (local) count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); trace_tlb_flush(reason, TLB_FLUSH_ALL); } else { unsigned long addr; unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT; addr = f->start; while (addr < f->end) { __flush_tlb_single(addr); addr += PAGE_SIZE; } if (local) count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages); trace_tlb_flush(reason, nr_pages); } } static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason) { const struct flush_tlb_info *f = info; flush_tlb_func_common(f, true, reason); } static void flush_tlb_func_remote(void *info) { const struct flush_tlb_info *f = info; inc_irq_stat(irq_tlb_count); if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm)) return; count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN); } void native_flush_tlb_others(const struct cpumask *cpumask, const struct flush_tlb_info *info) { count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); if (info->end == TLB_FLUSH_ALL) trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); else trace_tlb_flush(TLB_REMOTE_SEND_IPI, (info->end - info->start) >> PAGE_SHIFT); if (is_uv_system()) { unsigned int cpu; cpu = smp_processor_id(); cpumask = uv_flush_tlb_others(cpumask, info); if (cpumask) smp_call_function_many(cpumask, flush_tlb_func_remote, (void *)info, 1); return; } smp_call_function_many(cpumask, flush_tlb_func_remote, (void *)info, 1); } /* * See Documentation/x86/tlb.txt for details. We choose 33 * because it is large enough to cover the vast majority (at * least 95%) of allocations, and is small enough that we are * confident it will not cause too much overhead. Each single * flush is about 100 ns, so this caps the maximum overhead at * _about_ 3,000 ns. * * This is in units of pages. */ static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, unsigned long end, unsigned long vmflag) { int cpu; struct flush_tlb_info info = { .mm = mm, }; cpu = get_cpu(); /* Synchronize with switch_mm. */ smp_mb(); /* Should we flush just the requested range? */ if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB) && ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) { info.start = start; info.end = end; } else { info.start = 0UL; info.end = TLB_FLUSH_ALL; } if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { VM_WARN_ON(irqs_disabled()); local_irq_disable(); flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN); local_irq_enable(); } if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) flush_tlb_others(mm_cpumask(mm), &info); put_cpu(); } static void do_flush_tlb_all(void *info) { count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); __flush_tlb_all(); if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY) leave_mm(smp_processor_id()); } void flush_tlb_all(void) { count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); on_each_cpu(do_flush_tlb_all, NULL, 1); } static void do_kernel_range_flush(void *info) { struct flush_tlb_info *f = info; unsigned long addr; /* flush range by one by one 'invlpg' */ for (addr = f->start; addr < f->end; addr += PAGE_SIZE) __flush_tlb_single(addr); } void flush_tlb_kernel_range(unsigned long start, unsigned long end) { /* Balance as user space task's flush, a bit conservative */ if (end == TLB_FLUSH_ALL || (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { on_each_cpu(do_flush_tlb_all, NULL, 1); } else { struct flush_tlb_info info; info.start = start; info.end = end; on_each_cpu(do_kernel_range_flush, &info, 1); } } void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) { struct flush_tlb_info info = { .mm = NULL, .start = 0UL, .end = TLB_FLUSH_ALL, }; int cpu = get_cpu(); if (cpumask_test_cpu(cpu, &batch->cpumask)) { VM_WARN_ON(irqs_disabled()); local_irq_disable(); flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN); local_irq_enable(); } if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) flush_tlb_others(&batch->cpumask, &info); cpumask_clear(&batch->cpumask); put_cpu(); } static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char buf[32]; unsigned int len; len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); return simple_read_from_buffer(user_buf, count, ppos, buf, len); } static ssize_t tlbflush_write_file(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { char buf[32]; ssize_t len; int ceiling; len = min(count, sizeof(buf) - 1); if (copy_from_user(buf, user_buf, len)) return -EFAULT; buf[len] = '\0'; if (kstrtoint(buf, 0, &ceiling)) return -EINVAL; if (ceiling < 0) return -EINVAL; tlb_single_page_flush_ceiling = ceiling; return count; } static const struct file_operations fops_tlbflush = { .read = tlbflush_read_file, .write = tlbflush_write_file, .llseek = default_llseek, }; static int __init create_tlb_single_page_flush_ceiling(void) { debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, arch_debugfs_dir, NULL, &fops_tlbflush); return 0; } late_initcall(create_tlb_single_page_flush_ceiling);