// SPDX-License-Identifier: GPL-2.0 /* * This file implements KASLR memory randomization for x86_64. It randomizes * the virtual address space of kernel memory regions (physical memory * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates * exploits relying on predictable kernel addresses. * * Entropy is generated using the KASLR early boot functions now shared in * the lib directory (originally written by Kees Cook). Randomization is * done on PGD & P4D/PUD page table levels to increase possible addresses. * The physical memory mapping code was adapted to support P4D/PUD level * virtual addresses. This implementation on the best configuration provides * 30,000 possible virtual addresses in average for each memory region. * An additional low memory page is used to ensure each CPU can start with * a PGD aligned virtual address (for realmode). * * The order of each memory region is not changed. The feature looks at * the available space for the regions based on different configuration * options and randomizes the base and space between each. The size of the * physical memory mapping is the available physical memory. */ #include #include #include #include #include #include #include #include "mm_internal.h" #define TB_SHIFT 40 /* * The end address could depend on more configuration options to make the * highest amount of space for randomization available, but that's too hard * to keep straight and caused issues already. */ static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE; /* * Memory regions randomized by KASLR (except modules that use a separate logic * earlier during boot). The list is ordered based on virtual addresses. This * order is kept after randomization. */ static __initdata struct kaslr_memory_region { unsigned long *base; unsigned long size_tb; } kaslr_regions[] = { { &page_offset_base, 0 }, { &vmalloc_base, 0 }, { &vmemmap_base, 1 }, }; /* Get size in bytes used by the memory region */ static inline unsigned long get_padding(struct kaslr_memory_region *region) { return (region->size_tb << TB_SHIFT); } /* * Apply no randomization if KASLR was disabled at boot or if KASAN * is enabled. KASAN shadow mappings rely on regions being PGD aligned. */ static inline bool kaslr_memory_enabled(void) { return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN); } /* Initialize base and padding for each memory region randomized with KASLR */ void __init kernel_randomize_memory(void) { size_t i; unsigned long vaddr_start, vaddr; unsigned long rand, memory_tb; struct rnd_state rand_state; unsigned long remain_entropy; vaddr_start = pgtable_l5_enabled ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4; vaddr = vaddr_start; /* * These BUILD_BUG_ON checks ensure the memory layout is consistent * with the vaddr_start/vaddr_end variables. These checks are very * limited.... */ BUILD_BUG_ON(vaddr_start >= vaddr_end); BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE); BUILD_BUG_ON(vaddr_end > __START_KERNEL_map); if (!kaslr_memory_enabled()) return; kaslr_regions[0].size_tb = 1 << (__PHYSICAL_MASK_SHIFT - TB_SHIFT); kaslr_regions[1].size_tb = VMALLOC_SIZE_TB; /* * Update Physical memory mapping to available and * add padding if needed (especially for memory hotplug support). */ BUG_ON(kaslr_regions[0].base != &page_offset_base); memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) + CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING; /* Adapt phyiscal memory region size based on available memory */ if (memory_tb < kaslr_regions[0].size_tb) kaslr_regions[0].size_tb = memory_tb; /* Calculate entropy available between regions */ remain_entropy = vaddr_end - vaddr_start; for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) remain_entropy -= get_padding(&kaslr_regions[i]); prandom_seed_state(&rand_state, kaslr_get_random_long("Memory")); for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) { unsigned long entropy; /* * Select a random virtual address using the extra entropy * available. */ entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i); prandom_bytes_state(&rand_state, &rand, sizeof(rand)); if (pgtable_l5_enabled) entropy = (rand % (entropy + 1)) & P4D_MASK; else entropy = (rand % (entropy + 1)) & PUD_MASK; vaddr += entropy; *kaslr_regions[i].base = vaddr; /* * Jump the region and add a minimum padding based on * randomization alignment. */ vaddr += get_padding(&kaslr_regions[i]); if (pgtable_l5_enabled) vaddr = round_up(vaddr + 1, P4D_SIZE); else vaddr = round_up(vaddr + 1, PUD_SIZE); remain_entropy -= entropy; } } static void __meminit init_trampoline_pud(void) { unsigned long paddr, paddr_next; pgd_t *pgd; pud_t *pud_page, *pud_page_tramp; int i; pud_page_tramp = alloc_low_page(); paddr = 0; pgd = pgd_offset_k((unsigned long)__va(paddr)); pud_page = (pud_t *) pgd_page_vaddr(*pgd); for (i = pud_index(paddr); i < PTRS_PER_PUD; i++, paddr = paddr_next) { pud_t *pud, *pud_tramp; unsigned long vaddr = (unsigned long)__va(paddr); pud_tramp = pud_page_tramp + pud_index(paddr); pud = pud_page + pud_index(vaddr); paddr_next = (paddr & PUD_MASK) + PUD_SIZE; *pud_tramp = *pud; } set_pgd(&trampoline_pgd_entry, __pgd(_KERNPG_TABLE | __pa(pud_page_tramp))); } static void __meminit init_trampoline_p4d(void) { unsigned long paddr, paddr_next; pgd_t *pgd; p4d_t *p4d_page, *p4d_page_tramp; int i; p4d_page_tramp = alloc_low_page(); paddr = 0; pgd = pgd_offset_k((unsigned long)__va(paddr)); p4d_page = (p4d_t *) pgd_page_vaddr(*pgd); for (i = p4d_index(paddr); i < PTRS_PER_P4D; i++, paddr = paddr_next) { p4d_t *p4d, *p4d_tramp; unsigned long vaddr = (unsigned long)__va(paddr); p4d_tramp = p4d_page_tramp + p4d_index(paddr); p4d = p4d_page + p4d_index(vaddr); paddr_next = (paddr & P4D_MASK) + P4D_SIZE; *p4d_tramp = *p4d; } set_pgd(&trampoline_pgd_entry, __pgd(_KERNPG_TABLE | __pa(p4d_page_tramp))); } /* * Create PGD aligned trampoline table to allow real mode initialization * of additional CPUs. Consume only 1 low memory page. */ void __meminit init_trampoline(void) { if (!kaslr_memory_enabled()) { init_trampoline_default(); return; } if (pgtable_l5_enabled) init_trampoline_p4d(); else init_trampoline_pud(); }