/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994, 95, 96, 97, 98, 99, 2003, 06 by Ralf Baechle * Copyright (C) 1996 by Paul M. Antoine * Copyright (C) 1999 Silicon Graphics * Kevin D. Kissell, kevink@mips.org and Carsten Langgaard, carstenl@mips.com * Copyright (C) 2000 MIPS Technologies, Inc. */ #ifndef _ASM_SWITCH_TO_H #define _ASM_SWITCH_TO_H #include #include #include #include #include struct task_struct; /** * resume - resume execution of a task * @prev: The task previously executed. * @next: The task to begin executing. * @next_ti: task_thread_info(next). * * This function is used whilst scheduling to save the context of prev & load * the context of next. Returns prev. */ extern asmlinkage struct task_struct *resume(struct task_struct *prev, struct task_struct *next, struct thread_info *next_ti); extern unsigned int ll_bit; extern struct task_struct *ll_task; #ifdef CONFIG_MIPS_MT_FPAFF /* * Handle the scheduler resume end of FPU affinity management. We do this * inline to try to keep the overhead down. If we have been forced to run on * a "CPU" with an FPU because of a previous high level of FP computation, * but did not actually use the FPU during the most recent time-slice (CU1 * isn't set), we undo the restriction on cpus_allowed. * * We're not calling set_cpus_allowed() here, because we have no need to * force prompt migration - we're already switching the current CPU to a * different thread. */ #define __mips_mt_fpaff_switch_to(prev) \ do { \ struct thread_info *__prev_ti = task_thread_info(prev); \ \ if (cpu_has_fpu && \ test_ti_thread_flag(__prev_ti, TIF_FPUBOUND) && \ (!(KSTK_STATUS(prev) & ST0_CU1))) { \ clear_ti_thread_flag(__prev_ti, TIF_FPUBOUND); \ prev->cpus_allowed = prev->thread.user_cpus_allowed; \ } \ next->thread.emulated_fp = 0; \ } while(0) #else #define __mips_mt_fpaff_switch_to(prev) do { (void) (prev); } while (0) #endif /* * Clear LLBit during context switches on MIPSr6 such that eretnc can be used * unconditionally when returning to userland in entry.S. */ #define __clear_r6_hw_ll_bit() do { \ if (cpu_has_mips_r6) \ write_c0_lladdr(0); \ } while (0) #define __clear_software_ll_bit() do { \ if (!__builtin_constant_p(cpu_has_llsc) || !cpu_has_llsc) \ ll_bit = 0; \ } while (0) /* * Check FCSR for any unmasked exceptions pending set with `ptrace', * clear them and send a signal. */ #ifdef CONFIG_MIPS_FP_SUPPORT # define __sanitize_fcr31(next) \ do { \ unsigned long fcr31 = mask_fcr31_x(next->thread.fpu.fcr31); \ void __user *pc; \ \ if (unlikely(fcr31)) { \ pc = (void __user *)task_pt_regs(next)->cp0_epc; \ next->thread.fpu.fcr31 &= ~fcr31; \ force_fcr31_sig(fcr31, pc, next); \ } \ } while (0) #else # define __sanitize_fcr31(next) #endif /* * For newly created kernel threads switch_to() will return to * ret_from_kernel_thread, newly created user threads to ret_from_fork. * That is, everything following resume() will be skipped for new threads. * So everything that matters to new threads should be placed before resume(). */ #define switch_to(prev, next, last) \ do { \ __mips_mt_fpaff_switch_to(prev); \ lose_fpu_inatomic(1, prev); \ if (tsk_used_math(next)) \ __sanitize_fcr31(next); \ if (cpu_has_dsp) { \ __save_dsp(prev); \ __restore_dsp(next); \ } \ if (cop2_present) { \ set_c0_status(ST0_CU2); \ if ((KSTK_STATUS(prev) & ST0_CU2)) { \ if (cop2_lazy_restore) \ KSTK_STATUS(prev) &= ~ST0_CU2; \ cop2_save(prev); \ } \ if (KSTK_STATUS(next) & ST0_CU2 && \ !cop2_lazy_restore) { \ cop2_restore(next); \ } \ clear_c0_status(ST0_CU2); \ } \ __clear_r6_hw_ll_bit(); \ __clear_software_ll_bit(); \ if (cpu_has_userlocal) \ write_c0_userlocal(task_thread_info(next)->tp_value); \ __restore_watch(next); \ (last) = resume(prev, next, task_thread_info(next)); \ } while (0) #endif /* _ASM_SWITCH_TO_H */